Contents lists available at ScienceDirect

# Engineering

journal homepage: www.elsevier.com/locate/eng



# 正实特征值切换拓扑的一般线性多智能体动态系统稳定性

李升波<sup>ª\*\*</sup>,王志涛<sup>a</sup>,郑洋<sup>b</sup>,杨殿阁<sup>a</sup>,游科友<sup>c</sup>

<sup>a</sup> State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

<sup>b</sup> Department of Engineering Science, Balliol College, University of Oxford, Oxford OX1 3PJ, UK

<sup>c</sup> Department of Automation, Tsinghua University, Beijing 100084, China

#### ARTICLE INFO

Article history: Received 30 January 2018 Revised 11 March 2019 Accepted 31 July 2019 Available online 20 May 2020

**关键词** 稳定性 多智能体系统 切换拓扑

共同李雅普诺夫函数

#### 摘要

时变的网络拓扑结构对多智能体系统的稳定性具有重要的影响。本文研究了在拓扑结构切换情况 下,具有"领航者-跟随者"拓扑结构的一般线性多智能体动态系统的稳定性,并将其用于网联汽 车的队列控制。为描述多智能体之间的信息交换,本文将切换拓扑建模为关联矩阵特征值均为正 实数的有向图,利用黎卡提不等式设计了分布式控制率,并估算了闭环系统的收敛速度。研究提 出了具有切换拓扑的多智能体系统稳定性充分判据,同时利用共同李雅普诺夫函数证明了该闭环 系统的稳定性。将所得到的结论应用于网联汽车的队列控制,证明了所提出方法的有效性。

© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

## 1. 引言

近年来,由于理论突破和工程应用,多智能体系统 协同控制受到诸多研究关注。协同控制的主要研究问题 包括趋同控制[1]、交会控制[2]、群集控制和队列控制 [3]。由于其高效性和可靠性,协同控制得到了广泛应 用,如车辆队列、多无人机 (unmanned aerial vehicle, UAV)队列、协同装配系统[4]和传感器网络[5,6]等 领域。

一个核心问题是当每个智能体仅利用邻域智能体的 局部信息时,如何设计分布式控制律以保持多智能体 系统稳定性及一致性[7]。拉普拉斯图在描述交互拓扑 结构和分析多智能体系统的稳定性方面起着重要作用 [8,9]。Olfati-Saber等[10,11]将多智能体系统的每个智能 体建模为单积分器,提出了利用拉普拉斯图证明稳定性 的理论框架。通过将该框架扩展到双积分器系统,Ren 等[12,13]从图论的角度给出了多智能体系统稳定性的充 要条件,利用约当标准型变换来分析闭环矩阵。对于高 阶动力学,Ni和Cheng [14]设计了一种基于黎卡提和李 雅普诺夫不等式的稳定性算法。Zheng等[15]利用矩阵 分解和赫尔维茨判据证明了具有正实特征值矩阵拓扑结 构多智能体系统的稳定性。Hong等[16]通过扩展拉塞尔 的不变性原则,严格证明多智能体系统的稳定性。除上 述控制律外,Zheng等[17]设计了一种针对多智能体非 线性系统的分布式模型预测控制器,并构造了李雅普诺 夫函数来证明网联车辆队列的渐近稳定性。Wu等[18]

Ingineering

\* Corresponding author.



E-mail address: lishbo@tsinghua.edu.cn (S.E. Li).

