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This paper presents the flutter derivatives (FDs) extracted from a stochastic system identification (SSI)
method under different turbulent flows. The objective of the study is to investigate the effects of oncom-
ing turbulence on the flutter of suspended long-span bridges using a section model wind-tunnel test.
Several wind-tunnel tests were performed on a truss bridge deck section with different oncoming turbu-
lent properties involving reduced turbulence intensities and turbulent scales. This study includes an
investigation of the effect of oncoming flows on modal dynamic responses. The transient and buffeting
response data from the wind-tunnel test are analyzed using the system identification technique in
extracting FDs, and the difficulties involved in this method are discussed. The time-domain SSI is applied
to extract all FDs simultaneously from one and two degree-of-freedom (1DOF and 2DOF) systems. Finally,
the results under different conditions are discussed and conclusions are formed.
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1. Introduction response are considered to be external noise, which causes
Wind flows in the atmospheric boundary layer are always tur-
bulent. Any study of a wind-induced vibration problem must con-
front this issue, either by matching turbulence characteristics
completely or by acknowledging uncertainties in the conclusions
as a result of imperfect simulations. Not many studies in this field
have focused clearly on the effects of turbulence on aeroelastic
forces. Scanlan and Lin [1] are pioneers who used a truss bridge
deck section model and concluded that there is an insignificant dif-
ference in flutter derivatives (FDs) between smooth and turbulent
flows. However, Huston [2] conducted a test on a model of the
Golden Gate Bridge deck section and obtained results that were
different from those obtained by Scanlan and Lin [1] and Haan
and Kareem [3]. In studies on the effect of turbulent flows on
FDs, a free-vibration technique using a section model with the
application of a system identification technique to extract FDs is
widely used. Various system identification techniques have been
developed by many authors: These include the extended Kalman
filter algorithm [4], the modified Ibrahim time domain (MITD)
[5], the unifying least-squares method [6], and the iterative least-
squares method [7]. In these systems, buffeting force and its
increased difficulty at high wind velocity. Bartoli and Righi [8] used
the combined system identification method (CSIM), which is based
on Sarkar’s MITD, to simultaneously extract all FDs from a two
degrees-of-freedom (2DOF) rectangular section model. Their con-
clusion was that the identification of FDs in a turbulent flow suc-
ceeded in spite of the difficulties caused by locally induced noise
due to signature turbulence. The main reason for their success is
that the CSIM is a deterministic system identification, and the
effects of turbulence are regarded as a noisy-input signal to the
system, which results in additional problems in the identification
process. Nikitas et al. [9] extracted FDs from ambient vibration
data from full-scale monitoring using a more elaborate stochastic
identification technique (the covariance block Hankel matrix,
CBHM) [10]; that study also illustrated the applicability of system
identification techniques to extract valuable results from field
measurement data. Kirkegaard and Andersen [11] compared three
state-space systems: stochastic subspace system identification (or
simply stochastic system identification (SSI)), the matrix block
Hankel (MBH) stochastic realization estimator, and the prediction
error method (PEM). The SSI was found to give a good result for
estimated modal parameters and mode shapes, the MBH was
found to give poor estimates of the damping ratios and the mode
shapes compared with the other two techniques, and the SSI was
found to be approximately ten times faster than the PEM.
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In addition to the issues described above, there is a shortcoming
involved in the free-vibration technique. The extraction of FDs can-
not be executed accurately in a high wind speed range because the
aerodynamic damping of the vertical mode is too high, and the ver-
tical free-vibration data are rapidly damped out. Based on these
considerations, the idea of applying SSI to estimate the FDs from
the gust responses of a truss bridge deck section was developed.
In this paper, the turbulence effects on the FDs of a truss bridge
deck are investigated by employing a section model wind-tunnel
test in a turbulent flow. Output-only SSI is applied to extract FDs
from gust response. Tests were also carried out using the free-
vibration method for comparison with the proposed method.
2. Experimental setup and turbulent flow generation

