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Reactive oxygen species (ROS) can be caused by mechanical, thermal, infectious, and chemical stimuli, and 
their negative effects on the health of humans and other animals are of considerable concern. The nuclear 
factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1 (Nrf  2/Keap1) system plays a major 
role in maintaining the balance between the production and elimination of ROS via the regulation of a series 
of detoxifying and antioxidant enzyme gene expressions by means of the antioxidant response element 
(ARE). Dietary phytochemicals, which are generally found in vegetables, fruits, grains, and herbs, have been 
reported to have health benefits and to improve the growth performance and meat quality of farm animals 
through the regulation of Nrf 2-mediated phase II enzymes in a variety of ways. However, the enormous 
quantity of somewhat chaotic data that is available on the effects of phytochemicals needs to be properly 
classified according to the functions or mechanisms of phytochemicals. In this review, we first introduce the 
antioxidant properties of phytochemicals and their relation to the Nrf 2/Keap1 system. We then summarize 
the effects of phytochemicals on the growth performance, meat quality, and intestinal microbiota of farm 
animals via targeting the Nrf 2/Keap1 system. These exhaustive data contribute to better illuminate the 
underlying biofunctional properties of phytochemicals in farm animals.

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and  
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND  

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Biofunctions of dietary phytochemicals in modulating the 
Nrf 2/Keap1 system

1.1. Dietary phytochemicals

Phytochemicals are produced via primary or secondary plant me-
tabolisms and originate in various kinds of fruits, vegetables, grains, 
and herbs, endowing them with the color, taste, smell, and other 
organoleptic properties of the plants [1]. They are produced to help 
plants thrive or to thwart competitors, predators, or pathogens. Dur-
ing the last two decades, dietary phytochemicals have been found 
to be strongly associated with human health and diseases through 
their biological functions [2,3]. More than 10 000 kinds of dietary 
phytochemicals have been classified into carotenoids, isothiocy-

anates, and polyphenols based on their chemical structure. Among 
these, the best-investigated category is that of polyphenols, which 
mainly include phenolic acids, flavonoids, and stilbenes/lignans. 
Many epidemiological investigations and lab-based studies have 
demonstrated that most polyphenols are conducive to the chemo-
prevention of several chronic diseases, including diabetes, cardi-
ovascular diseases, neurodegenerative diseases, cancer, and other 
inflammatory diseases [4].

1.2. Phytochemicals as modulators for the Nrf 2/Keap1 system

When phytochemicals are ingested by humans and other ani-
mals, they are recognized as xenobiotics. As a result, they stimulate 
the genes of a series of antioxidant and detoxifying enzymes (ADEs) 
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to express. Most of these genes contain a specific conserved nu-
cleotide sequence of 5′-TA/CANNA/GTGAC/TNNNGCA/G-3′ in their 
promoters, named antioxidant response element (ARE)/electrophile- 
responsive element (EpRE) [5]. Nuclear factor (erythroid-derived 2)-
like 2 (Nrf 2) has been demonstrated to strongly activate ARE/EpRE to 
enhance the gene expressions of a series of ADEs [6], such as NAD(P)H 
quinone dehydrogenase 1 (NQO1), glutathione reductase (GSR), and 
solute carrier family 7 member 11 (SLC7A11) [7]. Nrf 2 is a transcrip-
tion factor (TF) transcribed by the NFE2L2 gene in humans, with a 
basic leucine zipper (bZIP) protein that induces the gene expressions 
of phase II antioxidant proteins and detoxifying enzymes in order to 
protect against oxidative damage triggered by chronic inflammation 
and injury [2]. The crucial negative regulator of Nrf 2 is Kelch-like 
ECH-associated protein 1 (Keap1), which maintains the dynamic bal-
ance of cytoplasmic Nrf 2 by proteasomal degradation [8].

The molecular mechanisms of Nrf 2-ARE activation are summa-
rized in the schematic diagram in Fig. 1. As shown in this diagram, 
the mechanisms of the regulating Nrf 2/Keap1 system can be divided 
into Keap1-dependent and Keap1-independent mechanisms. Under 
basal conditions, Keap1 inhibits Nrf 2 by functioning as an E3 ubiq-
uitin ligase with the cullin 3-RING box protein 1 (Cul3-Rbx1) system 
for the constant ubiquitination and proteasomal degradation of Nrf 2. 
Under induced status, electrophiles, oxidants, or phytochemicals 
can influence the Keap1 structure/residues, in the forms of cyste-
ine modification, ubiquitination, phosphorylation, and succination, 

causing Nrf 2 to escape from the Keap1-dependent ubiquitination 
system [9]. Alternatively, stress inducement may stimulate the phos-
phorylation of certain protein kinases, such as mitogen-activated  
protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K), protein 
kinase C (PKC), PKR-like endoplasmic reticulum kinase (PERK), gly-
cogen synthase kinase 3 (GSK3), or Nrf 2 itself, thus regulating the 
activity of a series of TFs or certain nuclear proteins such as positive 
Brahma-related gene 1 (BRG1), nuclear receptor coactivator am-
plified in breast cancer 1 (AIB1), and Maf, as well as negative p53, 
p65, and cFos [6,8]. Moreover, phytochemicals may cause epigenetic 
modifications to affect the mRNA transcription of NFE2L2 or Keap1, 
such as DNA methylation, histone modification, and microRNA 
tuning. All of the above result in the accumulation of Nrf 2 in the 
nucleus to heterodimerize with small Maf or CREB-binding protein 
(CBP) and to bind to ARE, which finally activates the expression of 
its downstream ADEs genes [6,10].

