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The Made in China 2025 initiative will require full automation in all sectors, from customers to production. 
This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, 
all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In 
this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer function-
al structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, space-
time scale, and multi-level dynamics. Control action will differ at different scales, with more design being 
required at both fast and slow time scales. More quantitative action is required in low-level operations, 
while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems 
should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the 
control action to be distributed and integrated with different approaches, including smart sensing, optimal 
design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for 
multiscale modeling and control.
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1. Introduction

In Germany, Industry 4.0 is the term for the next industrial revo-
lution [1]. In the United States, General Electric is promoting a simi-
lar idea under the name of the Industrial Internet. In China, the cen-
tral government has established the Made in China 2025 initiative 
for future industry. All these ambitious plans indicate the beginning 
of the Fourth Industrial Revolution—a revolution that will merge 
real things with the virtual world for greater efficiency. Three other 
industrial revolutions have occurred in human history. The First 
Industrial Revolution employed mechanical production facilities; it 
started in the second half of the 18th century and lasted throughout 
the entire 19th century. Mass production using electrification led to 
the Second Industrial Revolution, which started around the end of 
the 19th century. The “digital revolution” that occurred in the 1970s 
can be defined as the Third Industrial Revolution, as information 
technology began to be used for the automation of production pro-
cesses. Unlike all previous revolutions, which only released human 
physical power for linear changes, the Fourth Industrial Revolution 
will free the human thinking power that is “intelligence” and will 

create nonlinear changes beyond what we can imagine.
The core of Industry 4.0 is intelligent manufacturing, which can 

be considered as the cyber-physical system (CPS) within the manu-
facturing environment, in order to achieve full automation of both 
materials and information. The CPS is an Internet environment in 
which all users, hardware, and software are integrated, regardless of 
time and location, in order to adapt to different working conditions 
through good coordination and enhanced ability [2]. Examples of 
CPSs include smart grids, automated vehicle systems, medical mon-
itoring, and intelligent manufacturing [3]. The differences between 
an embedded system and a CPS are as follows: An embedded system 
focuses on developing algorithms, while a CPS focuses on the con-
nection and coordination between physical elements and computa-
tional software [4].

Over the past decades, consumable products have become in-
creasingly advanced and intelligent, making manufacturing systems 
increasingly complex. From an academic point of view, the manufac-
turing industry is a nonlinear multiscale complex system. No single 
solution exists for such a complex system. Due to the human way 
of linear thinking, nearly all the theories and methods developed 
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so far are linearly dominated, making it difficult to apply them di-
rectly to nonlinear systems. The principle of systems engineering is 
to decompose a complex system into simpler ones, solve them sep-
arately, and then integrate all separate solutions in order to meet a 
global objective. In a manufacturing plant, each product is produced 
through a series of complex operations, each of which can be further 
decomposed into multiple basic actions. Obviously, uncertainties will 
appear at all of these stages and affect the overall quality.

This paper briefly discusses the multiscale complexity of the 
manufacturing process, presents modeling and intelligence that 
may be required in a manufacturing environment, and examines a 
case study for jet dispensing control for the integrated circuit (IC) 
packaging industry.

2. Multiscale complexity and uncertainty processing

A whole factory or plant usually has more than one production 
line containing many different types of processes. Each process may 
integrate multiple machines or pieces of equipment. Manufacturing 
operations in a factory can be classified into three different levels: 
the machine level, the production level, and the plant-wide level. 
The whole manufacturing process can be considered as a hierar-
chical structure: from machine control at the bottom layer, through 
mid-level supervisory control and production scheduling, and up to 
business management at the highest level. Different properties are 
exhibited at different levels, as shown in Table 1.

The characteristics and dynamics at different levels differ such 
that different control actions, from continuous to discrete, are re-
quired. Different processes may have different types of dynamics 
and a different scale of complexity. Some typical processes may in-
clude:
•	Multi-time-scale processes. This is the most common scenario 

in manufacturing, in which a single part is manufactured with-
in a short time, whereas parts in batches are produced over a 
long time period. The consistency of production is hence a pri-
mary concern, and involves the integration of various methods, 
such as robust system design, feedback control, and statistical 
process control.
•	Space-time dynamic processes. Temperature fields, pipe fluid, 

and flexible robotic arms belong to this space-time dynamic 
system. Here, the performance changes not only in time but 
also in spatial location, and is therefore extremely difficult to 
model and control.
•	Multi-level hybrid processes. The integration of systems at 