A wind-tunnel test was conducted in a closed-circuit wind tun-
nel at Yokohama National University. The working section is 1.8 m
wide and 1.8 m high, and the investigated profile is a truss bridge
deck section (Fig. 1). It was fabricated from wood with a scale of
1:80 to represent the cross-section of a long-span suspension
bridge. The width and depth of the section model are 363 mm
and 162.5 mm, respectively. The unit length mass is 8.095 kg�m�1

and the unit length moment of inertia is 0.2281 kg�m2�m�1. The
first vertical frequency and damping ratio are 1.869 Hz and
0.00509, respectively, and the first torsional frequency and damp-
ing ratio are 3.296 Hz and 0.004186, respectively. The section
model was attached to a rigid frame and supported at each corner
by a linear spring with stiffness k. The mounting position of the
spring was adjusted such that the elastic center and the gravity
center of the cross-section coincided. The tests were carried out
in both smooth and turbulent flows. The turbulent flows used in
this study were generated with a biplane wooden grid, and the tur-
bulent properties were controlled by changing the distance to the
model.
Fig. 1. Truss bridge deck section model.

Fig. 2. PSD function for the longitudinal turbulence component. (a
2.1. Reduced turbulence intensity

For the purpose of matching the power spectrum of the turbu-
lent flow of a model with that of the full-scale version, Katsuchi
and Yamada [12] introduced the concept of reduced turbulence
intensity (Ir), which can be written as follows:

Ir ¼ Iu
Lx
u=D

� �1=3 ð1Þ

where Iu is the along-wind turbulence intensity, defined by Iu = ru/
U, for which ru is the standard deviation of the turbulent wind
velocity and U is the mean wind velocity; D is the height of the sec-
tion model; and Lx

u is the integral length scale for the turbulent com-
ponent in the longitudinal direction. In this study, the integral
length scale is defined by

Lx
u ¼ 1

2p
U

npeak
ð2Þ

where npeak is the frequency at which the reduced power spectrum
reaches the maximum.

Table 1 depicts the results of three turbulent flow parameters,
Iu, L

x
u, and Ir, corresponding to different grid-to-model distances.

Ir increases proportionally with Iu, but the inverse is true for Lx
u .

2.2. Power spectral density

The turbulence intensity and the integral length scale do not
fully describe the properties of oncoming turbulent flows. Naka-
mura and Ozono [13] showed that small-scale turbulence affects
flow fields and aerodynamic parameters more than large-scale tur-
bulence. Therefore, the power spectral density (PSD) of the turbu-
lence was also quantified for this research. Fig. 2(a) shows the non-
dimensional PSD function of the along-wind turbulence, together
with the von Karman and Eurocode 1 spectra. Compared with
the von Karman spectrum, the measured data coincided well in
the high-frequency range and was a little higher in the low-
frequency range. Turbulent energy is generated in larger eddies
(low frequency). For most structures, these low-frequency
) Comparison with proposed formulas; (b) PSD at different Ir.

Table 1
Turbulent flow parameters.

Parameter Case 1 Case 2 Case 3

Iu (%) 6.17 9.11 15.63
Lx
u (cm) 11.26 9.04 6.79
Ir (%) 6.97 11.09 21.02
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fluctuations give no significant response contribution. Fig. 2(b)
shows three spectra obtained at different Ir. The values of the
PSD function increase as Ir increases.

3. Model dynamic responses

Tests were conducted in both smooth and turbulent flows. The
objective of this test was to quantify the effect of oncoming turbu-
lent flows on the dynamic responses of the section model.

Fig. 3 illustrates the vibration amplitudes of 2DOF (heaving and
torsional modes) versus the reduced wind velocities (Vr = U/fB,
where f is the frequency and B is the width of the section model)
under smooth and various turbulent flows. In smooth flow, vertical
vibration is limited when Vr ranges from 0 to 9, and then increases
considerably; however, vertical divergent vibration does not occur
in this test (Fig. 3(a)). On the other hand, the torsional displace-
ment is very small until a sudden increase and flutter occur at a
Vr of about 5.7 (Fig. 3(b)).

When the model is immersed in turbulent flows, vertical and
torsional motions appear in spite of small reduced wind velocities.
The vertical response increases proportionally with Vr, and when
the Ir increases, the amplitude of vibration increases slightly. In
the turbulent flows, vertical divergent vibration does not occur. In
the cases of Ir = 6.97% and Ir = 11.09%, the torsional displacement
gradually increases with Vr and flutter occurs at Vr = 7.2 and Vr =
7.7, respectively. The flutter speeds are higher than those in smooth
flow (Vr = 5.7). Moreover, in the case of Ir = 21.02%, flutter occurs at
Vr = 8.6. (The critical wind speed is defined at the amplitude of 0.5�.)