1.3. Molecular mechanism underlying Nrf 2 regulation by dietary 
phytochemicals

An extremely large number of studies performed in vitro and in 
vivo have revealed that many dietary phytochemicals have powerful 
abilities in regulating the Nrf 2/Keap1 system [2–4]. However, the 
molecular mechanisms underlying this huge quantity of data are 
not well classified. Here, based on the current research status, we 

Fig. 1. Schematic diagram of the molecular mechanisms underlying the modulation of the Keap1/Nrf 2 pathway. (a) Under normal/basal conditions, Nrf 2 is inhibited by the 
Keap1-mediated Cul3-Rbx1 ubiquitination system for general proteasomal degradation. Under an induced state/stimulation, Nrf 2 is activated by the Keap1-independent or 
Keap1-dependent Nrf 2 pathway. (b) The Keap1-independent pathway. The protein kinases (PKC, PI3K, MAPKs, GSK3, and PERK) can phosphorylate Nrf 2, and some transcription 
factors bind to ARE in order to positively or negatively regulate the expressions of Nrf 2/ARE-mediated genes (positive regulators include BRG1, AIB1, and Maf, and negative reg-
ulators include p53, p65, and cFos). Epigenetic modifications include DNA methylations of promoters, histone modifications such as acetylations or methylations, and microRNA 
tuning by transcriptional regulations. (c) Keap1-dependent pathway. The cysteine modifications in the locations of Cysteine 273, 288, and 151, ubiquitination, phosphorylation, 
and succination of Keap1 are minimally involved.
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models reveal that modifications of Keap1 caused by a variety of 
stimuli constitute a primary mechanism in the modulation of the 
Nrf 2/Keap1 system [13–17].

An enormous number of dietary phytochemicals have been found 
to modify the cysteines of Keap1 to regulate the Nrf 2/Keap1 system. 
As displayed in Table 1 [18–80], sulforaphane, resveratrol, catechol 
estrogens, quercetin, carnosic acid, baicalein, glyceollins, oridonin, 
falcarindiol, piceatannol, xanthohumol, and 6-(methylsulfinyl)hexyl 
isothiocyanate were reported to activate the Nrf 2/Keap1 system. Of 
these, quercetin works in the “Keap1 dissociation” model [18] and 
baicalein works in the “Keap1 ubiquitination” model; it is notewor-
thy that baicalein also works in the “Keap1 hinge-and-latch” model 
[26]. In addition, sulforaphane works in the “Keap1 hinge-and-latch” 
model in human Keap1, whereas it works in the “Keap1 dissocia-
tion” model in animal Keap1 [56–59]. These data suggest that Keap1 
modification by phytochemicals varies, and that the cell model used 
is an important factor.

review the molecular mechanisms of Nrf 2 regulation by dietary  
phytochemicals and classify them into Keap1-dependent and Keap1- 
independent mechanisms.

1.3.1. Keap1-dependent pathway
Several models have been suggested to explain the inhibitory 

regulation of Nrf 2 by Keap1. Most of the ARE inducers can target 
and modify the cysteines of Keap1 to affect Nrf 2-ARE signaling. It is 
interesting that the location of the Keap1 cysteine that is targeted 
differs, depending on the type of the inducer [9,10]. The essential 
cysteine residues generally involve C288, C273, and C151 [11]. Af-
ter the discovery of Keap1 as an E3 ligase substrate adaptor of the 
Cul3-Rbx1-containing ubiquitination system, the “Keap1 dissocia-
tion and Cul3-Rbx1 ubiquitination” model was developed to explain 
the major Nrf 2 regulation mechanism [12]. Moreover, several other 
important models such as the “Keap1 hinge-and-latch,” “Keap1 
phosphorylation,” “Keap1 ubiquitination,” and “Keap1 succination” 

Table 1
The molecular mechanisms of Nrf 2 regulation by phytochemicals.

Classification Origin Compound Structure Dose Time Mechanism Model Refs.

Activation of Nrf 2-ARE pathway

Flavonoid-type 
polyphenols

Apple, tea, 
caper, lovage, 
onion

Quercetin 0–40 µmol·L−1 6 h ↑ Keap1 mod-
ification, Nrf 2 
stability

HepG2 cells [18]

100–200 µmol·L−1 24 h, 
48 h

↑ p38 MAPK 
and ERK

Human 
hepatocytes 
epithelial cells

[19]

Celery, green 
pepper

Luteolin 0–20 µmol·L−1 24 h, 
72 h

↑ ERK1/2, HO-1, 
ARE binding

PC12 cells [20]

Cocoa, red wine Procyanidin B2 10 µmol·L−1 20 h ↑ ERKs and p38 
MAPK

Human colonic 
cells

[21]

Strawberry Fisetin

 

0–25 µmol·L−1 NM ↑ PKC-δ and 
p38 MAPK

Human 
umbilical vein 
endothelial 
cells

[22]

Citrus fruits Hesperidin 0–80 µmol·L−1 24 h ↑ ERK1/2 Human hepatic 
L02 cells

[23]

Hops Xanthohumol 4 µmol·L−1 24 h ↑ Modification 
of Keap1 cyste-
ine

Murine He-
pa1c1c7 cells

[24]

Plant phenols Chalcone 10–25 µmol·L−1 NM ↑ Nrf 2, HO-1 Endothelial 
cells

[25]
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Classification Origin Compound Structure Dose Time Mechanism Model Refs.

Scutellaria 
baicalensis

Baicalein 0–40 µmol·L−1 9 h, 24 h ↑ Nrf 2, HO-1 HepG2 cells [26]

Artemisia Eupatilin 0–150 µmol·L−1 16 h ↑ ERK Feline ileal 
smooth muscle 
cells

[27]

Sasa borealis Isoorientin 5 µg·mL−1 0–6 h ↑ PI3K/Akt HepG2 cells [28]

Vernonia anthel-
mintica, Dalber-
gia odorifera

Butin 10 µg·mL−1 12 h, 
24 h

↑ PI3K/Akt Chinese 
hamster lung 
fibroblast 
(V79-4)

[29]

Inula helenium Phytoestrogen 
puerarin

0–100 µmol·L−1 2–18 h ↑ PI3K/Akt Hepa1c1c7 
cells 

[30]

Fraxinus rhin-
chophylla

Fraxetin 30–100 µmol·L−1 24 h ↑ Nrf 2, HO-1 Vascular 
smooth muscle 
cells

[31]