different levels results in hybrid systems that may be contin-
uous, discrete, fuzzy, probabilistic, and so forth. The modeling 
and control of these types of systems are difficult because no 
mature methods are available. In general, the lower the level, 
the more dynamic property is required, such that dynamic 
control is needed. Uncertainty exists everywhere, in all levels 
of the manufacturing hierarchy. The higher the level, the larger 
the uncertainty, such that more intelligence is required for the 

control system.
In terms of control engineering, several types of control can be 

defined, as follows:
•	Logic control. This involves discrete action with two discrete 

states: on/off. No dynamics are involved.
•	Loop control. This requires dynamic control because it entails 

the handling of physical dynamics. It involves continuous action 
at the machine level. Since machine dynamics can be expressed 
quantitatively, the control action can be optimized.
•	Supervisory control. This involves nest control action, which is 

of a hybrid discrete/continuous nature.
All of the abovementioned low-level types of control are widely 

used in process control. High-level control involves a more decision- 
making type of action, which requires more intelligence-based 
methods, such as the following:
•	Operation	scheduling	at	the	production	level;	and
•	Business	management	of	the	plant-wide	operation.
Regarding intelligent manufacturing, the five-level pyramid 

structure shown in Fig. 1 can be useful in effectively processing un-
certainties and improving the overall quality [5]. The first step is to 
place sufficient sensors appropriately in order to collect data from 
the physical process. If everything can be measured and connected, 
physical uncertainty can be minimized. Once data is obtained, it 
should be converted into useful information for higher level analysis 
and processing. Many mature modeling and learning methods can 
be used to help reduce information uncertainty. Since manufactur-
ing involves the integration of many different types of equipment 
and functional devices, hybrid modeling and learning is required 
for system-level coordination. Decision-level coordination involves 
human-machine interaction, which requires processing ability 
between human linguistic language and machine computational 
algorithms. In order to achieve full automation, knowledge-level 
decisions should be able to process unexpected events, which will 
continue to be a long-term challenge.

In summary, different types of processes require different control 
actions.
•	More	design	is	required	at	the	fast	time	scale,	and	more	control	

is needed at the slow time scale. The jet dispensing system for 
packaging is a good example that will be discussed in detail in 
Section 4.
•	More	quantitative	action	is	required	at	low-level	operations	be-

cause machine dynamics can be expressed mathematically; in 
contrast, more qualitative action is needed in high-level super-
vision because that system cannot be described quantitatively. 

Systematic work in this area should be built step by step using a 
bottom-up approach: from dynamic modeling, system design, pro-
cess control, and intelligent supervision, up to plant-wide manage-
ment control, and so forth. This is a large-scale challenge.

3. Modeling and intelligence in manufacturing

The multiscale complexity of the intelligent manufacturing process  

Table 1 
Multiscale properties of the manufacturing industry.

Property Machine level Plant-wide level

Characteristics Local (product oriented) Global (business oriented )

Dynamics Fast Slow

Complexity Small scale (linear dominant) Large scale (nonlinear multivariable)

Uncertainty Small Large

Control Dynamics-driven (continuous, instinct) Knowledge-driven (discrete, logic)

Evaluation Accuracy/precision Profit

Intelligence Low (adaptation) High (decision)
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different functional purposes. System modeling can be classified as 
follows:
•	Modeling for process simulation. This is physics-based model-

ing, in which every aspect is considered to reflect the true sit-
uation. Since most of such processes are DPSs, if first-principle 
knowledge of the DPS is accurately known, the model can be 
precisely derived and then solved using computational methods 
such as the finite difference method (FDM) [6] and the finite el-
ement method (FEM) [7]. This type of physics-based modeling 
requires heavy computation and is suitable for offline process 
analysis. 
•	Modeling for control design. Most control theories are linearly 

dominated, so a linear model structure is required for control 
design.
•	Modeling for online prediction. An analytical model is re-

quired with parameters calibrated from experimental data. The 
dominant dynamics are considered in terms of ordinary differ-
ential equations (ODEs).
•	Modeling for process design. Because this is function-based 

modeling, only important dynamics are considered for optimal 
design.
•	Modeling for decision-making. Since decisions are based on 

important features and have a discrete nature, this is feature- 
based modeling.