<sup>2095-8099/© 2020</sup> THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2020, 6(6): 688–694

引用本文: Shengbo Eben Li, Zhitao Wang, Yang Zheng, Diange Yang, Keyou You. Stability of General Linear Dynamic Multi-Agent Systems under Switching Topologies with Positive Real Eigenvalues. *Engineering*, https://doi.org/10.1016/j.eng.2020.05.006

提出了一种具有正定拓扑结构多智能体系统的分布式滑 模控制器,利用了基于李雅普诺夫理论的渐近稳定性。 Barooah等[19]提出了一种基于微扰的控制方法,以提 高车辆队列的稳定裕度。Ploeg等[20]开发了一个*H*-无 穷控制来实现多智能体系统的队列稳定。

由于网络中的连接失效/创建或交互智能体间通信 的阻塞, 交互拓扑结构的变化十分常见。诸多研究者对 切换拓扑结构下多智能体系统稳定性进行了研究。例 如,Tanner等[21]提出了一种结合吸引力和对准力的控 制方法,可以在动态拓扑结构下使群集系统达到稳定。 Olfatil-Saber等[10]提出了共同李雅普诺夫函数,该方程 可基于矩阵论和代数图论确保单积分器线性系统的稳定 性。Ren [12]考虑了一个具有双积分器运动学的多智能 体系统,通过证明李雅普诺夫函数的局部李普希兹连续 性,表明一组连通的、无向或有向拓扑结构的切换系统 的稳定性。Ni等[14]将这项研究扩展到高阶积分器动态 系统,并利用柯西收敛准则讨论了在联合连接的无向图 下的稳定性。理论上,有向图的稳定性分析比无向图的 稳定性分析更具挑战性[10]。由于有向拓扑结构缺少正 定性保证,无向拓扑结构方法不能直接应用于有向拓扑 结构问题。同时,有向切换拓扑结构的共同李雅普诺夫 函数设计更为困难。一些开创性的研究聚焦在具有特殊 有向切换拓扑结构的多智能体系统的稳定性分析上。例 如, Oin等[22]分析了切换有向拓扑结构系统的李雅普 诺夫函数,证明了在平衡有向图下可以实现系统稳定 性。Dong等[23]探索了时变队列参考函数的显式表达 式,并表明若停留时间大于正阈值可保持系统稳定性。

本文研究了在一种有向切换拓扑结构下的一般线性 多智能体动态系统的稳定性和指数收敛速度。通过结合 约当标准型和共同李雅普诺夫函数的变换,提出了切换 拓扑多智能体系统稳定性的充分条件。本文的贡献包含 两个方面。首先,参考文献[10,12]中将高阶动态系统的 拉普拉斯矩阵与智能体数目相结合,以处理单积分器和 双积分器动力学系统,这导致用于单积分器和双积分器 系统的分析方法不适用于一般的线性动力学系统。相比 之下,本文考虑了特征值为正实数的有向拓扑结构的稳 定性,研究结果适用于具有一般线性动态子系统的多智 能体系统。其次,与参考文献[14]中的无向拓扑结构相 比,有向拓扑结构下由于其不对称性,正定性更难分析。 与参考文献[22]中讨论的平衡有向拓扑结构相反,由于 矩阵(*L*+*L*<sup>T</sup>)/2并不总是正定的,参考文献[22]中的结 果不能应用于本文中具有正实特征值的有向拓扑结构。 本文提出的方法适用于正实特征值拓扑结构。本文的拓 扑结构与平衡有向拓扑结构的关系如图1所示。

本文结构如下:第2节介绍了代数图论;第3节介绍 了一种正实特征值拓扑结构,并基于共同李雅普诺夫函 数和黎卡提不等式设计线性控制器;第4节证明了闭环 系统在切换拓扑结构下的稳定性和收敛速度;第5节 利用数值仿真证明该方法的有效性;第6节对全文进 行总结。

### 2. 问题描述

本文考虑了一个由一个领导者和N个跟随者组成的 多智能体系统。每个智能体的动力学是同质且线性的。 本文假设描述交互拓扑结构的矩阵(*L*+*P*)的所有特征 值都是正实数。

#### 2.1. 通信图拓扑结构

智能体之间的信息流是由N个节点 $\mathcal{V} = \{a_1, a_2, \cdots, a_N\}$ 和边 $\mathcal{E} \leq \mathcal{V} \times \mathcal{V}$ 组成的有向图拓扑结构 $\mathcal{G}(\mathcal{V}, \mathcal{E})$ 描述的。节点 $a_i$ 表示第i个智能体,每条边表示两个智能体之间的有向信息流。

