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The development of technologies such as big data and cyber-physical systems (CPSs) has increased the 
demand for product design. Product digital design involves completing the product design process us-
ing advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi- 
disciplinary coupling, virtual assembly, virtual reality (VR), multi-objective optimization (MOO), and  
human-computer interaction. The key technologies of intelligent design for customized products include: a 
description and analysis of customer requirements (CRs), product family design (PFD) for the customer base, 
configuration and modular design for customized products, variant design for customized products, and a 
knowledge push for product intelligent design. The development trends in intelligent design for customized 
products include big-data-driven intelligent design technology for customized products and customized de-
sign tools and applications. The proposed method is verified by the design of precision computer numerical 
control (CNC) machine tools.
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1. Introduction

Product digital design involves completing a product design pro-
cess using advanced digital technologies such as geometry modeling, 
kinematic and dynamic simulation, multi-disciplinary coupling, virtu-
al assembly, virtual reality (VR), multi-objective optimization (MOO), 
and human-computer interaction. Although there is no universal defi-
nition for customized design, its basic meaning is that a customized 
product is designed to satisfy the customer’s individual and diversi-
fied requirements as quickly and at as low a cost as possible. Many 
scholars have carried out research into the methodology and key 
technology of product design [1–3]. Customized design usually in-
volves a strategy in which customer-oriented design is separated from 
order-oriented design [4]. Customer-oriented design is based on an 
analysis of customer requirements (CRs), and involves a modular pre-
formed product family that is developed through serialization. Order- 
oriented design, which is based on an existing product family, rap-
idly designs a product’s structure in order to satisfy the customized  

requirements of customers by configuration methods when customer 
orders arrive. Customer-oriented design influences the cost and time 
required to market new products. Designing for customer orders 
affects the delivery of individual customized products. Customized 
products are designed and manufactured on a per-order basis.

Complex equipment—such as computer numerical control (CNC) 
machine tools, cryogenic air-separation units (ASUs), plate-fin heat 
exchangers (PFHEs), and injection-molding equipment—has many 
characteristics such as demand diversity, fuzzy dynamics, a cumber-
some design response, and a complex design process. The question 
of how to satisfy customers’ individual requirements and achieve 
rapid design and innovation of complex customized equipment has 
become an important factor that determines the survival and com-
petitiveness of equipment-manufacturing enterprises.

Therefore, it is urgently necessary to develop an intelligent de-
sign platform in order to support the development of manufacturing 
products. In this way, the digital design or products will develop in 
the direction of intelligence and customization.
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2. Key technologies

Experts have predicted that more than half (> 50%) of future 
manufacturing will involve personal customization. Although the 
studies conducted by the Chinese Mechanical Engineering Society 
[5] indicate that manufacturing enterprises will generate stronger 
demands for product development and changes, the harsh reality 
is that modern enterprises lack advanced design ability. It is worth 
mentioning that many institutions [6,7] have carried out research 
into big data and the design technology of customized products. 
Stanford University’s [8] structured design model combines require-
ments, technology, and product performance mapping. Yale Univer-
sity [9] has also carried out analysis methods based on big data to 
support design research.

The key technologies of intelligent design for customized prod-
ucts include: the description and analysis of CRs; product family 
design (PFD) for a customer base; configuration and modular design 
for customized products; variant design for customized products; 
and a knowledge push for product intelligent design.

2.1. Description and analysis of customer requirements

CRs usually include obvious features such as fuzziness, uncertain-
ty, or dynamism. It is important to describe fuzzy CRs in an accurate 
way for the realization of customized design.

Designing for customization involves forming customized re-
quirements to meet the CRs by means of analysis, data mining, and 
prediction. Common design methods include the analytical methods 
based on the Kano model and quality function deployment (QFD). 
In the Kano analytical method [10], CRs are divided into basic re-
quirements, expected requirements, and exciting requirements. Cus-
tomized design should first satisfy the basic requirements, and then 
satisfy the expected and exciting requirements as much as possible. 
The QFD method [11] is a multi-level deductive analysis method that 
translates CRs into design requirements, part characteristics, process 
requirements, and product requirements. It then builds a product 
planning matrix called a “house of quality.” At this point, the diffi-
culty of requirements-based design lies in how to analyze, predict, 
and follow the potential requirements of customers.