Mallotus philip-
pinensis

Rottlerin 1–10 µmol·L−1 9 h ↑ ERK and p38 
MAPK

HT29 cells [32]

Tea EGCG 20 µmol·L−1 48 h ↑ p38 MAPK 
and Akt

B lympho-
blasts

[33]

50 µmol·L−1 6 h ↑ ERK and PI3K/
Akt 

Bovine aortic 
endothelial 
cells

[34]

Cocoa, tea Epicatechin 5–30 mg·kg–1 BW 1 h, 6 h, 
18 h

↑ ERK and PI3K/
Akt 

Ischemic dam-
aged mice

[35]

Tea, broccoli Kaempferol 0–10 µmol·L−1 18 h ↑ JNK, HO-1, 
GCLC

Organ of Corti 1 
(HEI-OC1) cells

[36]

Wild grape Procyanidins 25 µg·mL−1 1 h ↑ p38 MAPK, 
PI3K/Akt 

HepG2 cells [37]

Table 1  (continued)
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Classification Origin Compound Structure Dose Time Mechanism Model Refs.

Non-flavonoid-
type polyphe-
nols

Red grape Resveratrol 10 µmol·L−1 24 h ↑ Modification 
of Nrf 2 and 
Keap1

A549 cells [38]

15 µmol·L−1 0–6 h ↑ ERK and PI3K PC12 cells [39]

Rosemary, com-
mon sage

Carnosic acid 1–20 µmol·L−1 0–1 h ↑ p38 MAPK [40]

10 µmol·L−1 1 h ↑ S-alkylation 
of Keap1

[41]

Blueberries, 
grapes

Pterostilbene 5 mg·kg−1 BW 6 weeks ↑ Nrf 2, HO-1 Male BALB/c 
mice

[42]

Cinnamomum 
cassia Presl

Cinnamalde-
hyde 

50–100 µmol·L−1 0–12 h ↑ Nrf 2, HO-1 Endothelial 
cells

[43]

American poke-
weed, garlic

Oleanolic acid 10–50 µmol·L−1 0–2 h ↑ Akt and ERK Primary rat 
vascular 
smooth muscle 
cells

[44]

Inula helenium Alantolactone 0–10 µmol·L−1 NM ↑ PI3K and JNK Hepa1c1c7 
mouse hepato-
ma cells

[45]

Scrophulariace-
ae

Acteoside 30 µmol·L−1 0–12 h, 
6 h

↑ ERK and PI3K/
Akt 

PC12 cells [46]

Tripterygium 
wilfordii

Celastrol 0–1 µg·mL−1 0.5 h ↑ ERK and p38 
MAPK

HaCaT cells [47]

Euphorbia lagas-
cae

Piceatannol 30 µmol·L−1 0–12 h ↑ Akt and 
modification of 
Keap1

MCF10A cells [48]

Coffee Kahweol 0–10 µmol·L−1 0–2 h ↑ Akt and p38 
MAPK

SH-SY5Y cells [49]

Rhizoma coptidis Berberine 1–10 µmol·L−1 0–2 h ↑ PI3K/Akt, 
phosphoryla-
tion of Nrf 2 

Rat brain 
astrocyte cell 
line (RBA-1)

[50]

Olive Hydroxytyrosol 50 µmol·L−1 0–1 h ↑ PI3K/Akt, 
MEK1/2-
ERK1/2

Vascular endo-
thelial cells

[51]

0–200 µmol·L−1 2–24 h ↑ JNK Human retinal 
pigment

[52]

Table 1  (continued)
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Classification Origin Compound Structure Dose Time Mechanism Model Refs.

Sesame seeds Sesamin and 
episesamin

0–10 µmol·L−1 0–2 h ↑ p38 MAPK Rat pheochro-
mocytoma 
PC12 cells

[53]

Spinach, green 
leafy vegetables

Chlorophyllin 50 µmol·L−1 0–2 h ↑ PI3K/Akt Human 
umbilical vein 
endothelial 
cells

[54]

Soybean Catechol estro-
gens

10 µmol·L−1 3 h ↑ Modification 
of Keap1 

RAW264.7 
cells

[55]

Isothiocyanates 
and other phy-
tochemicals

Cruciferous 
vegetables

Sulforaphane 0–200 µmol·L−1 2 h ↑ Cysteine 
thioacetylation 
of Keap1

Human 
Keap-1-trans-
fected HEK293 
cells

[56]

20 µmol·L−1 24 h ↑ p38 MAPK 
isoforms 

HepG2 cells [57]

20 µmol·L−1 1 h ↑ ERK and PI3K Caco-2 cells [58]

0–2.5 µmol·L−1 5 d ↑ CpGs, de-
methylation of 
Nrf 2 promoter, 
Nrf 2, NQO1; 
↓ DNMT1/3a, 
HDAC1/4/5/7

TRAMP C1 
cells

[59]

Cruciferous 
vegetables

PEITC
 

5 µmol·L−1 12 h ↑ ERK and JNK PC-3 cells [60]

Cruciferous 
vegetables

I3C 6.25 µmol·L−1 24 h ↑ JNK HepG2-C8 
cells

[61]

Cruciferous 
vegetables

DIM 0–5 µmol·L−1 NM ↑ CpGs, de-
methylation of 
Nrf 2 promoter, 
Nrf 2, NQO1, 
JNK

TRAMP-C1 
cells, TRAMP 
prostate tu-
mors

[62]

Garlic, onion Diallyl trisulfide 100 µmol·L−1 1 h ↑ Calcium-de-
pendent 
signaling, ERK, 
p38 MAPK

HepG2 cells [63]

Gardenia jasm-
inoides

Genipin 0–100 µmol·L−1 24 h ↑ PI3K-JNK1/2 RAW264.7 
macrophages

[64]

Commiphora 
mukul

Guggulsterone 25 µmol·L−1 0–2 h, 
6 h

↑ PI3K/Akt Human mam-
mary epithelial 
cells

[65]

Inhibition of Nrf 2-ARE pathway

Flavonoid Celery, green 
pepper

Luteolin (Lut) a 20 µmol·L−1 24 h, 
48 h

↑ Nrf 2 mRNA 
degradation

A549, HCT116-
OX, SW620OX, 
MDA-MB 231 
cells

[66,67]

Table 1  (continued)
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Classification Origin Compound Structure Dose Time Mechanism Model Refs.