When modeling, an appropriate model structure must be select-
ed, along with optimal calibration of parameters under appropriate 
training signals (i.e., persistently exciting signals), and so forth.

3.1.2. Analytical modeling for space-time dynamic processes
The modeling of DPSs has been widely studied in the process 

industry [8]. The following PDE is provided as an easily understood 
illustrative example:

 
2

2

( , ) ( ) ( ) ( )y x t y y f y wb x u t
t x x

α β∂ ∂ ∂
= + + +

∂ ∂ ∂
 (1)

where x is the spatial variable; y is the process output; t is time; α, 
β, and w are coefficients; f (y) is the nonlinear function representing 
other unmodelled dynamics; b(x) is the spatially distributed func-
tion; and u is the control signal to the process. The boundary condi-
tions are y(0, t) = 0 and y(π, t) = 0, and the initial condition is y(x, 0) = 
y0(x).

Because extensive computing power is required to solve a PDE, 
lumping techniques are used to approximately reduce the PDE into a 
finite-dimensional ODE using the space-time separation method [9] 
shown in Fig. 2. This ODE-based model is computationally efficient 

makes process modeling difficult. Process modeling is an essential 
step toward engineering control. System modeling in the field of 
control and machine learning in computer science actually perform 
similar work, albeit with different technologies and in different en-
vironments:
•	System	modeling	relies	more	on	the	physics	of	the	process	be-

cause it usually operates in an environment with a low degree 
of uncertainty that does not affect the dominance of the pro-
cess dynamics. In this case, a deterministic solution will exist. 
Under this relatively certain environment, physical dynamics 
play a major role, while external disturbance and nonlinearity 
have a smaller influence. Since classical quantitative methods 
can be used for optimization, the modeling performance is fair-
ly deterministic and can be used for online prediction. Since the 
process dynamics can be quantitatively modeled, quantitative 
control or design can be performed.
•	Machine	learning	mainly	works	in	an	environment	with	a	high	

degree of uncertainty; plant-wide management is an exam-
ple of such an environment. Multi-level hybrid solutions also 
accumulate uncertainty. Since the model structure is difficult 
to obtain, it relies more strongly on process data. Rather than 
a deterministic solution, a statistical solution will exist in this 
case. Non-traditional methods such as computational intelli-
gence can be used to explore a better solution; therefore, the 
performance in this case is usually optimized using statistical 
or experiential data. Since the process dynamics cannot be 
quantitatively estimated, a qualitative decision is made instead 
of performing quantitative control. 

3.1. System modeling

Many processes in the manufacturing industry, such as thermal 
processes, fluid/flow processes, and flexible robotic arm process-
es, belong to space-time dynamic systems, which are also called 
distributed parameter systems (DPSs). The dynamics of a DPS are 
described with partial differential equations (PDEs) and exhibit a 
strong space-time coupled nature. For example, the cure oven, or 
the reflow oven, that is used in the IC packaging industry requires a 
uniform temperature field because an equal heating effect is expect-
ed at every spatial location of the cured object.

3.1.1. Modeling classification
System modeling is very important in manufacturing control be-

cause it can help to determine the physical process well before any 
control action or decision is made. Different modeling is required for 

Fig. 1. Functional layers for uncertainty processing.
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and can be applied for online performance prediction; for example, 
it would be a challenge to estimate a temperature distribution over 
space using just a few sensors.

Many studies have been performed on this kind of space-time 
modeling, including studies on the spectral method and the approx-
imate inertial manifold [10]. If the PDEs of a DPS are unknown due 
to process uncertainties, data-based model identification must be 
used. When the nominal PDE is unknown, neural networks can be 
used with the spectral method [11] to model the unknown nonline-
arities. Neural networks can also be used with the Karhunen-Loève 
(KL) method [12] to model a completely unknown nonlinear DPS 
with the help of multiple sensors. Many different variations have 
been developed, and are systematically discussed in a literature sur-
vey paper [10].