邻 接矩 阵定 义为: *E*=[*e<sub>ij</sub>*] ∈ ℝ<sup>*N*×*N*</sup>,其中,如果 (*a<sub>j</sub>*, *a<sub>i</sub>*) ∈ *E*,则*e<sub>ij</sub>*>1,否则*e<sub>ij</sub>*=0, ℝ表示实数域。(*a<sub>j</sub>*, *a<sub>i</sub>*) ∈ *E*表示智能体*j*可以从智能体*i*中获取信息。不允许 有自边界(*a<sub>j</sub>*, *a<sub>i</sub>*),即*e<sub>ii</sub>*=0。节点*a<sub>i</sub>*的邻集表示为ℕ*i*={*a<sub>j</sub>*: (*a<sub>j</sub>*, *a<sub>i</sub>*) ∈ *E*}。定义拉普拉斯矩阵为*L* = [*l<sub>ij</sub>*] ∈ ℝ<sup>*N*×*N*</sup>,其 中,*l<sub>ii</sub>*=  $\sum_{j=1, j\neq i}^{N} e_{ij}$ , *l<sub>ij</sub>*= -*e<sub>ij</sub>*, *i*≠*j*。



**图1.** 对上述拓扑结构间关系的描述。正实特征值拓扑结构具有矩阵(*L*+*P*)的所有特征值均为正实数的特性。前向-后向拓扑结构中的跟随 者可以从同等数量的前向、后向智能体接收信息。很明显,前向-后 向类型的拓扑结构既是一种平衡图,也是正实特征值拓扑结构。

为了表示领导者和跟随者之间的信息流,定义了一个固定矩阵, $\mathcal{P}$ =diag { $p_1, p_2, \cdots, p_N$ },其中,若智能体可以从领导者那里获得信息,则 $p_i$ =1;否则 $p_i$ =0。基于固定矩阵 $\mathcal{P}$ ,若 $p_i$ =1,将领航者可达集定义为 $\mathbb{P}_i$ ={0};否则 $\mathbb{P}_i$ =Ø。然后,定义一个信息可达集 $\mathbb{I}_i$ = $\mathbb{N}_i \cup \mathbb{P}_i$ 以表示智能体i可以从中获取信息的节点。

从 $a_i$ 到 $a_j$ 的有向路径是形为( $a_i, a_{i_1}$ ),..., ( $a_{i_t}, a_j$ )的有向 图中的一条边界序列,其中每一条边界( $a_p, a_q$ )  $\in \mathcal{E}$ 。有 向生成树是一个有向图,除了根节点外,每个节点都只 有一个父节点。图( $\mathcal{V}, \mathcal{E}$ )的有向生成树( $\mathcal{V}^s, \mathcal{E}^s$ )是( $\mathcal{V}, \mathcal{E}$ ) 的子图,因此( $\mathcal{V}^s, \mathcal{E}^s$ )是有向树且 $\mathcal{V}^s = \mathcal{V}$ 。

2.2. 智能体动力学

每个智能体的动力学为:

$$\dot{x}_i(t) = Ax_i(t) + Bu_i(t) \tag{1}$$

式中,  $x_i(t) \in \mathbb{R}^n$ 为状态向量;  $u_i(t) \in \mathbb{R}^m$ 为控制输入量; n n m 分别为状态量和控制量的维数;  $A \in \mathbb{R}^{n \times n} n B \in \mathbb{R}^{n \times m}$ 分别为系统 矩阵和输入矩阵。通过选择合适的值对(A, B),系统可认为 是稳定的。