Parsley, celery, 
celeriac

Apigenin (Api) a 20 µmol·L−1 14 d ↓ p-Akt Tumor of mice [68]

Passiflora incar-
nata

Chrysin (Chry) a 10–20 µmol·L−1 24 h ↓ p-Akt, 
p-ERK1/2, Nrf 2 
protein levels

BEL-7402/ADM 
cells

[69]

4-methoxychal-
cone a

5 µg·mL−1 3–24 h ↓ p-Akt 
(Thr308)

A549 cells [70]

Tangerine peel 3',4',5',5,7-
pentame-
thoxyflavone a

10–25 µmol·L−1 24 h ↓ p-ERK A549 cells [71]

Tea (EGCG) a 100 µmol·L−1, 
200 µmol·L−1

24 h ↓ Nrf 2 protein 
level; ↑ apopto-
sis

A549 cells [72]

Brucea Brusatol (Bru) 10–300 nmol·L−1 2 h ↓ Nrf 2 mRNA 
translation

A549, He-
pa1c1c7 cells 

[73]

Salvia Cryptotanshi-
none

5–10 µmol·L−1 24 h NM H1299 cells [74]

Metformin 
(Met)

1–5 mmol·L−1 24 h ↓ pRaf, 
p-ERK1/2;  
↑ microRNA- 
34a; ↓ Nrf 2

HepG2, HeLa, 
A549, MCF-7 
cells

[75,76]

Mycotoxin 
ochratoxin A

5 µmol·L−1 1 d, 3 d ↓ Nuclear 
import of Nrf 2; 
↓ DNA binding; 
↑ microRNA- 
32; 
↓ Nrf 2

Human pri-
mary proximal 
tubule cells

[77,78]

Leguminosae 
extract of fenu-
greek

Trigonelline 
(Trig)

0.0001–
1 mmol·L−1

3 h ↓ Nuclear 
import of Nrf 2

Panc1, Colo357, 
MiaPaca2 cells

[79,80]

CpG: 5′-C-phosphate-G-3′; DIM: 3,3′-diindolylmethane; DNMT: DNA methyltransferase; EGCG: epigallocatechin-3-gallate; ERK: extracellular signal-regulated kinase; GCLC: 
glutamate-cysteine ligase catalytic subunit; HDAC: histone deacetylase; HO-1: heme oxygenase 1; I3C: indole-3-carbinol; JNK: c-Jun N-terminal kinase; MEK: mitogen-activated 
protein kinase kinase; PEITC: phenethyl isothiocyanate; BW: body weight; NM: not mentioned in the reference.

a indicates that the compound has a dual role in the regulation of the Nrf 2-ARE pathway, including activation and inhibition.

Table 1  (continued)

1.3.2. Keap1-independent pathway
Aside from Keap1, a large number of other factors have been 

proven to play significant roles in the regulation of the Nrf 2/Keap1 
system. As shown in Fig. 1, these factors can be mainly classified into 
epigenetic modifications, the phosphorylation of protein kinases, 
and the regulation of TFs.

As shown in Table 1, the phosphorylation of extracellular signal- 
regulated kinase (ERK) can be promoted by quercetin [19], sulfora-

phane/phenethyl isothiocyanate (PEITC) [58,60], hydroxytyrosol [51], 
resveratrol [39], luteolin [20], procyanidin B2 [21], hesperidin [23], 
oleanolic acid [44], epigallocatechin-3-gallate (EGCG) [34], epicate-
chin [35], eupatilin [27], rottlerin [32], acteoside [46], and celastrol 
[47]. The activation of p38 MAPK can occur from treatments of quer-
cetin [19], procyanidins [37], sulforaphane [57], procyanidin B2 [21], 
fisetin [22], rottlerin [32], carnosic acid [40], celastrol [47], sesamin/
episesamin [53], EGCG [33], and kahweol [49]. The activity of c-Jun 
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N-terminal kinase (JNK) has been reported to be induced by treat-
ments of alantolactone [45], hydroxytyrosol [52], PEITC [60], kaemp-
ferol [36], genipin [64], and indole-3-carbinol/3,3′-diindolylmethane 
[61,62]. The activity of PI3K can be stimulated by procyanidins [37], 
sulforaphane [58], hydroxytyrosol [51], resveratrol [39], chlorophyl-
lin [54], genipin [64], isoorientin [28], butin [29], guggulsterone [65], 
alantolactone [45], phytoestrogen puerarin [30], berberine [50], ac-
teoside [46], EGCG [34], and epicatechin [35].

Several lines of research have found that the Nrf 2/Keap1 system 
can be regulated by dietary phytochemicals through modulation of 
other transcriptional factors or nuclear proteins. Jun dimerization 
protein 2 (JDP2) was found to be strongly associated with sulfora-
phane-induced Nrf 2 activation, and it was shown that JDP2 posi-
tively promotes Nrf 2-ARE activation caused by sulforaphane [81]. 
Another study reported that sulforaphane inhibited the Nrf 2 sig-
naling pathway at the transcription level via nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB); NF-κB promotes 
histone deacetylase 3 (HDAC3) to cause local hypoacetylation and 
competes against Nrf 2 transactivation with CBP to inhibit Nrf 2 sig-
naling [82].