In general, turbulent flows on a section model induce larger
vibration than smooth flow, and the vibration proportionally
increases with the wind velocities; however, the vibration does
not suddenly increase in turbulent flows as it does in smooth flow.
The motion under turbulent flows is known as buffeting response;
it affects the service state of bridges by causing issues such as fati-
gue problems.

4. Identification of flutter derivatives

In this study, the FDs of a bridge deck in turbulence are identi-
fied using an SSI method. The theories applied in this study are
mainly based on the work of Peeters and Roeck [14].

4.1. Stochastic state-space models

When considering a 2DOF section model of a bridge deck in tur-
bulent flow, fluctuating wind loads that act on the deck can be
expressed by the linear superposition of a self-excited force and
a buffeting force as follows:
Fig. 3. Model response with different Ir. (a) Vertical amplitude; (b) torsional amplitude. N
vibration, and ‘‘Smooth” is the smooth flow condition.
mð€hþ 2nhxh
_hþx2

hhÞ ¼ Lse þ Lb
Ið€aþ 2naxa _aþx2

aaÞ ¼ Mse þMb

ð3Þ

where m and I are the mass and polar moment of the inertial per
unit length, respectively; h and a are heaving and torsional dis-
placement, respectively; (�) represents time differentiation; xh =
2pfh and xa = 2pfa are the natural circular frequencies of the heav-
ing and torsional mode, respectively; nh and na are the damping
ratio of heaving and torsion, respectively; Lb and Mb are the buffet-
ing forces in the vertical and torsional directions, respectively; and
Lse and Mse are the self-excited lift and pitching moment, respec-
tively, given by

Lse ¼1
2
qU2B KhH

�
1ðKhÞ

_h
U
þKaH

�
2ðKaÞB

_a
U

þK2
aH

�
3ðKaÞaþK2

hH
�
4ðKhÞhB

" #

Mse ¼1
2
qU2B2 KhA

�
1ðKhÞ

_h
U
þKaA

�
2ðKaÞB

_a
U

þK2
aA

�
3ðKaÞaþK2

hA
�
4ðKhÞhB

" #

ð4Þ
where q is the air density, U is the mean wind velocity, B is the
width of the bridge deck, Kk =xkB/U is the reduced frequency
(where k = h, a), and H�

i and A�
i (where i = 1, 2, 3, 4) are the FDs.

By substituting Eq. (4) into Eq. (3) and moving the aerodynamic
damping and stiffness terms to the left-hand side, Eq. (3) can be
rewritten as follows:

M€qðtÞ þ Ce _qðtÞ þ KeqðtÞ ¼ f ðtÞ ¼ B2uðtÞ ð5Þ
where qðtÞ ¼ ½hðtÞ aðtÞ �T is the generalized buffeting response,

f ðtÞ ¼ ½ Lb Mb �T is the buffeting force, f(t) is factorized into matrix
B2 and input vector u(t), M is the mass matrix, Ce is the total damp-
ing matrix including the structural and aerodynamic damping, and
Ke is the total stiffness matrix including the structural stiffness and
aerodynamic stiffness.

The second-order differential equation, Eq. (5), can be trans-
formed into a first-order state equation, Eq. (6):

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ ð6Þ

where

xðtÞ ¼ qðtÞ
_qðtÞ

� �
; Ac ¼

0 Iu
�M�1Ke �M�1Ce

� �
; Bc ¼

0
M�1B2

� �

and where Ac is the designated state matrix with a size of 4 � 4, x(t)
is the state vector, Bc is the input matrix, and Iu is a unit matrix.

The combination of the state equation and the observation
equation fully describe the input and output behaviors of the struc-
tural system; as such, it is named the state-space system.
ote that RMS refers to the root-mean-square, ‘‘Max” is the maximum amplitude of



848 H.T. Lam et al. / Engineering 3 (2017) 845–853
_xðtÞ ¼ AcxðtÞ þ BcuðtÞ
yðtÞ ¼ CcxðtÞ þ DcuðtÞ

ð7Þ

where y(t) is the output vector, Cc is the output matrix, and Dc is the
direct transmission matrix in continuous time.