领导者具有以下线性动力学:

$$\dot{x}_0(t) = A x_0(t) \tag{2}$$

式中, x₀∈ℝ"是领导者的状态向量。

2.3. 多智能体系统的稳定性

多智能体协同控制的目标是使各跟随智能体的状态 与领导者一致。对于每个智能体 $i \in \{1, ..., N\}$ ,都需要 一个分布式控制器 $u_i(t)$ 来实现。

 $\lim_{t \to \infty} |x_i(t) - x_0(t)| = 0, \ i = 1, \ ..., \ N$ (3)

为便于后续稳定性分析,定义新的跟踪误差如下:

$$\widetilde{x}_i(t) = x_i(t) - x_0(t) \tag{4}$$

跟踪误差的状态空间函数为:

$$\widetilde{x}_{i}(t) = A\widetilde{x}_{i}(t) + Bu_{i}(t)$$
<sup>(5)</sup>

### 3. 控制器设计

多智能体系统的互联拓扑结构会因智能体之间的通 信故障或阻塞而时变。在切换拓扑结构问题中,每个智 能体的信息可达集是时变的。(L+P)<sub>o</sub>用于表示交互拓扑 结构矩阵随时间的变化,其中 $\sigma$ :  $[0,\infty) \rightarrow \Sigma$ 是t时刻的开 关信号,  $\Sigma$ 是包含所有拓扑结构的一组图的索引集。考 虑一个非空时间间隔的无限序列 $[t_k, t_{k+1}), k = 0, 1, ..., 其$ 中, $t_0=0, t_{k+1} - t_k \leq T_c, T_c$ 为常数。假设 $\sigma$ 在每个间隔内 为常数,图可以表示为 $G_o$ 。为确保多种拓扑结构下的稳 定性,本节设计了合适的控制器和图集 { $G_{5}$ }。

#### 3.1. 线性控制律

对于每个智能体,控制器是分布式的,只能使用其 信息可达集Ii中的信息。采用以下控制律[24]:

$$u_{i} = -K \sum_{j \in \mathbb{I}_{i}} (x_{i} - x_{j}), \ i = 1, \ ..., \ N$$
(6)

式中,*K*∈ℝ<sup>m×n</sup>为线性反馈增益。将式(6)代入式(5)可以 得到如下所示的智能体*i*的闭环动态:

$$\dot{\widetilde{x}}_{i}(t) = A\widetilde{x}_{i}(t) - BK\left[\sum_{j \in \mathbb{I}_{i}} \left(\widetilde{x}_{i}(t) - \widetilde{x}_{j}(t)\right)\right]$$
(7)

为描述多智能体系统的动力学,定义系统的集体状态量如下:

$$X = \begin{bmatrix} \widetilde{x}_1, & \widetilde{x}_2, & \dots, & \widetilde{x}_N \end{bmatrix}^{\mathrm{T}}$$
(8)

回顾拉普拉斯矩阵*L*和固定矩阵*P*的定义;领导者-跟随者多智能体系统的闭环动力学为:

$$\dot{X}(t) = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes BK\}X(t)$$
(9)

式中,*I*<sub>N</sub>为单位矩阵;符号⊗为克罗内克积。闭环系统整体 矩阵定义如下:

$$A_{\rm c} = I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes BK \tag{10}$$

对于线性系统,其稳定性与闭环系统矩阵的特征值 有关。由式(10)可以看出, $A_c$ 的特征值取决于( $\mathcal{L}+\mathcal{P}$ )。 换句话说,互联拓扑结构影响多智能体系统的稳定性。 在下面的小节中,我们将讨论一种确保( $\mathcal{L}+\mathcal{P}$ )特征值为 正实数的拓扑结构。

式中, α是满足以下条件的缩放因子:

#### 3.2. 具有正实特征值的互联拓扑结构

该方法适用于具有正实特征值且缺乏精确一致数学 描述的拓扑结构。因此,本文特别关注一类具有正实性 的特定类型的拓扑结构。

**引理1**[15]: 设λ<sub>i</sub>, *i*=1,2,...,*N*为(*L*+*P*)的特征值, 若存在根为领导者的有向生成树,且满足以下条件之 一,则所有的特征值都是正实数,即λ<sub>i</sub>>0, *i*=1,2,..., *N*:

