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This article provides a survey of recently emerged methods for wind turbine control. Multivariate con-
trol approaches to the optimization of power capture and the reduction of loads in components under 
time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the 
related research activities into three categories: modeling and dynamics of wind turbines, active control of 
wind turbines, and passive control of wind turbines. Regarding turbine dynamics, we discuss the physical 
fundamentals and present the aeroelastic analysis tools. Regarding active control, we review pitch control, 
torque control, and yaw control strategies encompassing mathematical formulations as well as their appli-
cations toward different objectives. Our survey mostly focuses on blade pitch control, which is considered 
one of the key elements in facilitating load reduction while maintaining power capture performance. Re-
garding passive control, we review techniques such as tuned mass dampers, smart rotors, and microtabs. 
Possible future directions are suggested.
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1. Introduction

Wind energy has emerged as one of the leading renewable sourc-
es of carbon-free electrical power production. Technological ad-
vancements and manufacturing innovations have successfully driven 
the cost of wind energy from $0.45 per kilowatt hour 30 years ago to 
$0.05–$0.06 per kilowatt hour recently [1]. The total global capacity 
of installed offshore wind reached over 12.1 GW in 2015 [2], while 
the confirmed global cumulative wind capacity reached 456 GW  
in June 2016. China continues to remain at the top of the global 
market in cumulative installed wind capacity, with a capacity of 
over 145 GW [2]. In the United States, there was a 12.3% increase of 
wind electricity installed capacity in 2015, compared with the 2014 
increase of 7.8% [2]. In fact, more than 56% of the US renewable elec-
tricity capacity installed in 2015 came from wind energy.

Wind turbines convert the kinetic energy in wind into generat-
ed electricity. According to Betz’s law, no turbine is able to capture 

more than 59.3% of the kinetic energy [3]. In practical terms, a mod-
ern industrial turbine can capture about 80% of the maximum the-
oretical value. Modern wind turbines are categorized into two basic 
groups: the horizontal axis wind turbine (HAWT) and the vertical 
axis wind turbine (VAWT) [3]. HAWTs are those in which the rotat-
ing axis of the turbine is horizontal, or parallel to the ground; these 
turbines are widely implemented in large-scale wind farms. VAWTs, 
where the rotating axis is perpendicular to the ground, are often 
used in small wind projects and residential applications. Wind tur-
bines can be installed both onshore and offshore [4]. Onshore wind 
turbines are usually constructed inland, which allows easier connec-
tion to the existing electrical grid. Although onshore wind turbines 
are considered to be cost-effective, noise pollution and visual pollu-
tion remain a problem. Offshore wind turbines are built off the coast 
either on floating platforms or on concrete platforms that extend 
to the ocean floor [4,5]. Offshore turbines can avoid disturbing hu-
man activities, but they have higher costs and the connection to the  
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electrical grid is difficult.
A wind turbine is a complex mechanical system consisting of 

interconnected components that feature a variety of character-
istic responses and behaviors at vastly different time frames and 
length scales [1,3,6]. Modern turbines with larger and more flexible 
structures are expected to achieve 25-year turbine operating per-
formance with enhanced system reliability and turbine efficiency 
(maximum power capture) [3]. The performance of a wind turbine, 
however, is significantly affected by the stochastic nature of wind, 
which leads to uncertainties in energy capture and structural loads 
[7–10]. This survey aims to provide a comprehensive overview of 
different control approaches toward power capture and structural 
load mitigation for wind energy application.

Understanding the dynamics and modeling of complex wind tur-
bine systems is very important for analyzing the control objectives 
and synthesizing the control algorithms. A brief introduction of 
wind turbine dynamic characteristics is provided in Section 2. The 
wind turbine system is an integrated system with three typical sep-
arate control loops: pitch control, torque control, and yaw control, 
which are systematically reviewed in Section 3. Our survey mostly 
focuses on blade pitch control, which is considered one of the key 
elements in facilitating load reduction while maintaining power 
capture performance. In addition to these active controls, passive 
control methods including the tuned mass damper (TMD) and aero-
dynamic control methods with additional devices such as microtabs 
and smart rotors are introduced in Section 3. Summary comments 
are given in Section 4.

2. Preliminaries: Dynamic characteristics and modeling of 
wind turbines

Although VAWTs have been around for a long time, here we fo-
cus on HAWTs since they are dominant in the utility-scale market. 
Active control is more effective in larger HAWTs, whereas passive 
control is often used in VAWTs. The components of a HAWT usually 
include a hub, a nacelle, blades, and a tower. The nacelle houses the 
gearbox, drivetrain shafts, and generator, and is mounted onto the 
top of the tower. The number of blades is usually two or three. The 
actuator equipped at the root of a blade can regulate the pitch angle 
of the blade to change the aerodynamic angle of attack. Collective 
pitch angle motion is widely used to pitch all the blades at the same 
angle, while individual pitch control is used to pitch each blade 
separately. The high-speed shaft that is connected to the generator 
rotates the magnetic rotor inside the generator. When the rotor is 
spinning, it produces electromagnetic energy and electricity.