Eq. (7) is a deterministic state-space model in continuous time.
Continuous time implies that the expression can be evaluated at
each time instant. Deterministic implies that the input and output
quantities can be measured exactly. This is not practical, because
the measurements are mostly sampled at a discrete time. In addi-
tion, it is impossible to measure all DOFs, and measurements
always cause disturbance effects. For all these reasons, the contin-
uous deterministic system is converted into a suitable form—that
of a discrete-time stochastic state-space model—as follows:

xkþ1 ¼ Axk þwk

yk ¼ Cxk þ vk
ð8Þ

where xk ¼ xðkDtÞ ¼ ðqk _qk ÞT is the discrete-time state vector con-
taining the discrete sampled displacement qk and velocity _qk; wk is
the process noise due to disturbances and modeling error; vk is the
measurement noise due to sensor inaccuracy; and A and C are dis-
crete state and output matrices, respectively. It is assumed that wk

and vk are zero mean and that their covariance matrix is as follows:

E
wp

vp

� �
wT

q vT
q

� �� �
¼ Q S

ST R

� �
dpq ð9Þ

where the indices p and q are time instants, E is the expectation
operator, and dpq is the Kronecker delta. The correlations
E½wp wT

q � and E½vp vT
q � are equal to zero in the case of different

time instants. Q ¼ E½wk wT
k �, R ¼ E½vk vT

k �, and S ¼ E½wk vT
k �. It

is further assumed that the stochastic model xk, wk, and vk are
mutually independent and zero mean. It can be proven that the out-
put covariance R ¼ E½ ykþ1 yTk � for any arbitrary time-lags iDt can
be regarded as the impulse response of the deterministic linear
time-invariant system A, C, G, where G ¼ E½ xkþ1 yTk � is the next
state-output covariance matrix, as shown in Eq. (10).

Ri ¼ CAi�1G ð10Þ
Eq. (10) is called the Lyapunov equation, and indicates that the

output covariance can be regarded as impulse responses. There-
fore, the theoretical application of the stochastic system can go
back to an eigensystem realization algorithm (ERA) method [15].

4.2. Data-driven stochastic system identification

The output measurement data obtained from l sensors (in this
study, l = 2 for heaving and torsion) are as follows:

y ¼ ðy0; y1; y2; . . . ; ynÞ 2 Rl�n ð11Þ
The output data are assembled in a block Hankel matrix (H)

with 2i block rows and j columns. The Hankel matrix can be
divided into two parts: The upper part is the past output and the
lower is the future output, as follows:

H ¼

y0 y1 � � � yj�1

y1 y2 � � � yj

..

. ..
. . .

. ..
.

yi�1 yi � � � yiþj�2

yi yiþ1 � � � yiþj�1

yiþ1 yiþ2 � � � yiþj

..

. ..
. . .

. ..
.

y2i�1 y2i � � � y2iþj�2

2
66666666666666664

3
77777777777777775

2i�j

¼ Y0ji�1

Yij2i�1

� �
¼ Yp

Yf

� � l li
l li

ð12Þ
Like the CBHM or ERA method, data-driven stochastic system
identification (SSI_data) implements directly with the output of
experimental data, without converting output data to correlation,
covariance, or spectra [16]. The main step of SSI_data is a projec-
tion of the row space of the future outputs (Yf) into the row of
past outputs (Yp). The orthogonal projection Pi is defined as
follows:

Pi ¼ Yf =Yp ¼ Yf YpðYpY
T
pÞ

�1
Yp ð13Þ

The orthogonal projection is implemented by the QR factoriza-
tion of the block Hankel matrix shown in Eq. (12). This is defined as
follows:

H ¼ Yp

Yf

� �
¼ RQT ð14Þ

where Q 2 Rj�j is an orthogonal matrix QTQ = QQT = Ij and R 2 R2li�j

is a lower triangular matrix. Because 2li < j, it is possible to reject
the zeros in R and the corresponding zeros in Q.

ð15Þ

Substituting the QR factorization of the output Hankel matrix,
Eq. (15), into Eq. (13) yields the simple expression of the projection:

Pi ¼
R21

R31

� �
QT

1 ð16Þ

The key of SSI is that the orthogonal projection Pi is factorized
into the product of the observability matrix Oi and the Kalman fil-

ter state sequence X̂i .

Pi ¼

C
CA

..

.