Regarding the description and analysis of CRs, Jin et al. [12] 
investigated information representativeness, information compar-
ativeness, and information diversity and proposed three greedy 
algorithms to obtain optimal solutions for the optimization prob-
lem. Wang and Chin [13] proposed a linear goal programming (LGP) 
approach to evaluate the relative weight of CRs in QFD. Juang et al. 
[14] proposed and developed a customer requirement information 
system (CRIS) in the machine tool industry, by using fuzzy reasoning 
and expert systems. Haug [15] developed a conceptual framework 
based on 10 industrial designers’ interviews and studies on refer-
ence projects; this framework defined the overall CR emergence 
models and associated communicative issues, enabled designers to 
elicit CRs more efficiently, and allowed designers to reduce delay in 
the emergence of client requirements and avoid wasting effort on 
design paths. Wang and Tseng [16] proposed a Naïve Bayes-based 
approach to describe clients’ technical functional requirements 
and subjective preferences, and to map them according to detailed 
attributes and design parameters. Raharjo et al. [17] proposed a 
novel systematic approach to deal with the dynamics of customer 
demands in QFD. Elfvengren et al. [18] studied the usefulness and 
usability of group decision support system (GDSS) in the assess-
ment of customers’ needs in industrial companies. Çevik Onar et 
al. [19] proposed a hesitant fuzzy QFD that could reflect a human’s 
hesitation more objectively than the classical extensions of other 
fuzzy sets; they then applied it to computer workstation selection 
problems. Osorio et al. [20] proposed the extension of a universal 

product data model (PDM) to mass customization (MC) and sustain-
ability paradigms in order to meet the requirements of supporting a 
sustainable mass-customized (S-MC) product design process.

Regarding the description of product requirements, research has 
focused on the following: the description of requirements based on 
set theory, the broader description of requirements based on ontol-
ogy, and the description of requirements based on fuzzy clustering.

Requirements-based design faces the following challenges:
(1) Modeling generalized requirements for customization. To 

rapidly improve the standardization of customized requirements 
and guarantee the accuracy and consistency of the design process 
for an understanding of CRs, it is necessary to build a multi-level 
model of the generalized requirements from the time dimension, 
space dimension, process dimension, and so on.

(2) Predicting and mining customized requirements. With the 
development and maturation of big data, it is possible to collect data 
through the Internet and the Internet of Things. It is important to 
mine users’ behavior patterns and consumption habits from massive 
data in order to forecast customized requirements and determine 
hidden customized requirements.

(3) Mapping and transforming customized requirements. To 
ensure consistency, accuracy, and timeliness in the transformation 
from CRs to technical requirements, it is necessary to build a model 
that automatically maps and transforms CRs, including dynamic, 
fuzzy, and hidden CRs, into technical requirements.

(4) Creating value design for the customized requirements 
of customers. It is difficult to predict and create new CRs based on 
analyses of existing CRs, and it is also difficult to build customiza-
tion while considering factors such as cost, feasibility, and urgency.

The description and analysis of CRs form the basis of intelligent 
design for customized products. The layout scheme design for a 
lathe-mill cutting center is shown in Fig. 1.

2.2. Product family design for a customer base

PFD refers to the extraction of product variant parameters in ac-
cordance with CRs for a specific customer base, and the formation of 
a variable model of dynamic products that includes the main struc-
ture, main model, main document, and so forth. According to dif-
ferent variant-driven modes, the PFD method can be module driven 
or parameter driven [21]. A module-driven product family includes 
a series of basic, required, and optional modules, and can satisfy 
different requirements from customers through a combination of 
different modules. A parameter-driven product family includes a 
series of products that have the same public variables but different 
adjustable variables; the structure and performance of products 
can then be changed by scaling the adjustable variables up or down 
while maintaining the same public variables, in order to satisfy the 
individual CRs.