2.1. Aerodynamics

The aerodynamics of a wind turbine are highly nonlinear because 
of the complex, time-varying wind field. Therefore, it is difficult to 
attain a perfectly accurate model and predict dynamic responses. 
With the development of a series of computational tools, aeroelastic 
simulators have been used to simulate the operation. Major aero-
elastic codes used in industry to compute aerodynamic forces and 
moments are FAST [11], BLADED [12], HAWC2 [13], and FLEX5(4) [14]. 
Here, we introduce the fatigue, aerodynamics, structures, and tur-
bulence (FAST) code developed by the National Renewable Energy 
Laboratory (NREL) located in Colorado, the United States. The aer-
oelastic analysis part in FAST is called AeroDyn [15]. The underlying 
theory of AeroDyn is blade element momentum (BEM), a combina-
tion of blade element theory and momentum theory. The main idea 
of blade element theory is to divide the whole blade into small and 
aerodynamically independent segments, and thus to obtain the lo-
cal aerodynamic forces. The sum of these forces at each segment of 
the blade can then be obtained. In momentum theory, the induced 

velocities can be obtained according to the momentum lost from 
the tangential flow and the axial flow. The flow in the rotor plane is 
influenced by the aforementioned induced velocities, and therefore 
the forces are determined by blade element theory. With the combi-
nation of these two theories, AeroDyn can calculate the aerodynam-
ic force and moments on a wind turbine.

2.2. Operating regions

The output power of a wind turbine varies significantly with the 
wind speed, and every wind turbine has its own power curve. The 
aerodynamic power is a function of the hub-height wind speed. The 
minimum wind speed that causes the wind turbine to start to work 
is called the cut-in wind speed. The rated output wind speed is the 
speed at which the wind turbine generator output reaches its max-
imum. The cut-out wind speed is the maximum speed at which the 
wind turbine needs to be pitched to dump the lift, and is stopped by 
a brake to avoid safety issues. The unique power curve correspond-
ing to a wind turbine is generally extracted from field tests. A rep-
resentative power curve of the NREL offshore 5 MW wind turbine is 
shown in Fig. 1.

 According to the power curve, the wind turbine operating condi-
tions are typically divided into three regions.

(1) Region 1: The wind speed is very low (< 3 m·s−1 for a 5 MW 
wind turbine). The turbine is stopped from rotating by a mechanical 
brake.

(2) Region 2: The wind speed is not strong, and the goal is to 
capture maximum power from the wind, that is, to obtain the maxi-
mum aerodynamic coefficient.

(3) Region 2 ½: This is a transition region between Region 2 and 
Region 3. The objective in this region is to reach the rated power 
when approaching the rated wind speed.

(4) Region 3: The wind speed is high. The objective is to achieve 
the rated power and rotor speed. The aerodynamic power captured 
by the rotor (Pwind) is given by the following equation [4]:

 ( )2 3
wind p

1 ,  
2

P R C vρ λ β= π  (1)

where R is the rotor radius; ρ is the air density, v is the wind speed; 
and the power coefficient Cp, which represents the percentage of 
power capture by the turbine, is a nonlinear function of the tip-
speed ratio (TSR) λ and the pitch angle β. It is usually represented by 
a look-up table, which can be obtained from field test data. The TSR 
is calculated as follows:

 
 

R
v

λ =
ω

 
(2)

where ω is the rotor speed.

Fig. 1. The power curve of the NREL offshore 5 MW wind turbine.
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matrix, control input matrix, output matrix, and control input trans-
mission matrix, respectively; Bd and Dd are the wind disturbance 
input matrix and the wind disturbance input transmission matrix, 
respectively; and y is the vector of output.

Multi-blade coordinate transformation
As mentioned earlier, a wind turbine is a periodic system due to 

wind shear and tower shadow effects. The dynamics of wind turbine 
rotor blades are generally expressed in rotating frames attached to 
the individual blades. However, the responses of rotor dynamics 
relative to the nacelle and tower must actually be considered as an 
integral response as a whole instead of as the individual response 
of each blade. Multi-blade coordinate transformation (MBC) can 
transform the dynamics of the rotating frame to those of the non- 
rotating frame (consistent with the fixed tower frame) and coher-
ently interconnect the spinning rotor with the nacelle and tower. 
MBC was derived and first used in helicopter systems to analyze the 
flap motion-related stability [16].

The aforementioned LTI model is simple and is often adopted 
in collective pitch control strategy. Recent studies have found that 
MBC can reduce the variations between the different linearization 
results obtained at different azimuths, and therefore yields a better 
representation of the turbine dynamics [17]. MBC is widely used in 
individual pitch control strategy to better deal with periodic dynam-
ics. A detailed transformation from rotational coordinates to fixed 
coordinates can be found in Ref. [18].

2.4. Actuators

Three types of actuators are employed in wind turbine systems. 
The first type is the pitch actuator, which in the past was mostly 
hydraulic. At present, electromechanical pitch actuators have been 
adopted in many utility-scale land-based wind turbines. A change 
in blade pitch angle can produce an aerodynamic attack angle 
change and can therefore change the aerodynamic torque and 
force. Commercial turbines nowadays are equipped with individ-
ual pitch actuators for the independent adjustment of each blade, 
which yields the major advantage of eliminating asymmetric blade 
loads. In general, there is a delay between the pitch command and 
the actual pitch, which is usually chosen as a first-order transfer 
function. The second type of actuator is the generator actuator, 
which can be set to track a reference torque or load. The generator 
actuator uses the generator and power electronics to decide how 
much torque to extract from the turbine by the separation of mag-
nets in the generator stator and rotor [6]. The net torque on the 
rotor is the difference between the torque induced by wind in the 
low-speed shaft and the load torque induced by the generator in 
the high-speed shaft. Therefore, the generator torque influences 
the acceleration of the rotor. The third type of actuator is the yaw 

Taking a 5 MW wind turbine as an example, the power coeffi-
cient curve is shown in Fig. 2. The figure shows that the maximum 
Cp is 0.4806 when the pitch angle is −1° and the TSR is close to 7. 
Since the primary objective in Region 2 is to capture the maximum 
energy from the wind, Fig. 2 indicates that the best choice is to 
maintain the pitch angle at the optimal value of −1°, and attempt to 
keep the TSR to the optimal value of 7. Eq. (2) shows that the TSR is 
indeed the ratio between rotor speed and wind speed. Maintaining 
a constant TSR means changing the rotor speed along with the fluc-
tuating wind speed. The most-used method to track the optimal TSR 
is torque control, which is discussed in Section 3.2.