CAi�1

2
66664

3
77775 x̂ x̂iþ1 � � � x̂iþj�1
� 	 ¼ OiX̂i ð17Þ

The observability matrix Oi and the Kalman filter sequence X̂i

are obtained by applying single-value decomposition to the projec-
tion matrix:

Pi ¼ U1S1V
T
1 ð18Þ

Comparing Eq. (17) and Eq. (18) gives

Oi ¼ U1S
1=2
1 ; X̂i ¼ Oy

i Pi ð19Þ
where (�)y represents the pseudo-inverse of a matrix.

If the past and future outputs of the Hankel matrix are shifted, a
time-shift projection is achieved:

Pi�1 ¼ Y�
f =Y

þ
p ¼ Oi�1X̂iþ1 ð20Þ

where

Pi�1 ¼ R31 R32½ � QT
1

QT
2

" #
ð21Þ

Oi�1 is obtained from Oi after deleting the last l rows. The shifted
state sequence can be computed in Eq. (20) as follows:

X̂iþ1 ¼ Oy
i�1Pi�1 ð22Þ

From Eq. (19) and Eq. (22), the Kalman state sequences X̂i and

X̂iþ1 are obtained using only output data. The state and controlla-
bility matrices can be recovered from the over-determined set of
linear equations, obtained by extending Eq. (8):
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X̂iþ1

Yiji

" #
¼ A

C

� �
X̂i þ

qw

qv

� �

Yiji ¼ R21 R22½ � QT
1

QT
2

" # ð23Þ

where Yi|i is a Hankel matrix with only one block row. Since the Kal-
man state sequence and the outputs are known, and the residual

½qT
w qT

v �T are uncorrelated with X̂i, the set of equations can be
solved for A and C using the least-squares method:

A

C

� �
¼ X̂iþ1

Yiji

" #
X̂i

h iy
ð24Þ
4.3. Identification of flutter derivatives

The modal parameters of the system can be obtained by solving
the eigenvalue problem for the state matrix:

A ¼ WKW�1; U ¼ CW ð25Þ
where W is the complex eigenvector, K is the complex eigenvalue
and the diagonal matrix, and U is the mode shape matrix. When
the complex modal parameters are known, the total damping
matrix Ce and total stiffness matrix Ke in Eq. (5) are determined by

Ke Ce� 	 ¼ �M UK2 U�ðK�Þ2
h i U U�

UK U�K�

� ��1

ð26Þ

Let �Ce ¼ M�1Ce; �Ke ¼ M�1Ke; �C ¼ M�1C0; �K ¼ M�1K0, where C0

and K0 are the structural damping and stiffness matrix of the sys-
tem, respectively, under still air conditions.

Thus, the FDs of a 2DOF system can be defined as follows:

H�
1ðKhÞ ¼ � 2m

qB2xh

ð�Ce
11 � �C11Þ; A�

1ðKhÞ ¼ � 2I
qB3xh

ð�Ce
21 � �C21Þ

H�
2ðKaÞ ¼ � 2m

qB3xa
ð�Ce

12 � �C12Þ; A�
2ðKaÞ ¼ � 2I

qB4xa
ð�Ce

22 � �C22Þ

H�
3ðKaÞ ¼ � 2m

qB3x2
a

ð�Ke
12 � �K12Þ; A�

3ðKaÞ ¼ � 2I
qB4x2

a

ð�Ke
22 � �K22Þ

H�
4ðKhÞ ¼ � 2m

qB3x2
h

ð�Ke
11 � �K11Þ; A�

4ðKhÞ ¼ � 2I
qB4x2

h

ð�Ke
21 � �K21Þ

ð27Þ
Fig. 4. Responses of the bridge deck section model (h is vertical and a is torsional).
5. Flutter derivatives and comparison

The buffeting and decay responses were acquired at a sampling
frequency of 100 Hz. Fig. 4 shows the time-history responses of the
model at the mean wind speed of 6.7 m�s�1.
5.1. Extraction of flutter derivatives from buffeting response

In a high wind speed range, the aerodynamic damping of the
heaving mode is too high and the vertical free response is too short,
so the extraction of FDs cannot be accomplished with high accu-
racy. In addition, it is not practical to use a free-decay mechanism
to describe real bridge behavior under field wind excitation. On the
other hand, the extraction of FDs from the buffeting response more
closely reflects full-scale bridge behavior in a turbulent wind field.
The bridge deck section model will vibrate under the excitation of
turbulent flow even at a low wind velocity.