Some dietary phytochemicals are considered to be potent epi-
genetic modifiers, including isothiocyanates, tea polyphenols, 
genistein, and curcumin [83]. Sulforaphane, 3,3′-diindolylmethane, 
curcumin, and Z-ligustilide were shown to inhibit the expressions 
of DNA methyltransferase (DNMT) and HDAC, resulting in the de-
methylation of Nrf 2 promoter and the reactivation of Nrf 2 signaling 
in the prostate of TRAMP mice or in TRAMP C1 cells [59,62,84,85]. 
Moreover, apigenin, sulforaphane, and tanshinone IIA were reported 
to demethylate excessively methylated 5′-C-phosphate-G-3′ (CpG) 
sites in the Nrf 2 promoter region in mouse skin epidermal JB6 P+ 

cells, which was associated with the reactivation of Nrf 2 signaling, 
the expression of Nrf 2 target genes, the suppression of TPA-induced 
transformation, and the inhibition of protein expression of DNMTs 
and HDACs [86–88]. These findings suggest that phytochemicals can 
regulate Nrf 2 expression epigenetically; however, the exact effects 
of these special Nrf 2 modulators on cancer and other chronic dis-
eases need to be clarified by further study.

It is interesting that several lines of study reported that some 
flavonoids work as inhibitors of the Nrf 2/Keap1 system in certain 
cancer cell lines and play an important role in overcoming cancer 
drug resistance (Table 1) [66–80]. For example, luteolin, apigenin, 
chrysin, 4-methoxychalcone, pentamethoxyflavone, and EGCG have 
been found to play different roles in Nrf 2-ARE regulation in normal 
cells and in cancer cells. In normal cells, they work as activators for 
Nrf 2-ARE regulation to prevent chronic diseases, whereas in cancer 
cells, they work as inhibitors for Nrf 2-ARE regulation to overcome 
cancer drug resistance. This dual action of phytochemicals on the 
Nrf 2/Keap1 system in normal and cancer cells is attracting consider-
able attention regarding its health benefits [89].

2. The effects of phytochemicals on the growth performances, 
meat quality, and intestinal microbiota of farm animals by  
targeting the Nrf 2/Keap1 system

The source of phytochemicals for farm animals is generally 
agroindustrial byproducts, such as skins, stems, seeds, pomace, nuts, 
hulls, and waste from the production of juice, wine, or beer, in order 
to reduce feed cost [90]. Table 2 summarizes the effects of phyto-
chemicals on the growth performances, meat quality, and intestinal 
microbiota of farm animals [91–135].

Table 2
The effects of phytochemicals on the growth performances, meat quality, and intestinal microbiota of farm animals.

Function classification Phytochemical Concentration Animal/meat tested Effect Refs.

Growth performances

Resveratrol and resveratrol-rich 
grape extract

100 mg·(kg·d)−1 Pigs Lower fat deposition, improve myocardial function 
or glucose metabolism, prevent development of 
atherosclerotic lesions and coronary heart disease

[91‒93]

Polyphenol-rich grape seed and 
grape marc meal

Pigs No change in Nrf 2/Keap1 pathway [94,95]

Grape seed proanthocyanidin 
extract 

Broilers Improve weight gain and lower mortality of broilers 
infected with Eimeria tenella 

[96]

Thymol, tannic acid, or gallic acid 200 mg, 5 g·kg−1 diet Broilers Improve the feed utilization and final BW [97]

Grape pomace 60 g·kg−1 diet Broilers Improve feed efficiency [98]

Green tea polyphenols Broilers Improve the feed conversion ratio and impair feed 
efficiency without corticosterone treatment 

[99]

Resveratrol 1% of diet Broilers Impair body weight gain and feed conversion ratio [100]

Quercetin 0.2–0.6 g·kg−1 diet Hens Increase laying rate, decrease feed-to-egg ratio [101]

Tea polyphenols 5–15 mg·kg−1 diet Laying hens Prevent the adverse effect of vanadium on egg 
quality

[102]

Pomegranate-extract polyphenols 5–10 g·d−1           Dairy cows Decreased the digestibility of protein and fat [103]

Polyphenol-rich grape seed and 
grape marc meal extract

 Dairy cows Improve milk performance [104]

Green tea and curcuma extract Dairy cows Cause a reduction of fat content in the liver and an 
increase in milk performance

[105]

Meat quality

Antioxidant Quercetin, a flavonoid; ampelopsin, 
isoflavones, a polyphenols mix

10 mg·(kg·d)−1, 1 g·kg−1 
diet

Pigs Reduce plasma lipid peroxidation and lower MDA 
level

[94,106,107]

Tea polyphenols, grape seed proan-
thocyanidin extract

1000 mg·kg−1 diet Broilers and laying 
hens

Reduction of MDA and TBARS concentrations, 
induction of GPx activity 

[96,98,102]

Extracts of rosemary, grape skin, 
green tea, and coffee

50–200 ppm Pork patties Reduce lipid oxidation, reduce values of TBARS and 
hexanal

[108]
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Function classification Phytochemical Concentration Animal/meat tested Effect Refs.

Extracts of white peony, red peony, 
moutan peony, sappan wood, 
rehmannia, and angelica

0.5%–2.0% Raw and cooked 
goat meat patties

Reduce lipid oxidation [109]

Extracts of olive leaf, date pits, and 
rosemary leaf 

Raw beef patties, 
ground beef, and 
buffalo meat pat-
ties

Reduce TBARS value, lipid oxidation, and oxymyo-
globin oxidation

[110‒112]

Adzuki bean extract and grape seed 
extract

Pork and beef 
sausages

Reduce lipid oxidation and TBARS values [113,114]

Garlic juice 1% and 3% Emulsified sausage Decrease peroxide value, TBARS, and residual 
nitrite

[115]

Sage essential oil 3% Raw pork Decrease the TBARS value [116]

Oregano essential oil 3% Pork and beef Lower levels of oxidation [116]

Anti-inflammatory Grape seed and grape marc meal 
extract or hop extract

Growing pigs Downregulation of various pro-inflammatory genes [95]

Cocoa powder 2.5 g, 10 g, 20 g Pigs Decrease gene expression of TNF-α and Toll-like 
receptors 

[117]

Tea polyphenols 0.03–0.09 g·kg−1 BW Broilers Downregulation of the genes of IL-1β, IL-4, IL-10, 
TNF-α, and IFN-γ