2.3. Dynamic model

The aeroelastics of wind turbines are highly nonlinear, so we 
use the FAST code developed by NREL [11] to develop the numerical 
model of the wind turbine.

The nonlinear aeroelastic equation of motion for the wind tur-
bine has the following form [11]:

 ( ) ( )d, , , , , , 0M t t+ = q u q f q q u u  (3)

where M is the mass matrix, f is the nonlinear forcing function vec-
tor that contains the stiffness and damping effects, q is the response 
vector, u is the vector of control inputs, ud is the vector of wind input 
disturbance, and t is time. The variable f is determined by AeroDyn, 
in which the underlying physics is based on BEM theory. Eq. (3) is 
then linearized by FAST code in the operating condition according 
to small perturbation theory. A linearized equation of motion can be 
obtained as follows:

 d dM C K+ + = +   

 q q q Fu F u  (4)

where , , and  are, respectively, the linearized mass, damping, 
and stiffness matrices;  is the control input vector; and  is the 
wind disturbance vector.

A simple reduced-order linearized model can be obtained from a 
nonlinear turbine if certain degrees of freedom (DOFs) are switched 
on. A wind turbine system is a periodically rotating system even 
when the system is at the steady state because of the wind shear 
and tower shadow effects. Thus, the first step of the linearization is 
to obtain a series of linearized state-space models at a number of 
equally spaced rotor azimuths in one revolution. All the states are 
defined in the rotating coordinates. The state-space form represen-
tations are then averaged from all the linearization sets obtained. 
Finally, a linear time-invariant (LTI) state-space form representation 
can be obtained as follows:

 
d dA B B= + +x x u u

d dC D D= + +y x u u  (5)

where x = [qT, q
. T]T is the state vector; A, B, C, and D are the state  

Fig. 2. Power coefficient curve of a 5 MW wind turbine. (a) Cp surface; (b) Cp contour.
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actuator, which is generally motor-based. It is mounted such that 
it can navigate the whole nacelle to face to the wind direction. The 
yaw rate cannot be high due to gyroscopic forces. The yaw rate is 
typically less than 1°·s−1.

3. Wind turbine control approaches and applications

Wind turbines have different control objectives in different oper-
ating regions. The general strategy is to maximize energy in Region 2  
and limit the power or rotor speed in Region 3.

3.1. Pitch control

Pitch control is often adopted in Region 3 to regulate power or 
to mitigate structural loads. It is the most widely studied subject 
in wind turbine control. There are two forms of pitch control: col-
lective pitch and individual pitch. Collective pitch means that the 
pitch angles of all two or three blades change at the same angle each 
time. Individual pitch means that the pitch angles of all two or three 
blades change at different angles based on individual needs, which 
mostly depend on the blade azimuth when the rotor is rotating. 
The function of collective pitch is often to regulate power and rotor 
speed and to mitigate symmetric blade loads, while the direct goal 
of individual pitch is to mitigate asymmetric blade loads.

The intuitive idea for collective pitch control is to adopt a single- 
input single-output (SISO) feedback loop to track the reference in 
Region 3 when the wind speed is time-varying. The reference signal 
can be the rated rotor speed or the rated power. The most common-
ly used approach in industry is to track the rated rotor speed using 
a proportional-integral-derivative (PID) controller. The rotor speed 
error between the nominal value and the rated value is fed back 
to the pitch actuator. The plant model is linearized from nonlinear 
dynamics when the system is at a one-equilibrium position, which 
means that there is no acceleration or deceleration of the rotor. The 
proportional, integral, and differential gains are tuned at one operat-
ing point. Nevertheless, owing to the time-varying nature of a wind 
turbine, the actual operating point keeps changing. The original 
proportional, integral, and differential gains cannot maintain the de-
sired performance. Therefore, a gain-scheduling corrector is added 
to change the gains using the changing operating point [4].

The form of the gain scheduled proportional integral control can 
be written as follows:

 
( )( )P I 0

t
GS K Kθ θ ω ω∆ = ∆ + ∆∫  

(6)

where Δθ is the small perturbation of the blade pitch angle around 
the operating point, Δω is the error between the measured rotor 
speed and the rated set point value, and KP and KI are the proportion-
al and integral gains tuned at the operating points. The function of 
the gain correction factor GS(θ) is to change the gains when the wind 
speed is time varying. The expression of GS(θ) is shown as follows [4]:

 ( )
k

1
1 /

GS θ
θ θ

=
+  (7)

where θ is the blade pitch angle and θk is the blade pitch angle at 
which the pitch sensitivity value is doubled from its value at the 
rated operating point. The gain-scheduling part is derived from the 
pitch sensitivity, which is expressed as the sensitivity of the aerody-
namic power to the rotor collective blade pitch.

It is worth noting that, strictly speaking, the relation between the 
pitch sensitivity and the pitch angle is nonlinear. Thus, disturbance 
effects may not be perfectly cancelled out. In a recent study, the 
low frequencies content in wind excitation was rejected with the 
combination of gain-scheduling PID and disturbance observer-based 
control [19]. The results showed that the power and speed regu-
lation could be further enhanced. In addition to PID-type control 

approaches, speed regulation can be achieved from adaptive control, 
in which the model parameters of the wind turbine can be unknown 
[20]. The reference signal is simply the rated generator speed. The 
output of the nominal plant is forced to track the reference in the 
presence of various internal and external uncertainties. All of the 
aforementioned methods use the generator speed error as the mea-
surement and feedback to obtain the blade pitch angle.