3.1.3. Model-based integrated design and control
An integrated design and control approach is proposed for manu-

facturing control in three phases, as shown in Fig. 3.
•	Phase I: This is a real-time experiment; a multi-sensing exper-

imental platform is needed for the collection of real-time data 
for analysis. 
•	Phase II: This involves a physical simulation for offline analy-

sis; a physical model in the form of a PDE is usually developed 
for physical simulation. Collected experimental data is used 
for model calibration. This physics-based simulation provides 
detailed information about the real process. Many commercial 
software packages, such as Fluent and Comsol, can provide basic 
functions. However, parameter selection and calibration are ex-
tremely difficult, and no mature solutions exist. After simulation, 

the system design can be carried out and tested at this stage.
•	Phase III: This involves online prediction and control design; 

the analytical model, which is simplified as an ODE, is needed 
for control design or for online performance prediction. Opti-
mal performance is expected to be achieved at this stage.

3.2. Intelligence for uncertainty processing

Uncertainty exists everywhere, and greatly affects manufacturing 
quality. There are two types of uncertainty: deterministic vagueness 
and stochastic variation.
•	Deterministic	vagueness	usually	comes	from	coarse	measure-

ment or imprecise perception of a process due to a harsh in-
dustrial environment. It has a fuzzy nature and can be properly 
modeled using a fuzzy system. 
•	Stochastic	variation	usually	comes	from	missing	dynamics	(i.e.,	

critical dimensions and factors) and from insufficient sampling 
data. Statistics or probability-based methods are needed to deal 
with this kind of random variation.

If uncertainty can be modeled using a traditional quantitative 
approach, it is classified as deterministic vagueness. If uncertainty 
cannot be modeled deterministically, it can be described probabilis-
tically.

3.2.1. Computational intelligence
Artificial intelligence (AI) is the intelligence exhibited by machines  

in mimicking “cognitive” functions that humans associate with oth-
er human minds, such as “learning” and “problem-solving.” An in-
telligent system can be classified according to its intelligence level, 
as follows:
•	Skill-based systems. These systems learn from action mimick-

ing, in a process that is somewhat like riding on bike; the in-
telligence level is similar to classical modeling, and the system 
only works for trained behavior.
•	Rule-based systems. These systems involve decision-making 

according to defined regulations, in a process that is somewhat 
like driving a car; although they perform similarly to expert 
systems, they cannot make correct decisions in response to un-
known symptoms.
•	Knowledge-based systems. These systems make judgements in 

response to unexpected events. Such systems will continue to be 
challenging, as they require the highest possible intelligence lev-
el to predict forthcoming events that have not happened before.

All current AI solutions come from a set of computational meth-
ods and techniques, instead of from a single method or technique. 
There are four basic methodologies for computational optimization, 

Fig. 3. Methodology for integrated design and control.

Fig. 2. The framework of space-time separation method. BF: basis function.
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as follows:
(1) Traditional optimization for modeling. This math-oriented  

optimization can accurately identify the optimum point for a 
well-defined mathematical problem. It has the lowest intelligence 
level, as it may not be able to work under larger uncertainty if a 
mathematical expression does not exist.

(2) Statistics-based machine learning. This statistical learning 
is widely used in environments where a problem cannot be de-
fined well mathematically. It searches for a nearly optimal solution 
through data-based learning.

(3) Experience-based reinforcement learning. This method 
mimics human decision-making through reward/penalty action. It is 
an offline solution that operates with the help of extensive compu-
tational trials.

(4) Nature-inspired evolutionary computation. A typical exam-
ple of this method is the genetic algorithm. This is a kind of random 
search that can work globally. It is an offline solution with the heav-
iest computational load.

Different methods work for systems with different uncertainties 
and different intelligence levels, as illustrated in Fig. 4. The larg-
er the uncertainty a method can handle, the more global and less 
optimal solution it will have. The best optimal solution still comes 
from a traditional optimization method under the lowest degree of 
uncertainty. This is the nature of the universe. In practice, higher 
level methods can locate a possible zone for optimal solutions; next, 
the lower level method finds the most concrete solution within the 

identified zone. The optimal solution for a multiscale nonlinear pro-
cess must come from an appropriate integration of multiple meth-
ods at different levels.

3.2.2. Probabilistic-fuzzy modeling for decision-making
A high-level control involves human decision-making. Human 

knowledge has a qualitative nature that is very suitable for modeling 
a fuzzy system. A future prediction for a fuzzy system will involve 
stochastic variation that comes from missing dynamics, and should 
be suitable for a probabilistic method to process. Thus, the two types 
of uncertainty—deterministic vagueness and stochastic variation—
will always exist in real-world applications, as illustrated in Fig. 5.