[118]

Pomegranate-extract polyphenols 5–10 g·d−1 Pigs Increase the secretion of IFN-γ and IL-4, improve 
total IgG response

[119]

Grape seed and grape marc meal 
extract

Dairy cows Downregulation of the marker of endoplasmic 
reticulum stress, FGF-21, and fat accumulation in 
the liver

[104]

Sensory White peony extract 0.5%–2.0% Raw and cooked 
meat patties

Increase the redness value (a* value) [109]

Rosemary extract 300–500 ppm Raw frozen sausage Maintain the red color [120]

Green tea extract 300 mg·kg−1 meat Raw patties Decrease a* value [121]

Cooked patties Delay rancid flavor development [122]

Grape seed extract 0.01%–0.02% Beef patties Reduce visual green discoloration [123]

Myrtle extract 10% Beef patties Prevent color changes [124]

Eleutherine americana extract 2.7–10.8 mg·(100 g) −1 Cooked pork Increase a* value [125]

Adzuki bean extract 0.2% Cured and uncured 
cooked pork sau-
sages

Increase a* value but decrease lightness (L* value) 
and yellowness (b* value)

[126]

Green tea extract 500–6000 ppm Raw and cooked 
goat meat

Increase a* value [127]

Grape seed extract Decrease a* value [128]

Pepper extract Cooked pork Maintain a* value [128]

Curry leaf extract 5 mL·(500 g) −1 meat Raw ground pork Decrease L* value and a* value while increasing b* 
value

[129]

Rosemary leaf extract 130 ppm Raw and cooked 
ground buffalo 
meat patties

Stabilized color [130]

Plum products Variety of meat and 
poultry products

Minor effect on flavor but caused color change [131,132]

Grape seed extract Meat products Significant change in color [133]

Intestinal microbiota

Cocoa powder Pigs Increase the abundance of Lactobacillus, Bifidobac-
terium spp., Bacteroides-Prevotella, and Faecalibacte-
rium prausnitzii 

[117,134]

Grape pomace concentrate Broilers Increase the abundance of Enterococcus and de-
crease that of Clostridium 

[98]

Quercetin Laying hens Decrease the total aerobes and coliforms and 
increase the abundance of Bifidobacterium

[101]

Tea polyphenols Pigs Increase the amount of lactobacilli and decrease 
that of the total bacteria, Bacteroidaceae, and Clos-
tridium perfringens

[102]

Calves Decrease Bifidobacterium spp., Lactobacillus spp., 
and Clostridium perfringens

[135]

FGF: fibroblast growth factor; GPx: glutathione peroxidase; IFN: interferon; IgG: immunoglobulin G; IL: interleukin; MDA: malondialdehyde; TBARS: thiobarbituric acid reactive 
substance; TNF: tumor necrosis factor; BW: body weight.

Table 2  (continued)
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2.1. Growth performances

Several lines of study have reported the effects of phytochemicals 
on the growth performances of farm animals including pigs, poultry, 
and cattle.

In pigs, stilbenoid resveratrol and grape extract with a rich con-
centration of resveratrol were found to lower fat deposition, im-
prove glucose metabolism and myocardial function, and prevent the 
progression of atherosclerotic lesions and coronary heart disease 
[91–93]. Although an improvement in growth performance was 
found in pig feed based on polyphenol-rich grape seed and marc 
meal, the activity of TF Nrf 2 and the expressions of ARE-associated 
antioxidant genes or detoxifying enzymes showed no significant 
change [94,95].

In broilers and laying hens, phytochemicals were found to have 
a significant effect on improving growth performances. The supple-
mentation of proanthocyanidin extract from grape seed was report-
ed to lower the mortality of broilers infected with Eimeria tenella and 
improve their weight gain [96]. The broiler diet, which contained  
thymol (200 mg·kg−1 diet), gallic acid (5 g·kg−1 diet), and tannic acid 
(5 g·kg−1 diet), was found to improve the feed utilization and final 
body weight [97]. Grape pomace concentrate (60 g·kg−1 diet) was 
found to improve feed efficiency [98]. Green tea polyphenols in the 
broiler diet improved the feed conversion ratio in liver and muscle 
treated with corticosterone, but impaired the feed efficiency with-
out corticosterone treatment [99]. Resveratrol (1% of diet) impaired 
the body weight gains of broiler birds as well as their feed conver-
sion ratios [100]. Dietary quercetin (0.2–0.6 g·kg−1 diet) was found 
to increase the laying rate and decrease the feed-to-egg ratio [101]. 
Tea polyphenols (5–15 mg·kg−1 diet) were reported to prevent the 
adverse effect of vanadium on egg quality [102].

In dairy cows, pomegranate-extracted polyphenols decreased 
the digestibility of protein and fat due to the suppression of these 
nutrients by high tannins content [103]. The supplementation of 
dairy cow feed with polyphenol-rich grape seed and marc extract 
was found to improve milk performance [104]. Plant products were 
shown to cause a reduction of fatty liver formation and an improve-
ment in milk performance in cows [105].

Although direct proof of the link between phytochemical-caused 
improvements on the growth performance of farm animals and the 
Nrf 2/Keap1 system has not yet been fully established, significant 
improvements in antioxidant and anti-inflammatory properties 
caused by phytochemicals-based feedings have been extensively 
observed in many studies, and may be strongly associated with the 
Nrf 2/Keap1 system.

2.2. Meat quality

A very large number of studies were performed to study the ef-
fects of phytochemicals on meat quality, with a focus on antioxidant 
properties, anti-inflammatory properties, and sensory performances 
such as color, texture, and flavor [106–133].

2.2.1. Antioxidant properties
The antioxidant properties of phytochemicals in farm animals, 

meat, and meat products have been extensively studied, forming a 
basis for an understanding of other functions of phytochemicals.