Wind turbine control loops are actually multi-input multi-output 
(MIMO) systems. Traditional PID control may not deal with such a 
system effectively. In particular, when the control objective encom-
passes mitigating loads on individual blades, a multivariate system 
must be decoupled into two SISO systems to facilitate the usage of 
PID control. However, the system may not be perfectly decoupled, 
especially at high frequencies. The usage of the SISO control method 
inevitably sacrifices some performance. In essence, many aspects 
in wind turbine control need to be dealt with at the same time, and 
some even conflict with each other, such as power capture, load 
mitigation, and pitch activity. The collective speed control loop is 
coupled with the tower loads because the regulation of the genera-
tor speed may excite the first fore-aft and side-side tower modes. In 
addition, the mitigation of blade loads requires more activity of the 
pitch actuator, although the actuator has its own mechanical lim-
itation as well. Otherwise, the reduction of loads will also influence 
the power capture. Therefore, a strategy that can deal with multiple 
objectives is desirable.

The most common methods for MIMO systems are disturbance 
accommodating control (DAC)/linear quadratic regulator (LQR)/lin-
ear quadratic Gaussian (LQG), model predictive control (MPC), and 
the H2/H∞ method.

3.1.1. Disturbance accommodating control
To deal with speed regulation and load mitigation at the same 

time, DAC is a widely employed method that is implemented in 
conjunction with the LQR method. A trade-off between different 
objectives can be made through the proper selection of weighting 
functions. Johnson [21–24] first introduced the concept of DAC, 
and Balas et al. [25,26] later utilized this concept for a wind turbine 
field. In DAC, the wind disturbance is assumed to be the difference 
in wind speed between the nominal condition and the operating 
condition. The disturbance model can thus be augmented with the 
plant model to estimate the disturbance and state variables. The full 
state feedback control gain can be computed by the LQR method [27]. 
The DAC block diagram is shown in Fig. 3.

The very first step of DAC is deciding the model of disturbance. 
The disturbance model can be expressed in the state-space form:

 d d d d,  F Θ= =z z u z  (8)

where  is the disturbance state, and F and Θ are state matrices. A 

Fig. 3. Disturbance accommodating control block diagram. G is the state gain, Gd is 
the disturbance state gain,  is the state estimation, and  is the disturbance state 
estimation.
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state estimator can estimate the state variables and disturbance that 
cannot be measured, such as

 ( )1d

d 2d

ˆˆ
ˆ

ˆ0 0ˆ

KA B B
KF

Θ
= + + −

xx
u y y

zz





 (9)

where x̂, ûd, ẑd, and ŷ are the estimates of x, ud, zd, and y, respectively; 
and K1 and K2 can be determined by pole placement theory, ensur-
ing that the system characteristics of the estimator are satisfied. The 
DAC control law is given as follows:

 d dG G= +u x z  (10)

where G is the state gain and Gd is the disturbance state gain. The 
state gain can be obtained by the LQR method, and the disturbance 
state gain can be obtained by minimizing the L2 norm ||BGd + BdΘ||. 
Here, in practice, x and zd are the estimated values.

In practice, collective pitch control and individual pitch control 
require different choices of models of incoming wind, which means 
that F and Θ are different. Since the collective pitch can only adjust 
the uniform and symmetric component, in this scenario, the dis-
turbance is modeled as a uniform step signal, which can be seen as 
wind rising from one magnitude to another at every sampling inter-
val. F and Θ are assumed to be known as

 F = 0,  Θ = 1 (11)

In contrast, the individual pitch can adjust the asymmetric com-
ponent. Due to the vertical wind shear variation across the rotor 
plane, the turbine blades experience periodic sinusoidal compo-
nents [7]. The choice of F and Θ can be

 
2
1P

0 1 0
0 0

0 0 0
F ω= − ,

1 0 0
0 0 1

Θ =  (12)

where ω1P is the once-per-revolution (1P) rotor speed in rad·s−1. Al-
though higher frequencies can also be involved in matrix F, here we 
just take the 1P frequency as the example. In this way, the 1P fre-
quency of the load can be mitigated.

Further explorations of DAC have been made in recent years. 
Since the periodic dynamics in a wind turbine arise from both struc-
tural and aerodynamic effects, Stol and Balas [28] studied periodic 
DAC, which uses the time-varying feedback gain within a fixed time 
period. The results showed that the blade load attenuation level was 
improved compared with the PID and time-invariant DAC control-
ler without a sacrifice of speed regulation. The transient response 
of the blade load that was introduced by the Rankine vortex in the 
flow was mitigated by considering the coherent turbulent inflow 
conception in DAC in order to improve the wind disturbance rejec-
tion effects [29,30]. In theory, the collective pitch controller can only 
reduce the blade symmetric loads because only horizontal uniform 
disturbances can be taken care of in this case. In the individual pitch 
control for mitigating the blade asymmetric loads, the wind distur-
bances were modeled as the combination of a collective horizontal 
component and an asymmetric linear shear component [31,32]. The 
harmonic component in the local blade wind speed can be included 
in the disturbance model, which thus yields periodic disturbance 
rejection. The results showed 1P and 2P load reduction and better 
rotor speed regulation. To compute the generalized inverse in order 
to minimize the disturbance, three methods were investigated: the 
Moore-Penrose pseudoinverse, the Kronecker product, and the D-1 
method [33]. Pace et al. [34] expanded DAC to prevent emergency 
shutdowns by wind turbine overspeeds by using light imaging, 
detection, and ranging (LIDAR) to detect extreme events. The key 
idea was to switch the operational controller from the baseline 
controller (a gain-scheduled DAC) to an extreme event controller (a 

reduced generator speed-tracking DAC). The results showed that the 
switching controller improved the mean power. In addition, for off-
shore wind turbines, the wave disturbance can be included in DAC, 
in which the platform yaw DOF can be modeled in the disturbance 
model. The results showed improved power and speed regulation [5].