PFD focuses on ensuring product family optimization, data con-
sistency, and traceability in the product life cycle. The challenges of 
PFD include:

(1) A design program for the product family. Given the prefer-
ence to and importance of the requirements from customers and the 
performance characteristics of the products, it is difficult to program 
the rational variant parameters of the product family and value 
range so as to achieve integrated optimization of cost and competi-
tiveness for the product family.

(2) Modularization of the product family. The design of the 
modularized product family focuses on forming a series of func-
tional and structural modules along with a main structure based on 
the design constraint. It is difficult to form individual products that 
satisfy different customized requirements using a combination of 
different modules.

(3) A dynamic model of the product family. Due to market 
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oped a case-based reasoning (CBR) system to infer the main process 
parameters of a new printed circuit board (PCB) product, and used 
the secure nearest neighbor (SNN) search method to objectively 
retrieve similar design situations. Yadav et al. [29] amalgamated 
component modularity and function modularity in the product 
design in order to address design-for-supply-chain (DFSC) issues 
using a generic bill of materials (GBOM) representation. Schuh et al. 
[30] proposed a three-stage holistic approach to develop modular 
product architectures. Pakkanen et al. [31] proposed a method of 
rationalizing the existing product variety for a modular product line 
that supports product configuration, which is known as the Brown-
field Process (BfP). Chen and Liu [32] constructed a strategic matrix 
of interface possibilities in modular product innovation using the 
internal and external aspects of the product and the openness of the 
interface. Dahmus et al. [33] proposed a method of building a prod-
uct portfolio to exploit possible commonality by reusing modules 
throughout the product family on the basis of the functional mod-
eling of products using function structures. Dou et al. [34] proposed 
an interactive genetic algorithm with interval individual fitness 
based on hesitancy (IGA-HIIF) in order to achieve a fast and accurate 
response to users’ requirements for complex product design and 
customization. Du et al. [35] developed a Stackelberg game theory 
model for the joint optimization of a product series configuration 
and a scaling design, in which a two-tier decision-making structure 
revealed the coupling decision between the module configuration 
and the parameter scaling. Ostrosi et al. [36] proposed a fuzzy-
agent-based approach for assisting product configuration. Khalili- 
Araghi and Kolarevic [37] proposed a conceptual framework for a 
dimensional customization system that reflects the potential of a 
constraint-based parametric design in the building industry. Modrak 
et al. [38] developed a methodological framework for generating all 
possible product configurations, and proposed a method for deter-
mining the so-called product configuration complexity by specifying 
the classes and sub-classes of product configurations. They also cal-
culated product configuration complexity using Boltzmann entropy 
theory [39]. Chandrasekaran et al. [40] proposed a structured mod-
ular design approach for electro-mechanical consumer products 
using PFD templates.

factors, technological innovation, maintenance, recycling, and other 
reasons, product family data changes during the product life cycle. 
The construction of a dynamic model for product family technology 
can ensure the consistency, accuracy, and traceability of life cycle 
data for the product family.

(4) An evolutionary genetic algorithm model of the product 
family. It is difficult to build a genetic algorithm model of the prod-
uct family, which is done through analysis and mining of the evo-
lution history and current situation of the product family. It is also 
difficult to achieve reuse of the product family and self-organized 
evolution, which is based on the principle of biological evolution 
and the corresponding evolutionary algorithm.

(5) A design evaluation of the product family. It is difficult to 
evaluate PFD and to direct the product family to obtain, for example, 
the lowest cost and best market competitiveness; these are done by 
using big data such as the reuse frequency and the maintenance ser-
vice of products and parts.

2.3. Configuration and modular design for customized products

Configuration design means conducting a rational variant for a 
customer-oriented dynamic product model, in order to form an in-
dividual product structure that satisfies the CRs for MC [22]. Current 
research into configuration design focuses on three aspects: the rep-
resentation of configuration knowledge, the modeling of configura-
tion knowledge, and the solutions to configuration problems [23]. In 
future, the main problem of configuration design will be how to mine 
configuration knowledge, in order to improve the automation and in-
telligence and increase the optimization of configuration design.