This method is simpler than the free-vibration technique
because no operator corrupts by exciting the section model. Fig. 5
and Fig. 6 show the FDs of the bridge deck extracted by the SSI_data
method from both the free-decay and buffeting responses of 1DOF
and 2DOF systems under turbulence flows (Ir = 11.09%). In general,
most FDs are in good agreement with both the free-decay response
and the buffeting response of 1DOF and 2DOF systems. The
heaving-related damping FD (H�

1) extracted from the buffeting
response is slightly higher than that obtained from the free-decay
response. The coupled terms (H�

2 and H�
3) extracted from buffeting

responses aremore scattered than those from free-decay responses,
particularly at a highly reduced wind velocity. The trends for A�

3 of
the FDs are similar in both cases. In this study, the sectional profile
was a truss bridge deck section where only torsional flutter
occurred; therefore, A�

2 is the most important derivative. The A�
2

extracted from the buffeting response is scattered at low reduced
wind velocities, but the scatter decreases more at a high reduced
wind velocity for the buffeting response than for the free-decay
response. The trends of the results from the buffeting response
and free-decay response are closely coincident.
5.2. The effects of turbulence on flutter derivatives

Fig. 7 and Fig. 8 illustrate the FDs of the heaving and torsional
modes under smooth and turbulent flows with different Ir. It was
(a) Buffeting response (U = 6.7 m�s�1); (b) free-decay response (U = 6.7 m�s�1).



Fig. 6. Torsional mode FDs (A�
i ) of the bridge deck section model from 1DOF and 2DOF tests by free-decay and buffeting responses (Ir = 11.09%). (a) A�

1; (b) A
�
2; (c) A

�
3; (d) A

�
4.

Black and red lines are the curve fitting of the 2DOF free-decay and 2DOF buffeting responses, respectively.

Fig. 5. Heaving mode FDs (H�
i ) of the bridge deck section model from 1DOF and 2DOF tests by free-decay and buffeting responses (Ir = 11.09%). (a) H�

1; (b) H
�
2; (c) H

�
3; (d) H

�
4 .
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found that under smooth flow, the FD H�
1 decreases faster than that

under turbulent flows. This is because the damping ratio of the
heaving mode under smooth flow is higher than under turbulent
flow. Turbulence has a very small effect on the vertical and tor-
Fig. 8. Torsional mode FDs (A�
i ) of the bridge deck section model under smooth and turbu

fitted polynomials of the smooth case.

Fig. 7. Heaving mode FDs (H�
i ) of the bridge deck section model under smooth and turbu

fitted polynomial of the smooth case.
sional frequency terms H�
4 and A�

3, and these values extracted from
the buffeting response are somewhat lower in turbulence than in
smooth flow. The off-diagonal terms H�

2, H
�
3, A

�
1, and A�

4 fluctuate
around zero, which means that in this experiment, coupled vibra-
lent flows by buffeting response. (a) A�
1; (b) A

�
2; (c) A

�
3; (d) A

�
4. The solid curves are the

lent flows by buffeting response. (a) H�
1; (b) H

�
2; (c) H

�
3; (d) H

�
4. The solid curve is the
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tion did not appear. Of these derivatives, the torsional damping
term A�

2 plays an important role in torsional flutter stability, since
its positive/negative value corresponds to the aerodynamic insta-
bility/stability of the torsional flutter. As shown in Fig. 8, under
smooth flow, A�

2 is positive at high reduced wind velocity Vr = 5.2
and coincides with the negative total torsional damping. The sig-
nificant effects of turbulent flows on FDs are particularly illustrated
for the aerodynamic torsional damping term A�

2: The positive value
corresponds to a Vr of around 6.5–7.8 under Ir = 6.97% and Ir =
11.09%, respectively, whereas in the case of Ir = 21.02%, flutter does
not occur up to Vr = 8. On the other hand, the effects of different
turbulent intensities on FDs are fairly modest. The influence of tur-
bulence on FDs will depend on the section. Sarkar et al. [5] found a
small effect for a streamlined section, whereas the test on a truss
bridge deck showed an appreciable effect, which is clearly shown
by the torsional damping term A�

2 .
There are two factors that may affect FDs in a turbulent flow:

the spanwise turbulence coherence and the aerodynamic admit-
tance. In Fig. 7 and Fig. 8, turbulence effects can be seen in some
FD terms. Significantly different trends can be seen in the diagonal
terms (H�

1; H
�
4, A

�
2, and A�

3) of the smooth and turbulent flows. On
the other hand, this difference is not significant in Fig. 5 and
Fig. 6, where different identification procedures (buffeting/free
decay) were applied for the same turbulence. It may be concluded
from these observations that aerodynamic admittance causing a
buffeting response does not significantly affect FD identification,
although the difference in spanwise turbulence coherence between
smooth and turbulent flows does have a significant effect on FD
identification.