3.1.2. Model predictive control
MPC is an advanced control method that can make use of the 

predictive model and current measurements to obtain the control 
signal by minimizing a cost function. MPC can use the model to 
predict the process output in the future horizon, and can calculate a 
control sequence by minimizing the desired cost function with con-
straints existing in the inputs and outputs. This is a receding strat-
egy in that at each step, a few future control signals are calculated, 
but only the first calculated control sequence is applied to the real 
plant [35]. A number of MPC approaches tailored for wind turbines 
have been presented in recent years.

MPC can be mathematically divided into unconstrained and 
constrained approaches. Without loss of generality, the constrained 
optimization problem is illustrated here to calculate the optimal 
control inputs zk

T in order to minimize the cost function J(zk), which 
is characterized based on the system-level requirements. The cost 
function J(zk) is defined as the sum of all derivations of the system 
output y from the reference value r over the entire prediction hori-
zon p weighted with Q, and the sum of all changes in the control 
input u over the entire control horizon m weighed with R. ·(k + i | k) 
denotes the predicted value of (·) at the ith prediction horizon step 
based on the information at time k. In general, the state and distur-
bance information at time k can be extracted using the state estima-
tor. MPC solves the quadratic equations as follows:

Find zk
T  to minimize

 ( ) ( ) ( ) ( ) ( )
12 2

1 0

| | 1 |
p m

k
i i

J Q k i k r k i R k i k k i k
−

= =

= + − + + + − + −∑ ∑z y u u
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y x u u

u u u

u u u  

   (13)

where k is the current control interval, p is the prediction horizon, m 
is the control horizon, and

 ( ) ( ) ( )T T TT | 1 | 1 |k k k k k k m k= + + −z u u u  (14)

All the MPC algorithms for wind turbines possess common ele-
ments, whereas different options can be chosen for each element, 
giving rise to different algorithms. These elements are: ① the pre-
diction model, ② the objective function, and ③ the control law [35].

The prediction model is the cornerstone of MPC. A good design 
needs an accurate representation of the necessary mechanisms that 
can fully capture the process dynamics and allow the predictions 
to be calculated. In the literature, both linear MPC and nonlinear 
MPC are derived to solve the same optimal problem in terms of the 
basic concept, whereas the models and optimization algorithms 
are different. A linear model derived from simple physics including 
the aerodynamics, drive train, and generator was introduced in Ref. 
[36]. This model was effective in mitigating drive train loads and 
maximizing energy capture. Later, another linear model that also 
included the tower DOF showed good regulation of rotor speed, 
tower loads, and drive-train torsional loads in all operating regions 
[37]. Schlipf et al. [38] used FAST code to directly linearize the mod-
el from nonlinear dynamics. This provided another effective way to 
obtain the linear model, which can easily include more DOFs. All of 
the aforementioned linear MPC approaches used one model for all 
the operating points. A scheduled MPC, including multiple linear 
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models in different operating points, was used for rotor speed reg-
ulation and drivetrain load mitigation [39]. All of the linear models 
produced the output at the same time, and the final output was 
computed by the weighted sum method, where the weightings were 
chosen based on the estimated wind speed. 

MPC based on the nonlinear model is certainly promising be-
cause of the direct inclusion of inherent aerodynamic nonlinearities 
[38,40,41]. One way to obtain the nonlinear model is from aeroelastic 
simulators, such as FAST code, which use BEM to calculate the effect 
of the wind field on the turbine. Although the response predictions 
are accurate, the computation has to be carried out iteratively and 
thus becomes more costly. A slightly different way of incorporat-
ing nonlinear dynamics is reduced-order modeling by deriving the 
nonlinear aerodynamic thrust and torque using a look-up table [40]. 
An explicit comparison between the linear model predictive control 
(LMPC) and nonlinear model predictive control (NMPC) is presented 
in Ref. [38]. The LMPC used a linearized model of one operating point 
while the NMPC was linearized for each prediction step. The results 
showed that the NMPC achieved better performance even when the 
wind speed was far from the operating point.

Another important part of the prediction is how to represent 
the state variables and the disturbance. In the past, wind speed was 
generally assumed to be an unmeasured variable and was calculated 
with the Kalman filter (for linear systems) or the extended Kalman 
filter (for nonlinear systems) [36,39]. With the recent development 
of the wind speed sensor LIDAR, the state prediction in an MPC 
problem can be simplified and can become more accurate. LIDAR 
is mounted on the nacelle and can measure upcoming wind speed 
[42]. The investigation showed that the performance of a linear MPC 
could be enhanced quite significantly, if a perfect wind speed pre-
view was obtained [42,43]. Another study showed that a nonlinear 
MPC could enhance the load conditions on the tower and blades, 
and led to the reduction of the pitch activity with the preview LIDAR  
measurements [40]. Although some studies indicated that the wind 
speed preview by LIDAR was not perfectly accurate [44], it was 
demonstrated that even with imperfect but realistic LIDAR mea-
surements, load mitigation and pitch activity reduction could be 
realized with nonlinear MPC [45]. In such a situation, a time-varying 
model predictive controller was proposed to be used with preview 
measurements of the wind speed approaching the rotor. Two kinds 
of measurements were compared: the undistorted measurements at 
the position rotating with blades, and the measurements that were 
acquired at the same position but that included distortion character-
istics. Both were incorporated into MPC and compared with a pre-
vious study using an H∞ preview controller. The results showed sur-
prisingly better performance with MPC, even with distorted LIDAR  
measurements, compared with the H∞ preview controller. Thus, the 
performance can be enhanced when the future variable can be accu-
rately predicted [42].