Regarding the design of the configuration and modules of cus-
tomized products, Stone et al. [24] proposed three heuristic meth-
ods: dominant flow, branching flow, and conversion-transmission  
function chains. Fujita [25] discussed design and optimization prob-
lems in product variety. Carnduff and Goonetillake [26] proposed 
a configuration management pattern in which configurations are 
managed as versions. Jiao et al. [27] proposed a generic genetic al-
gorithm (GGA) for PFD and developed a general encoding scheme 
to accommodate different PFD scenarios. Tsai and Chiu [28] devel-

Fig. 1. Layout scheme design for a lathe-mill cutting center.
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The abovementioned research studies thus focused on a mod-
ule planning method for customized products based on a design 
structure matrix, the rule-based configuration design method, the 
instance-based configuration design method, and so forth.

The following challenges are encountered during configuration 
and modular design:

(1) Achieving a configuration design for MOO. When meeting 
the requirements of customer orders, configuration design needs 
to comprehensively consider the manufacturing cost, service mode, 
low-carbon and green characteristics, and many other product goals, 
in order to achieve MOO.

(2) Mining configuration knowledge. Using big data technology, 
it is difficult to mine the existing historical data of enterprises and 
translate the findings into configuration knowledge that can provide 
a basis for the product configuration design.

(3) Using inference and decision technology for configura-
tion design. With the increase of individual-level configuration- 
knowledge complexity, inference and decision technology has influ-
enced the efficiency of configuration design and the effectiveness, 
economy, and feasibility of the configuration results.

(4) Achieving a configuration design based on VR. Given prog-
ress in VR, augmented reality, and mixed reality technologies, con-
figuration design will provide online awareness and an experience 
function that is matched and received, thereby greatly improving 
customer satisfaction.

The total structural deformation of the third and fourth order 
modal of a gantry is shown in Fig. 2 and Fig. 3, respectively. Modal 
analyses of the base frame and the vertical column were carried out 
in order to investigate dynamic characteristics. The frequencies of 
the first, second, third, fourth, and fifth order modal are 72.042 Hz, 
78.921 Hz, 115.390 Hz, 162.860 Hz, and 163.680 Hz, respectively.

2.4. Variant design for customized products

Variant design refers to the completion of a design of either a 
geometric structure or a product module in order to produce more 
design schemes corresponding to CRs.

Nidamarthi et al. [41] proposed a systematic approach to identify 
the basic design elements of a profitable product line. Snavely and 
Papalambros [42] proposed a method to reduce the size of config-
uration problems by abstracting components to higher levels of 
abstraction. Yu et al. [43] proposed a joint optimization model for 
complex product variant design according to changes in customer 

demand for maximized customer satisfaction and minimized cost. 
Gero [44] presented a number of computational models for creative 
designing. Hong et al. [45] proposed a two-step similarity compar-
ison method for boundary representation (B-rep) files in order to 
compare similarities between mechanical components in the design 
process. Fowler [46] noted that variant design is a technique for 
accommodating existing design specifications in order to meet new 
design goals and constraints, and proposed barriers of variant design 
in current systems in order to improve current systems in their sup-
port of variant design. Chen et al. [47] proposed a property-based, 
object-oriented approach for effectively and comprehensively im-
plementing change impact analysis (CIA) tasks in variant design. 
Lo et al. [48] proposed a holistic methodology, based on three- 
dimensional (3D) morphological diagrams of QFD, to support the 
variant design of serialization products and to simplify the tradition-
al cascading QFD process in order to meet the special needs of tech-
nically mature and highly modularized products. Modrak et al. [49] 
investigated and presented a novel methodology for creating all pos-
sible product configurations and variations, based on a given num-
ber of base components and an optional number of complementary 
components. Wang et al. [50] presented an assembly variant design 
system architecture and a complementary assembly method. Ketan 
et al. [51] introduced three different types of variant feature models 
based on the concept of engineering description for variant features. 
Prebil et al. [52] studied the possibilities of design process methods 
related to the capabilities of a computer-aided design (CAD) system 
used for the manufacture of rotational connections and the design of 
workshop documentation. Nayak et al. [53] proposed the variation- 
based platform design method (VBPDM) for PFD, which uses the 
smallest variation of the product designs in the family to enable a 
range of performance requirements. Jiang and Gao [54] proposed a 
class of drawing tool: the conicoid. The scope of a 3D diagram that 
can be drawn with a conicoid is larger than what can be drawn using 
only planes and spheres. After adding a conicoid, the designers can 
draw a figure that can be described by a sequence of equations of a 
degree that is less than nine. Lee [55] proposed a degree-of-freedom 
(DOF)-based graph reduction approach to geometric constraint solv-
ing for maximizing the efficiency, robustness, and extensibility of a 
geometric constraint solver.