A traditional fuzzy logic system is good at performing knowledge 
extraction, but cannot simultaneously handle stochastic variation. 
A probabilistic-fuzzy logic system is developed to merge fuzzy rea-
soning with probabilistic processing for the modeling of complex 
stochastic processes [13], and with data classification for decision- 
making [14]. However, the probabilistic-fuzzy logic systems devel-
oped so far have many shortcomings to overcome. One of the major 
remaining problems is difficult parameter calibration due to the 
complexity of the system configuration. Extensive efforts are still 
needed in this aspect for decision-making under large uncertainties.

4. Integrated modeling and control for multi-time-scale  
processes

The multi-time-scale process is a typical problem encountered 
in the manufacturing industry. As mentioned in Section 2, a single 
product is made in a short time period, but volumes of products in 
batches are produced over a long period. Production consistency is 
the primary concern for manufacturing quality. A typical example 
involves the jet dispensing system that is commonly used in the IC 
packaging industry; the jetting quality has become a bottleneck in 
this fast-developing industry.

A schematic drawing of one kind of jet dispensing system is 
shown in Fig. 6; this can be simplified into a system consisting of a 
needle, a chamber, and an adhesive supply. When the system begins 
to function, compressed air pumps the adhesive into the chamber, 
and a stiff spring is released to rapidly drive the needle, thus push-
ing the adhesive out of the chamber and onto the substrate. This is 
a multiscale (fast/slow) complex process, as shown in Fig. 7. A single 
droplet can be jetted out of the chamber in milliseconds (ms), and 
several thousand droplets can be jetted within a dozen minutes.Fig. 4. A pyramid of intelligent methods.

Fig. 5. Probabilistic-fuzzy modeling. Fig. 6. A jet dispensing system for electronics packaging.
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Highly consistent droplets are required for high-speed dispens-
ing. Long operation deteriorates the jet performance because the 
viscosity of the adhesive has a nonlinear and time-varying nature. The 
following difficulties with consistent dispensing are encountered:
•	For	fast-scale	single-droplet	dispensing,	a	disturbance	cannot	

be captured in such a short instant, so no control can be de-
signed to manipulate the flow rate. 
•	For	slow-scale	long-term	operation,	it	is	difficult	to	perform	ad-

justments to suppress disturbances because there is no online 
measurement of the internal operation of the device.

Design and control should be effectively integrated in order to 
achieve consistent dispensation. For the fast-scale performance, 
only design can be applied to optimize the jet dispensing system; in 
contrast, for the slow-scale performance, consistent control can be 
applied once online sensing is implemented.

4.1. Optimal design for fast-scale performance

There is a strong interaction between the adhesive and the jet 
dispensing system. The design of the system includes material han-
dling and jet valve design. This involves both real-time experimen-
tation and physical simulation.

The incompressible polymeric adhesive motion can be described 
with the continuity equation (Eq. (2)) and the modified Navier- 
Stokes equation (Eq. (3)) [15].

 
 (· ) 0u∇ =  (2)

 
 

( ) ( ) ( )s p

u
uu τ τp g

t
ρ

ρ ρ
∂

+∇ = −∇ +∇ + +
∂

· ·   (3)

where u is the fluid velocity; τs is the solvent stress tensor; τp is the 
polymeric stress tensor; ρ is the fluid density; p is pressure; and g is 
the gravitational acceleration. The generalized power law (Eq. (4)) is 
used to model the solvent stress [16], and the Oldroyd-B constitutive 
equation (Eq. (5)) is used to model the polymeric stress. 

 0s s
n.η γ= +ττ  (4)

 ( )p p p2 , ,T t Dλ η γ
∇

+τ τ =   (5)

where τ0 is the yield stress; ηs is the solvent viscosity; γ
.
 is the 

shear rate; n is the power-law constant; ηp is the polymeric vis-
cosity, which has a nonlinear time-varying nature; λ is the  

relaxation time; ( )( )1=
2
∇ + ∇ TD u u ; p

∇τ  is the upper convected time  
 

derivative of τp; and T is the adhesive temperature.
The adhesive viscosity, η, can be derived experimentally using a 

rheometer. The simulation model is calibrated with the experimen-
tal data. A simulation of the jetting process, as shown in Fig. 8, can 
provide more information that may be difficult to observe from an 
experiment in real time:
•	The	hidden	mechanism	for	droplet	formation	and	breakup	is	

disclosed, and the coupling relationship between different vari-
ables is discovered [17]. 
•	Data	generated	from	the	simulation	can	help	to	develop	the	an-

alytical relationship between critical parameters and the jetting 
performance.