MPC has additional advantages over some other methods when 
applied to a wind turbine by employing the objective function and 
constraints. MPC can easily deal with the multivariable problem 
when several conflicting performance indices exist, such as balanc-
ing loads on the tower and blades [40]. Moreover, the constraints 
in the control input introduced by the pitch actuator can be easily 
considered in the control law design stage [40]. The fatigue dam-
age dynamics can be integrated into the control design to account 
for the fatigue mechanism of the material in the objective function 
[46]. In addition, the robustness of the controller can be improved 
by including the dynamics inflow in the MPC prediction model [47]. 
In most of the literature [36,40,42,48], the optimization problem 
in MPC was solved by the weighted sum method, which combines 
several different cost functions into one cost function. The study in 
Ref. [49] investigated the tuning strategy based on the computation 
of sensitivity tables, aiming to achieve a trade-off between different 

weights in the multi-objective cost function so that the performance 
could be optimized with respect to five defined measures: power 
variation, pitch usage, tower displacement, drivetrain twist, and the 
frequency of violating the nominal power limit. In the weight tuning 
process, multi-objective MPC with Pareto curves is subsequently in-
troduced to attain a better balance of different conflicting objectives, 
such as power capture and tower fore-aft fatigue load in the entire 
operating region [50].

3.1.3. Robust H2/H∞ control
For a typical three-blade wind turbine, an effective way to reject 

the periodic load disturbances is to mitigate loads at the nP frequen-
cies (where P is the per revolution frequency and n = 1, 2, 3, ...). The 
periodic disturbances on the loads come from wind shear, the tower 
shadow, and the centrifugal force. It is typical to only consider the 
periodic effects at low frequencies, that is, 1P, 2P, 3P, and 4P. Further 
reduction of loads at higher frequencies requires higher pitch rates, 
which actually increase the loading in the pitch actuator and there-
fore reduce its lifespan. In H2/H∞ methods, using the weighting func-
tion to perform loop shaping is a promising way to deal with the 
performance within a certain bandwidth. Control efforts and system 
performances can be penalized directly by this mixed-sensitivity 
optimization problem.

A typical example using H∞ control is shown in Fig. 4. There are 
two control loops in the turbine pitch system: One is the collective 
pitch loop regulating the generator speed, which provides the col-
lective signal; the other is the individual pitch loop, which provides 
a small modification summed with the collective pitch based on 
the blade azimuth angle in the rotor plane. In the individual control 
loop, the blade root moments at each blade root are transformed to 
tilt and yaw moments in the non-rotating coordinate by MBC trans-
formation. The individual pitch controller can be a multivariate H∞ 
controller. The tilt and yaw pitch angles are transformed back to the 
rotating coordinate by the inverse MBC transformation, and are then 
summed with the collective pitch signal.

The general H∞ control configuration is shown in Fig. 5, where 
P
~

 is the generalized plant model, which includes the plant, distur-
bance model, and interconnection structure between the plant and 
controller. The interconnection structure can include the weighting 
functions to facilitate further loop shaping. The variable w is the 
exogenous input, which corresponds to the periodic disturbances; 
z is the exogenous output, which refers to the tracking error to be 
minimized between the nominal generator speed and the rated 
generator speed; vi is the controller input for the general configu-
ration, such as commands, measured plant outputs, and so forth; 
and u is the control input. The optimal H∞ 

control yields a feedback 
controller K to minimize the tracking error, and mitigates the effects 

Fig. 4. An augmented control block diagram of collective and individual control. βc is 
the collective pitch angle; ωr is the rated generator speed; ωg is the output generator 
speed; M1, M2, and M3 are the root moments at blade1, 2, and 3; Mtilt and Myaw are tilt 
and yaw moments after MBC transformation.
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of wind disturbances to the blade flap loads on the 1P, 2P, 3P, and 4P 
frequencies.

The optimization process minimizes the infinity norm of the 
weighted closed-loop transfer function S (i.e., the output sensitivity 
function), KS, and T (i.e., the complementary input sensitivity func-
tion) as follows:

 
1

2

3

W S
W KS
W T

∞

 (15)

where

 ( ) 1S I L −= + , ( ) 1T L I L −= + , L P~ K=  (16–18)

The sensitivity function S is a very good indicator of the closed-
loop performance, for both SISO and MIMO systems. The main ad-
vantage of considering S is that, since ideally we want S to be small, 
it is sufficient to consider just its magnitude |S |, without considering 
its phase.

The weighting function can be properly chosen to make a trade-
off between multivariate conflicting performance indices; this is 
called the mixed-sensitivity optimization problem. For example, to 
achieve robustness or to avoid too-large input signals, it may be de-
sirable to place bounds on the transfer function KS. Furthermore, an 
upper bound may be specified on the magnitude of T to ensure that 
L rolls off sufficiently rapidly at high frequencies. In the sensitivity 
function, a high gain means a large disturbance rejection. It is worth 
noting that after MBC transformation, the original 1P, 2P, 3P, … fre-
quencies in the rotating frame are changed to 0P, 3P, 6P, … frequen-
cies. Therefore, it is necessary to concentrate on the reduction of low 
frequencies and 3P frequency performances. For the selection of the 
weighting function W1, low frequencies (0P) have the high gain and 
3P frequency has an inverted notch. High frequency is not common-
ly considered because of the limitation of the pitch actuator. The 
weighting function W2 is selected to guarantee that the actuator is 
functional in the proper bandwidth. So W2 is always a high pass fil-
ter, which has a low gain below the actuator bandwidth and a high 
gain beyond the actuator bandwidth. The cross frequency should be 
in the middle of the bandwidth. The weighting function W3 is chosen 
as the empty matrix, which means that there is no plenary on T.