The challenges in variant design include: establishing the vari-
ant design of a structure based on multi-domain mutual-use mod-
els; customizing a design based on evolution; and developing a  
performance-enhancement design for complex equipment.

Fig. 2. Structural deformation of the third order modal of a gantry. Fig. 3. Structural deformation of the fourth order modal of a gantry.
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To complete the design of either a geometric structure or a prod-
uct module in order to produce more design schemes correspond-
ing to CRs, Table 1 shows a comparison of two design schemes for 
multi-axis machine tools. Scheme 1 and Scheme 2 of a lathe-mill 
cutting center are respectively shown in Fig. 4 and Fig. 5. The kine-
matic chain of Scheme 1 is WCOYZXAD, and the kinematic chain of 
Scheme 2 is WCYOZXAD, where W represents the workpiece, O rep-
resents the machine bed, D represents the machining tool, and X, Y, Z, 
A, C represent the coordinate axes of the machine tools.

2.5. Knowledge push for product intelligent design

Regarding product support from intelligent design, Younesi and 
Roghanian [56] proposed a comprehensive quality function de-
ployment for environment (QFDE), a fuzzy decision-making trial- 
and-evaluation laboratory (DEMATEL), and a fuzzy analytic network 
process (FANP) for sustainable product design in order to determine 
the best design standards for a specific product. Pitiot et al. [57] 

studied a preliminary product design method based on a primitive 
evolutionary algorithm called evolutionary algorithm oriented by 
knowledge (EAOK). Costa et al. [58] presented the product range 
model (PRM), which combines rule-based systems with CBR to pro-
vide product design decision support. Winkelman [59] proposed 
an intelligent design directory that consists of a virtual design en-
vironment associated with standard component catalogues. Hahm 
et al. [60] proposed a framework to search engineering documents 
that has fewer semantic ambiguities and a greater focus on individ-
ualized information needs. Akmal et al. [61] proposed an ontolo-
gy-based approach that can use feature-based similarity measures 
to determine the similarity between two classes. Morariu et al. [62] 
proposed a classification of intelligent products from the perspec-
tive of integration, and introduced formalized data structures for 
intelligent products. Li et al. [63] proposed a knowledge training 
method based on information systems, data mining, and extension 
theory (extenics), and designed a knowledge-management plat-
form to improve the quality of decision-making. Diego-Mas and 
Alcaide-Marzal [64] proposed a neural-network-based approach to 
simulate the consumers’ emotional responses for the form design 
of products, and developed a theoretical framework for the percep-
tions of individual users. Tran and Park [65] proposed eight groups 
of 29 scoring criteria that can help designers and practitioners com-
pare and select an appropriate methodology for designing a product 
service system (PSS). Kuo et al. [66] used a depth-first search to cre-
ate a predictive eco-design process. Andriankaja et al. [67] proposed 
a complete PSS design framework to support integrated products 
and services design in the PSS context. Muto et al. [68] proposed a 
task-management framework that enables manufacturers to devel-
op various PSS options for their product-selling business. Ostrosi et 
al. [69] proposed a proxy-based approach to assist with the config-
uration of products in conceptual design. Chan et al. [70] proposed 
an intelligent fuzzy regression method to generate a model that 
represents the nonlinear and fuzzy relationship between emotional 
responses and design variables.