Next, these design guidelines should be followed for performance 
improvement:

Fig. 7. The dual-scale property of the jetting process.

Fig. 8. A simulation of the jetting process (unit: mm).
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•	The	rules	for	proper	handling	of	the	adhesive	materials	before	
dispensation, provided in Ref. [18], ensure that the adhesive 
materials are in the best state for dispensing.
•	The	optimal	design	of	the	critical	parts	of	the	jet	valve,	provid-

ed in Ref. [19], maximizes the dispensing capability for a single 
droplet.

4.2. Consistent control for slow-scale performance

In a slow-scale long operation, the performance drift should be 
identified in order to enable system control by means of the follow-
ing actions:
•	Establishing	integrated	sensing	for	the	real-time	estimation	of	

the jetting performance at every cycle (i.e., the fast scale); and
•	Determining	the	cross-scale	multivariable	compensation	 for	

consistent jetting in batches (i.e., the slow scale).

4.2.1. Integrated sensing for real-time estimation
A measurement device [20] was added onto the existing valve of 

the jet dispensing system in order to sense the needle displacement x. 
With this measurement device, the volume V pushed out of the nozzle 
at every cycle (i.e., the fast scale) can be estimated by integrating the 
flow rate over the cycle period. Since the adhesive is a non-Newtonian 
fluid, the flow rate is unknown. Calibration with the experimental data 
is needed with the help of a camera and a high-precision balance.

4.2.2. Cross-scale multivariable compensation
Both the experiment and the simulation have shown that the 

jetting performance is coupled with the pressure P and the adhesive 
viscosity η. The inverse models T(η, t) and P(V, t) should be devel-
oped for the purpose of decoupling control. Here, we propose a nov-
el cross-scale multivariable control strategy for the jetting process, 
in which the pressure P and temperature T are handled separately in 
two control loops, as illustrated in Fig. 9:

(1) Temperature control in the auxiliary loop for viscosity 
compensation. The steady viscosity η should be maintained in  
order to minimize the coupling effect between P and T. The viscos-

Fig. 9. Cross-scale multivariable compensation. ηr: viscosity setpoint (required value); Tr: temperature setpoint (required value); Vr: pressure setpoint (required value);  V : average 
of volume in batch; Pc: pressure output from controller; Tm: measured temperature; uT: output signal from temperature controller.

ity changes slowly during the operation and is compensated for by  
adjusting the adhesive temperature.

(2) Cross-scale compensation control [21] in the dominant 
loop. The dominant loop has two functional loops: disturbance 
compensation for coupling suppression and feedback control for 
set-point tracking.

The disturbance compensation has three major components:
•	Fast-scale estimation. The jetted volume Vf is estimated at 

each cycle through the online sensing of the needle motion. 
This fast-scale data (i.e., Vf) must be transformed into slow-
scale information Vs with all the stochastic variation minimized 
through the fast-slow conversion. 
•	Batch measurement. The actual jetted volume in the batch 

is periodically weighed and statistically processed. Using the 
statistical method, the volume distribution information can be 
obtained and properly processed.
•	Slow-scale compensation. The inverse model P(V, t) is used to 

convert the process deviation ∆V into the appropriate adjust-
ment ∆P in order to eliminate any prediction error.

A simple feedback controller can be sufficient to maintain good 
set-point, Vr, tracking if the disturbance can be well compensated 
for. Calibration is needed to adjust both the fast-scale estimation  
and the slow-scale compensation if the process is strongly time- 
varying.

5. Conclusion

Manufacturing processes have many different types of equipment 
and systems that are integrated to exhibit multiscale dynamic fea-
tures with a hierarchical structure. Manufacturing control is a mul-
tiscale task: from smart sensing of the process at the lowest level, to 
optimal design of the system offline, to multivariable process con-
trol online, and further to intelligent learning for decision-making  
at the highest level. Multidimensional knowledge from nearly all 
engineering fields is needed, such as physics and material engineer-
ing, control engineering, mechanical and electrical engineering, and 
computer engineering. Systematic work in this area should be built 
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up step by step using a bottom-up approach, from dynamic mode-
ling, to system design, to process control, to intelligent supervision, 
and up to plant-wide management control. This development will 
be a long-term challenge.
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