5.3. Flutter critical wind velocity

In order to confirm the results of identified FDs under buffeting
responses, the flutter critical wind velocity (Vcr) was obtained from
an equation of motion of a 2DOF system:

M€qþ C _qþ Kq ¼ F€q ð28Þ
Fig. 9. Change of total logarithmic decrement and flutter critical wind ve
where M ¼ m 0
0 I

� �
, C ¼ 2mnhxh 0

0 2Inaxa

� �
, K ¼ mx2

h 0
0 Ix2

a

� �
,

F ¼ Lh La
Mh Ma

� �
, and q ¼ h

a

� �
.

For a stability check, only the self-excited force is considered,
and Lh, La,Mh, and Ma are self-excited force components defined by

Lh ¼ �pqB2ðLhR þ iLhIÞ; La ¼ �pqB2ðLaR þ iLaIÞ
Mh ¼ �pqB4ðMhR þ iMhIÞ; Ma ¼ �pqB4ðMaR þ iMaIÞ

ð29Þ

where LhR, LhI, LaR, LaI, MhR, MhI, MaR, and MaI are self-excited force
coefficients (FDs) that can be compared with those using Scanlan’s
format, as follows:

LhR ¼ H�
4=2p; LhI ¼ H�

1=2p; LaR ¼ H�
3=2p; LaI ¼ H�

2=2p
MhR ¼ A�

4=2p; MhI ¼ A�
1=2p; MaR ¼ A�

3=2p; MaI ¼ A�
2=2p

ð30Þ
The FDs of the truss bridge deck section that are provided in this

study were approximated polynomials of the results from Fig. 7
and Fig. 8.

Assuming sinusoidal motion q = q0exp(ixt), and since structural
damping of a long-span bridge can be negligibly small, the damp-
ing matrix in Eq. (28) can be dropped. The aerodynamically influ-
enced equation of motion can then be written as follows:

K�1ðM � FÞ€q ¼ 1
x2

€q ð31Þ

Solving Eq. (31) as an eigenvalue problem gives the stability
condition of the system. Fig. 9 shows the change in the aerody-
namic damping of the torsional mode. The flutter critical wind
velocity is defined as the cross point of the torsional aerodynamic
logarithmic decrement and the equivalent torsional structural log-
arithmic decrement (d = �0.0263). The flutter critical wind velocity
found from the FDs coincided with that found using a wind-tunnel
locity. (a) Smooth flow; (b) Ir = 6.97%; (c) Ir = 11.09%; (d) Ir = 21.02%.
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dynamic test (Fig. 3). In the case of Ir = 21.02%, the flutter critical
wind velocity identified from the FDs (Vcr = 8.2) was slightly smal-
ler than that obtained from the dynamic test (Vcr = 8.6).
6. Conclusions

This study investigated the effects of turbulence on the FDs of a
truss bridge deck section using a wind-tunnel test and the SSI
method. The following conclusions were obtained from this study:
� FDs can be successfully obtained from gust responses. The
advantages of this method include the gust response being
easy to obtain and this method being less time-consuming
than the traditional method; in particular, the length of the
time history makes it easy to meet the requirements for
extracting FDs, even at a high wind speed—a situation that
reflects full-scale bridge behaviors more closely than the tradi-
tional method.

� SSI_data shows good results even from gust response because
this method holds the advantage of considering buffeting force
and response as inputs instead of as noise.

� Turbulent flow significantly affects the dynamic response and
FDs of the truss bridge deck section. A�

2 became positive at Vr

= 5.2 in the smooth flow and was delayed until Vr = 6.5–7.8 in
the turbulent flows of Ir = 6.97% and Ir = 11.09%, respectively;
in the case of Ir = 21.02%, a positive value for A�

2 did not appear.
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