Challenges affecting knowledge push design include: establishing 
an instance-based product design method; utilizing the intelligent 
design method based on knowledge-based engineering (KBE); and 
developing a knowledge push using task-oriented requirements.

An electroencephalogram (EEG) measures and records the elec-
trical activity of the brain, using biofeedback and the biological 

Table 1
A comparison of two design schemes for multi-axis machine tools.

Scheme 1 Scheme 2

Traverse path X/Y/Z (mm) 500/380/380 500/450/400

Drive power (40%/100% DC) (kW) 35/25 35/25 

Maximum speed (r·min−1) 18 000 18 000

Torque (40% DC) (N·m) 130 121

Rapid traverse X/Y/Z (m·min−1) 80/50/50 60/60/30

Feed power (kN) 5.0 4.8

Fixed table-clamping area (mm) 800 × 500 700 × 500

Fixed table-clamping area max-
imum load (kg)

500 500

Rotary table-clamping area (mm) ϕ500 × 380 ϕ630 × 500

A swivel range (°) +90–−18 +110–−5

C swivel range (°) 360 360

Rotary table-clamping area max-
imum load (kg)

200 200/300

Control system Heidenhain iTNC 530 Heidenhain iTNC 530
Siemens 840D 

DC: direct current.

Fig. 4. Scheme 1 of a lathe-mill cutting center. Fig. 5. Scheme 2 of a lathe-mill cutting center.
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effects of an electromagnetic field. Special sensors called electrodes 
are attached to the head. Changes in the normal pattern of electrical  
activity can show certain conditions, such as an epiphany, imagina-
tion, and reasoning. Fig. 6 shows the intelligent design of machine 
tools utilizing an EEG for the purpose of intelligent design. Fig. 7 
shows the graphical user interface (GUI) for measuring EEGs, and 
Fig. 8 shows the relative voltage of the EEG along with spectral anal-
ysis for a knowledge push.

3. Difficulties and our previous work

Existing intelligent design methods for customized products usu-
ally require the establishment of design rules and design templates 
in advance, and the use of knowledge matching to provide a design 
knowledge push and to enhance design intelligence.

It is still difficult to complete a design for customized products 
with individual requirements. The following technical difficulties 
still hinder the achievement of rapid and innovative design for com-
plex customized equipment:

(1) It is difficult to adapt the excavation of requirements based 
on big data. In a big data environment, the data source of individual 
requirements is mainly information from pictures, video, motion, 

and unstructured data in the form of radio frequency identification 
(RFID), which is not limited to structured data. It is difficult to estab-
lish a matching and coordinated relation of individual requirements  

Fig. 6. An intelligent design for machine tools. DC: direct current.

Fig. 7. The GUI for measuring EEGs.

Fig. 8. (a) The relative voltage of the EEG and (b) spectral analysis for knowledge push.
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between heterogeneous and unstructured multi-source data, so the 
accuracy of the requirements data analysis is affected.

(2) It is difficult to achieve many individual design require-
ments, and to rapidly respond to and support the design innovation 
schemes of customized products for individual requirements. It is 
difficult to complete intelligent design that comes from different 
specialties and different subject backgrounds through swarm intelli-
gence in order to develop the intelligence of public groups.

(3) It is difficult to master the inherent knowledge and experience 
of designers. Existing intelligent design needs push knowledge based 
on learning specialties, owned skills, and existing design experience.

We have researched intelligent design theory and the method and 
application of customized equipment for precise numerical control 
(NC) machine tools, a super-large cryogenic ASU, a PFHE, injection 
molding equipment, and low-voltage circuit breakers (CBs) [71–81].

4. Development tendencies

4.1. Big-data-driven intelligent design for customized products

In recent years, humankind has entered the big data era, with the 
development and application of technologies such as the Internet, 
cyber-physical systems (CPSs), and more. Based on an Internet plat-
form, China’s Internet Plus initiative, which began in 2015, crossed 
borders and connected with all industries by using information and 
communication technology to create new products, new businesses, 
and new patterns.