Phytochemicals supplementation was reported to improve the 
redox status and reduce excessive oxidative stress in pigs treated by 
peroxidation, by reducing plasma lipid peroxidation and lowering 
malondialdehyde (MDA) level. However, phytochemicals had no 
such effects in the case of non-pro-oxidative treatment [94,106,107]. 
Plant phytochemicals in the diet also moderately improved the an-
tioxidant status in broilers and laying hens through the reduction 
of MDA and thiobarbituric acid reactive substance (TBARS) concen-

trations, and the induction of glutathione peroxidase (GPx) activity 
[96,98,102]. However, the antioxidant status was found to be less 
influenced in dairy cattle by phytochemicals supplementation, al-
though the activity of superoxide dismutase (SOD) increased occa-
sionally [104,105].

In meat and meat products, lipid oxidation is found to be the 
primary cause of quality loss. During the digestion–absorption–
metabolism process, a number of oxidative compounds and stresses 
emerge and accumulate in the organism or tissues, adversely limit-
ing the shelf-life and affecting the quality of the meat or meat prod-
ucts, including texture, color, flavor, nutritive value, and safety [136]. 
The toxic effects of synthetic antioxidants and consumers’ interest 
in natural products have accelerated the development of natural 
phytochemicals as better choices than additives [137]. For example, 
the addition to pork patties of phytochemicals, such as extracts of 
grape skin, green tea, rosemary, and coffee, was observed to reduce 
lipid oxidation and the values of TBARS and hexanal at doses of 50–
200 ppm [108]. In raw or cooked goat meat patties, extracts of red 
peony, white peony, moutan peony, rehmannia, sappan wood, and 
angelica were found to reduce lipid oxidation, at doses of 0.5%–2.0% 
[109]. In raw beef patties, ground beef, and buffalo meat patties, ex-
tracts of olive leaf, date pits, and rosemary leaf were found to reduce 
TBARS value, lipid oxidation, and oxymyoglobin oxidation, respec-
tively [110–112]. In pork and beef sausages, adzuki bean extract and 
grape seed extract were found to reduce lipid oxidation and TBARS 
values [113,114]. The antioxidant properties of green tea extract, 
rosemary extract, and grape seed extract are well studied and their 
application in meat and meat products has been reviewed in a re-
port [130].

2.2.2. Anti-inflammatory properties
Diets containing grape seed, marc extract, and hop extract were 

found to downregulate the expressions of various pro-inflammatory 
genes in the small intestine of growing pigs [95]. Cocoa powder in 
pig feed also decreased the gene expressions of Toll-like receptors 
and tumor necrosis factor (TNF)-α [117].

The anti-inflammatory effect of tea polyphenols on poultry was 
reported by investigating the expressions of a series of pro-inflam-
matory cytokines in the intestine of broilers. The results showed 
that tea polyphenols (0.03–0.09 g·kg−1 body weight) caused a down-
regulation of the gene expressions of TNF-α, interleukin (IL)-4, IL-10, 
IL-1β, and interferon (IFN)-γ [118].

Feeding cattle with pomegranate-extract polyphenols (5–10 g·d−1) 
increased the secretion of IL-4 and IFN-γ in peripheral blood mono-
nuclear cells and improved the total immunoglobulin G (IgG) re-
sponses to the vaccination of ovalbumin [119]. Feeding dairy cows 
grape seed and marc extract stimulated a significant downregu-
lation of the marker of endoplasmic reticulum stress, fibroblast 
growth factor (FGF)-21, as well as decreasing fat accumulation in the 
liver [104].

2.2.3. Sensory performance
Sensory performance is generally used to evaluate the color, fla-

vor, and taste of meat or meat products. Phytochemicals have been 
found to affect the sensory performance of meat significantly.

For example, 0.5%–2.0% of white peony extract increased the red-
ness value (a* value) in raw and cooked meat patties [109]; 300–500 
ppm of rosemary extract maintained the red color of raw frozen 
sausage [120]; 300 mg·kg−1 meat of green tea extract decreased the 
a* value in raw patties and eliminated rancid flavor in cooked patties 
[121,122]; 0.01%–0.02% of grape seed extract reduced visual green 
discoloration of beef patties [123]; 10% of myrtle extract prevented 
color changes in beef patties [124]; 2.7–10.8 mg·(100 g)−1 of Eleuther-
ine americana extract increased a* value in cooked pork [125]; 0.2% 
of adzuki bean extract increased a* value but decreased lightness (L* 



748 S. Qin, D.-X. Hou / Engineering 3 (2017) 738–752

value) and yellowness (b* value) in cured or uncured cooked pork 
sausages [126]; 500–6000 ppm of green tea extract increased a* val-
ue whereas grape seed extract decreased a* value in raw and cooked 
goat meat, and pepper extract was helpful in maintaining a* value 
in cooked pork [127,128]; 5 mL·(500 g)−1 meat of curry leaf extract 
decreased the L* value and a* value while increasing the b* value in 
raw ground pork [129]; and 130 ppm of rosemary leaf extract stabi-
lized the color in raw and cooked ground buffalo meat patties [130].

In addition, plum products exhibited minor effect on flavor but 
caused color change in many meat and poultry products, and grape 
seed extract led to a significant change in color in meat products 
[137].

2.3. Intestinal microbiota

Studies focusing on the effect of phytochemicals on the intesti-
nal microbiota in vivo have increased markedly in recent years. It is 
considered that intestinal microbiota are the first targets of dietary 
phytochemicals, and that they show many links to health. Thus, 
many health-promoting effects of phytochemicals may be attributed 
to their modulation of the intestinal microbiota [138]. For example, 
only 5%–10% of polyphenols can be absorbed in the small intestine; 
90%–95% enter the colon and are bio-transformed with the aid of 
the enzymatic colon microbiota into a series of polyphenolic me-
tabolites [90]. The polyphenolic metabolites are able to partially 
re-absorb into the systematic circulation after conjugation once 
again in the liver and the enterocyte, and partially serve as antimi-
crobial substances or growth-promoting substrates. On the other 
hand, polyphenols or their metabolites can affect the composition 
and density of the colon microbiota in a profitable manner, includ-
ing promotion of the growth of beneficial bacteria in a prebiotic-like 
manner and inhibition of certain pathogenic bacteria [139,140].