A linear matrix inequalities (LMI) formulation of the control 
problem is able to optimize a linear parameter-varying controller by 
minimizing the H2/H∞ norm. The controller in Ref. [51] considered 
the blades, shaft, and tower DOFs and showed enhanced perfor-
mance compared with gain-scheduling LQG and a proportional- 
integral (PI) controller. Later, a robust LMI-based controller was 
designed to facilitate the additional constraints under the entire 
operating conditions. This controller can include the parametric 
uncertainties in the model with the presence of structural uncer-
tainties [52]. In Ref. [53], it was shown that generator speed control 
could increase the closed-loop disturbance rejection bandwidth 
and the tower fore-aft displacement. Both performances can be en-
hanced with the collective H∞ multi-input single-output controller. 
By considering that significant coupling exists between the yaw and 

tilt modes after MBC transformation in the individual pitch loops, 
and that the modes of the blade vary with the rotational frequency, 
a frequency-related MIMO plant was constructed to facilitate the 
H∞ mixed-sensitivity optimization problem [54]. The periodic dis-
turbance model was included in the control design stage, but the 
results showed that it only had an obvious contribution in steady 
winds. Even at low-turbulence wind disturbances, it did not lead to 
the expected load mitigation. This was because the turbulence had 
wide spectrum energy and the reductions at the multiple frequen-
cies were not important [55].

3.1.4. Combined feedforward/feedback control
The control approaches reviewed in the preceding sub-sections 

are based on feedback. However, there are several issues in wind 
turbine control that call for the involvement of feedforward. For 
example, there may be a time delay between sensing a wind gust 
and the subsequent mechanical adjustment of the rotor torque re-
sponse, which can affect the effectiveness of the controller. Recently, 
researchers have been studying feedforward strategy, which is able 
to “foresee” the incoming wind speed, and which facilitates the in-
put behavior before future wind hits the turbine. The LIDAR system 
can provide wind field measurements ahead of the rotor plane. The 
preview of the wind sequence can be fed to the loop, enabling the 
controller to take precautions before the corresponding wind event 
arrives. Furthermore, feedforward control can be combined with 
feedback control in order to handle multivariate objectives simul-
taneously [56,57]. The structure of combined feedforward/feedback 
control is shown in Fig. 6.

An initial study of feedforward control used wind speed estima-
tion based on the reconstruction of aerodynamic torque from mea-
surements and on a prior knowledge of rotor behavior [58]. The goal 
was to reject wind disturbances and simultaneously regulate rotor 
speed when wind turbulences and wind gusts were present. The re-
sults showed that the feedforward method was promising to reduce 
speed variation by 30%–40%. Later, a combined feedforward and 
feedback control was developed to include other goals, such as load 
reduction [59]. The feedback part was an optimal LQG controller that 
minimized the yaw and tilt modes through individual pitch control 
by enhancing the reduction of the 1P and 3P loads. The feedforward 
part was proposed to reject the influence of the low-frequency com-
ponent of the wind on the rotor moments. Here, wind speed was 
estimated by the Kalman filter, in which the random walks wind 
model was augmented with the turbine states. The predictions of 
future wind were not needed. In contrast to the LQG feedback loop, 
the H∞ control method, which tries to minimize the preview local 
wind speed to the individual blade root bending moment, is more 
straightforward because it considers the constraints in the pitch ac-
tuator. In Ref. [60], preview control was applied to two models: the 
non-MBC model and the MBC model. The results showed that signif-
icant improvement in load mitigation can be realized, and that the 
reduction level was influenced by the accuracy of the wind preview 

Fig. 5. The H∞ control block configuration. K is the feedback controller. Fig. 6. Combined feedforward/feedback control architecture.
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and the available pitch rate. In Ref. [61], this concept was explored 
further; a non-causal series expansion was used as the pitch feed-
forward controller with the measurement of incoming wind speed. 
The results showed that reduced blade flap and tower base fore-aft 
damage equivalent load could be achieved, while the pitch rate was 
significantly increased. In another study [62], it was shown that an 
adaptive strategy, the filtered-x recursive least squares (FX-RLS)-
based feedforward method with LIDAR, could improve disturbance 
rejection and vibration suppression. The controller was able to im-
prove tower and blade bending moments, rotor speed regulation, 
and pitch actuator usage, with a small sacrifice of power capture. Al-
though feedforward control can benefit from LIDAR measurements 
to achieve multivariable objectives simultaneously, the LIDAR wind 
speed measurement error caused by LIDAR distortion and wind evo-
lution can severely influence its performance. One possible solution 
involves adding an optimal filter after wind measurements, which 
can reduce the error [63]. The effectiveness of feedforward control 
with LIDAR has been validated by a filed test conducted by NREL 
[64,65]. The experiment showed enhancement of rotor speed regu-
lation and load reduction, which can extend turbine life and reduce 
energy cost.