Big data has changed the product design and manufacturing en-
vironment. These changes strongly influence the analysis of person-
alized requirements and methods of customized equipment design. 
The specific product performance is as follows.

4.1.1. The influence of big data on the analysis of individual 
requirements

Designing customized equipment is different from designing gen-
eral products, as it usually reflects particular requirements from cus-
tomers by order. This CR information usually shows non-regularity. 
The relationship among different orders is not strong, which leads to 
situations in which the type of product demand information is ex-
tremely mixed up and the amount of information is very great. With 
the development of e-commerce concepts, such as online-to-offline 

(O2O), business-to-customer (B2C), business-to-business (B2B), and 
so forth, a large amount of information on effective individual needs 
becomes hidden in big data. An essential question in product design 
is how to mine and transform individual requirements in order to 
design customized equipment with high efficiency and low cost.

4.1.2. The influence of swarm intelligence design on design modes
Customized equipment design is usually based on mass produc-

tion, which is further developed in order to satisfy the customers’ 
individual requirements. Modular recombination design and vari-
ant design are carried out for the base product and its composition 
modules, in accordance with the customers’ special requirements, 
and a new evolutionary design scheme that is furnished to provide 
options and evolve existing design schemes is adopted. An individu-
al customized product is provided for the customers, and the organic 
combination of a mass product with a traditional customized design 
is achieved. In the Internet age, the design of customized equipment 
stems from the knowledge and experience of available integrated 
public groups, and is not limited to a single designer. In this way, 
the innovation of customized equipment is enhanced via swarm 
intelligence design. As a result, the Internet Plus environment has 
transformed the original technical authorization from a manufactur-
ing enterprise interior or one-to-one design into a design mode that 
fuses variant design with swarm intelligence design.

4.2. Customized design tools and applications

Intelligent design using intelligent CAD systems and KBE is a new 
trend in the development of product design. This is a gradually deep-
ening process of data processing and application, which moves from 
the database to the data warehouse, and then to the knowledge base. 

Fig. 9 shows the GUI of an accuracy allocation design for NC 
machine tools. Fig. 10 shows the GUI of a design integration for NC 
machine tools. Fig. 11 shows surface machining using a five-axis NC 
machine center with a 45° tilt head.

5. Conclusions

5.1. Intelligent design corresponding to individual requirements

The process of intelligent design corresponding to individual 

Fig. 9. The GUI of an accuracy allocation design among hierarchy kinematic chains.
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requirements includes achieving individual mutual fusion of the 
requirements and parameters, and providing a foundation to solve 
the dynamic response and intelligent transformation of individual 
requirements.

The basic features of future customized equipment design are 
numerous, incomplete, noisy, and random. Unstructured design 
requirement information is equally mapped between individual 
requirements. A mutual fusion-mapping model of the different re-
quirements and design parameters from the big data environment is 
urgently needed.

5.2. Customized design using swarm intelligence rather than a single 
designer

The process of customized design using swarm intelligence in-
cludes achieving the drive and feedback of a swarm intelligence 
platform design, and providing technological support for a further 
structural innovation design platform for Internet Plus customized 

Fig. 10. The GUI of the intelligent design of a component and the complete machine of a lathe-mill cutting center.

Fig. 11. Surface machining using a five-axis NC machine center with a 45° tilt head.

equipment.
The future design of customized products lies in the process of 

cooperation between multiple members of the public community 
and in swarm intelligence design, which is not limited to a single 
designer. Swarm intelligence design can be integrated into the intel-
ligence of public groups.

5.3. Intelligent design for customized products using a knowledge 
push

The process of intelligent design for customized products with 
a knowledge push includes achieving the active push of a design 
resource based on feedback features, and enhancing the design in-
telligence of complex customized equipment. In future, intelligent 
design for customized products can be achieved by design status 
feedback and scene triggers based on a knowledge push. With the 
development of advanced technology such as cloud databases and 
event-condition-action (ECA) rules [71], future intelligent design 
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for customized products will be more requirement-centered and 
knowledge-diversified, with appreciable specialty and higher design 
efficiency.
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