Limited studies were performed to specifically investigate the 
effects of polyphenols on the intestinal microbiota in farm animals. 
Cocoa powder feeding was found to increase the abundance of sev-
eral bacterial strains in pigs, including Lactobacillus, Bifidobacterium 
spp., Bacteroides-Prevotella, and Faecalibacterium prausnitzii [117,134]. 
A few studies revealed that polyphenols may exhibit favorable ef-
fects in the intestine of broilers. Grape pomace concentrate supple-
mentation in broiler feed was found to have a beneficial effect on 
the intestinal microbial population by increasing the abundance of 
Enterococcus and decreasing that of Clostridium [98]. Quercetin feed-
ing in laying hens was reported to improve the caecal microflora 
status by decreasing the total number of aerobes and coliforms and 
increasing that of Bifidobacterium [101]. Tea polyphenols were found 
to increase the amount of lactobacilli and decrease that of the total 
bacteria, Bacteroidaceae, and Clostridium (C.) perfringens in pigs; 
however, they decreased Bifidobacterium spp., Lactobacillus spp., and 
C. perfringens in calves [102,135].

A recent review summarized the impact of polyphenols on the 
intestinal microbiota in rat and human models, and revealed that 
polyphenols or polyphenol-rich sources are able to affect the rela-
tive abundance of different bacterial groups by reducing the abun-
dances of the potential pathogens C. perfringens and C. histolyticum, 
as well as that of Gram-negative Bacteroides spp., and by increasing 
the populations of certain beneficial strains, such as clostridia, bi-
fidobacteria, and lactobacilli [108].

Based on the effects of phytochemicals on bacterial strains in 
several lines of studies, the antioxidant and anti-inflammatory 
properties of phytochemicals may be linked to improvements in gut 
health [141,142].

2.4. Detrimental effects of phytochemicals in farm animals

Although the biofunctional properties of phytochemicals are 

powerful and promising for farm animals, detrimental effects of 
phytochemicals have also been reported in some cases. For exam-
ple, high consumption of polyphenols can inhibit the absorption of 
nutrients [143,144] and cause toxic effects. Moreover, a high dose 
of quercetin was observed to be related to chronic nephropathy in 
rats and to reduce the life expectancy in mice [145]. Excess admin-
istration of green tea polyphenols was reported to disrupt kidney 
function in mice [146] and enhance tumor development in the colon 
of male rats [147]. Excess intake of caffeic acid caused kidney and 
gastrointestinal tumors in mice and rats [148]. Although these data 
were obtained from experimental animals, they suggest that the ad-
ministration of a high dose of phytochemicals should be avoided in 
farm animals.

Although the anti-inflammatory, antioxidative, and cytoprotec-
tive properties of phytochemicals have been less studied in farm 
animals, an extremely large number of such studies have been done 
using human and experimental animal models. Thus, the biofunc-
tions of phytochemicals in farm animals are also considered to occur 
through modulating the Nrf 2/Keap1 system, which is a central mod-
ulator in combating oxidative stress and chronic inflammation [90].

3. Future perspectives

Several lines of studies have reported that the Nrf 2/Keap1 system 
can regulate the general energy metabolism system by inhibiting 
gluconeogenesis [149]; modulate the activities of several lipases 
involved in the degradation of triglycerides/phospholipids [150] as 
well as enzymes involved in fatty acid oxidation, lipid biosynthesis, 
fatty acid desaturation, and fatty acid transport [150]; affect redox- 
sensitive metabolic systems such as the AMP-activated protein ki-
nase pathway [151]; and adjust mitochondrial metabolism process-
es such as glucose oxidation and substrate entry, and ATP produc-
tion [152,153]. EGCG has been shown to affect the general energy 
metabolism system in rats and in humans [154]. However, no data 
are available regarding farm animals, and the underlying molecular 
mechanism remains unclear. Thus, further studies are required to 
clarify the impact of phytochemicals on the energy metabolism sys-
tem in farm animals.

Although extensive data have been accumulated on the bio-
functions of phytochemicals in humans and in experimental ani-
mals, most of these data focus on the chemopreventive effects of 
phytochemicals on chronic diseases such as cancer, cardiovascular 
disease, and metabolic syndrome. The molecular data have been 
deeply mined to clarify how dietary phytochemicals modulate sig-
naling pathways and gene expressions for homeostasis. On the other 
hand, the biofunctions of phytochemicals in farm animals have been 
paid a great deal of attention regarding growth performance, meat 
quality, and the use of phytochemicals as an antibiotic replacer or 
substituter, although the molecular data on mechanisms that have 
been obtained from farm animals are fewer than those obtained 
from humans and experimental animals. It appears to be difficult 
to compare the differences in the mechanisms of phytochemicals in 
farm animal nutrition and in human nutrition. However, the results 
from studies on the antioxidant properties and mechanisms of phy-
tochemicals in farm animals are almost the same as the results of 
similar studies in humans, with the Nrf 2/Keap1 system acting as an 
axis. Therefore, it is possible to take advantage of the phytochemical 
data from humans and experimental animals and apply them to 
farm animals.

Phytochemicals have multiple biofunctions for human and other 
animal health. The modulation of the Nrf 2/Keap1 system by phyto-
chemicals may play a central role in their multiple biofunctions be-
cause the Nrf 2/Keap1 system is linked to antioxidant functions, an-
ti-inflammation functions, and many other functions. The relatively 
low absorption ratio of most phytochemicals in the small intestine 
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shifts the research field from a focus on direct antioxidant proper-
ties to a focus on indirect pro-oxidant properties, biotransformation, 
signaling transduction, and gene expression regulation. Although 
the limited studies on the effects of phytochemicals on the intes-
tinal microbiota of farm animals are currently insufficient to show 
the significant improvements in growth performance, antioxidant 
parameters, and inflammatory parameters, these findings will pave 
the way for further studies to understand the health-promoting  
effects of dietary phytochemicals.
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