3.2. Torque control

When the wind level is in Region 2, torque control is the main 
control strategy. The most challenging aspect of wind turbine torque 
control involves the uncertainties in aerodynamics. According to 
Ref. [7], the generator torque (τ) that leads to the optimal TSR is ex-
pressed as follows:

 τ = kgωg
2 (19)

where ωg is the generator speed and kg is an optimal constant:
 
 maxp5

g 3
*

1
2

C
k Rρ

λ
= π  (20)

and where R is the rotor radius, ρ is the air density, Cpmax
 is the maxi-

mum power coefficient of the turbine, and λ* is the optimal TSR that 
leads to Cpmax

.
Johnson [66] utilized adaptive control to reduce the negative ef-

fects of uncertainties. An adaption law was designed to optimize the 
gain for the maximum energy capture under time-varying turbulent 
wind fields. The effectiveness of the adaptive controller was tested 
in real field tests [66]. The stability analysis was further investigated 
in Ref. [67]. From the Cp surface, it is clear that the maximum aero-
dynamic coefficient is obtained when the optimal TSR is obtained. 
The adaptive control in Ref. [68] tracked the optimal TSR under 
the time-varying wind conditions with wind speed estimated by 
the state estimator. Another study on optimizing power capture by 
tracking the optimal aerodynamic torque is illustrated in Ref. [69], 
in which a second-order sliding model observer is used to deal with 
model uncertainties and electric grid disturbances. Nonlinear robust 
control can provide a balance for conversion efficiency and torque 
oscillation smoothing. De Corcuera et al. [53] discussed how two 
SISO H∞ torque controllers can be used to reduce the wind effect on 
the drive-train mode and tower side-side mode, respectively. In ad-
dition to these SISO-type torque controllers, a multivariable strategy 
was developed by combining nonlinear dynamics state feedback 
control for torque control with a linear strategy for pitch control 
[70]. The results showed that this strategy could lead to a trade-off 
between power regulation and rotor speed regulation.

3.3. Yaw control

Active yaw control can direct the turbine rotor to face into the 
wind direction. The sensor mounted in the nacelle can measure the 

wind direction and determine the control signal of the yaw control-
ler. The yaw motor is triggered when the yaw error exceeds a certain 
amount, and it will yaw at a constant rate in the ideal direction to 
capture the maximum power. Yaw control can help to reduce the 
structural loads. For example, with a periodic linear quadratic con-
troller used as a suspension system, the lateral tower motion, which 
is closely related to the yaw dynamics, can be reduced [71]. An opti-
mal yaw control that takes wake effects into account is presented in 
Ref. [72]; here, the controller used an internal parametric model for 
wake effects to predict turbine electrical energy production levels 
as a function of yaw angles. When simulated using computational 
fluid dynamics, the results indicated increased energy production 
and an additional load reduction. A very recent study of yaw control 
for wind farms is presented in Refs. [73,74]. Yaw control can deflect 
the wake in the near-wake region and change the wake trajectory 
downwind. Hence, it is possible to use yaw control in individual tur-
bines to manage the wind farm wake behavior and to improve the 
overall performance at the wind farm level. A further study about 
wind plant annual energy production (AEP) using yaw-based wake 
steering control and layout changes is presented in Ref. [75]; the 
outcome showed a 5% AEP enhancement.

3.4. Passive control methods

Reducing the loads of various components of wind turbines en-
hances reliability and durability. Passive controls can be adopted to 
facilitate such a goal. In Ref. [76], a TMD was placed at the top of the 
tower to reduce the tower top vibration. In Ref. [77], two indepen-
dent single-DOF TMDs were placed in the nacelle to separately deal 
with the fore-aft direction motion and the side-side direction mo-
tion.

With the increasing size of wind turbine blades, blade load mit-
igation becomes more and more important. The so-called smart ro-
tor concept is built on a blade that is equipped with several control 
devices that can locally change the lift profile of the blade. This tech-
nology is inspired by applications in aircraft and rotorcraft systems. 
Trailing edge flaps and strain sensors can be used to facilitate feed-
back control. The experiments in Ref. [78] demonstrated a proof-of-
concept study of the smart rotor, which effectively reduced 1P and 
3P frequencies.

The microtab is another device that controls the aerodynamics 
in order to achieve load mitigation on the blades [79]. Microtabs are 
small translational devices that are attached near the trailing edge 
of an airfoil. They are deployed approximately normal to the sur-
face, and have a maximum deployment height on the order of the 
rotor blades. These structures influence the lift with the change of 
trailing edge flow development and thus affect the effective camber 
of the airfoil. A prototype can be found in Ref. [79], which presents 
a dynamic model representing the influence of microtabs on the 
aerodynamics of a local airfoil. The frequency response of the blade 
loads was investigated in order to guide its design to reject loads in 
various frequency regions. Such a device could extend the lifespan 
of blades [80]. This research was extended in Ref. [81], in which a 
non-traditional microtab was analyzed in terms of the discontinu-
ous, draft, and lower and upper surface tab deployment effects on 
the airfoil.

3.5. Recent developments and future directions

At present, many researchers are working on various aspects of 
wind turbine control, as reviewed above. In addition, there is a new 
trend of improving performance from a global wind farm perspec-
tive. Individual turbine behavior can be coordinated with the perfor-
mance of the whole wind farm since neighboring turbines influence 
each other owing to wake effects. For example, recent work has 
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provided a proof of concept for a data-driven optimization control 
scheme that employs yaw control to change the wake trajectory in a 
high-fidelity wind plant simulation [65,72,74,75]. Future work may 
concentrate on the more accurate analysis of wake effects, such as 
the delays produced by the propagation of the wake through the 
wind field. Control design with LIDAR is another promising future 
direction that provides measurements of the flow and an estima-
tion of the wake locations for use in control loops. Recent work in 
this area has verified its effectiveness in load mitigation and pow-
er capture [38,40,42,44,45,57,62,64,65]. The use of LIDAR is being 
field-tested [82].

4. Summary

This article provided a review of the control methods that have 
been developed for the optimization of power capture and load re-
duction in wind turbine components under time-varying turbulent 
wind fields. The dynamics and modeling of wind turbine systems, 
which encompass the mathematical representation of systems, 
power curves, operating conditions, MBC transformation, and ac-
tuators for collective or individual control, were summarized first. 
Three separate control loops—pitch control, torque control, and yaw 
control—were discussed, with the main focus being on pitch control 
strategies. Passive control approaches and ongoing developments 
were briefly reviewed as well.
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