(1)跟随智能体的互联拓扑结构为前向类型,即  $\mathbb{N}_i = \{i-h_u, ..., i-h_1\} \cap \{1, ..., N\}, 其中, h_u和h_1分别为$ 正向通信范围的上界和下界。

(2) 跟随智能体的互联拓扑结构为前向-后向类
 型,即N<sub>i</sub>= {*i*−*h*,...,*i*+*h*}∩{1,...,*N*}/{*i*},其中,*h* 为通信范围。

(3) 跟随智能体的互联拓扑结构为无向类型,即  $j \in \mathbb{N}_i \iff i \in \mathbb{N}_i$ 。

**注1:**对于单积分器或双积分器动力学,有工作 证明了有向生成树的切换有向拓扑结构足以使系统 稳定;具体工作参阅参考文献[10,12]。

**注2:** 在参考文献[14]中,讨论了连通无向切换拓 扑结构的稳定性。本文考虑了有向拓扑结构;对于非 连通结构,将在进一步的工作中对其进行研究。

**注3:**矩阵(*L*+*P*)或与*L*相关的矩阵的正实特征值 和正定性对于分析多智能体系统稳定性具有重要作 用。在参考文献[22]中,考虑了平衡有向拓扑结构, 即对于拉普拉斯矩阵(*L*+*L*<sup>T</sup>)/2为正定矩阵。一个平 衡与强连通图可确保(*L*+*P*)的谱半径大于0[13],然 而特征值的正实性并不能总是满足。

3.3. 系数矩阵设计

由于(A,B)是可稳定的,故存在P > 0为如下Riccati 不等式的解:

$$(A + \delta I)^{\mathrm{T}} P + P(A + \delta I) - PBB^{\mathrm{T}} P < 0$$
(11)

式中, $\delta$ 是正数,可影响系统的收敛性[25]。反馈矩阵I构造如下:

$$K = \alpha B^{\mathrm{T}} P \tag{12}$$

$$\alpha > \max\left\{\frac{1}{\min\{\lambda(\operatorname{He}(J_{\sigma}))\}}\right\}$$
(13)

式中, He( $J_o$ )= $J_o$ + $J_o^{\mathsf{T}}$ ; $J_o$ 是( $\mathcal{L}$ + $\mathcal{P}$ ) $_o$ 的约当标准型,即  $W_o^{-1}(\mathcal{L}+\mathcal{P})_oW_o$ = $J_o$ ,其中, $W_o$ 是一个可逆矩阵,而min { $\lambda$ (He( $J_o$ ))}表示所有切换拓扑结构下的He( $J_o$ )最小特征值。 如果拓扑结构满足引理1,则He( $J_o$ )为正定矩阵。在介绍 定理前,先介绍以下引理。

**引理2** [12]: 考虑矩阵*A*=[ $a_{ij}$ ]∈ℝ<sup>*n*×*n*</sup>。*A*的所有特征值都位于*n*个圆盘的交集  $\bigcup_{i=1}^{n} \{z \in \mathbb{C}: | z - a_{ii} | \leq \sum_{j=1,j\neq i}^{n} |a_{ij}|\} \equiv G(A)$ 内,其中, ℂ表示复数集, *z*是一个复数。

引理2是著名的Gershgorin圆盘准则。

**引理3** [26]: 考虑矩阵*Q*=[ $q_{ij}$ ]  $\in \mathbb{R}^{n \times n}$ 和集合*S*={ $i \in \{1, 2, ..., n\} ||q_{ij}| > \sum_{j=1, j \neq i}^{n} |q_{ij}| \} \neq \emptyset$ 。如果对于 $\forall i \notin S$ 和 *j*  $\in$  *S*, 若存在一个非零序列 { $q_{ii_1}, q_{i_1i_2}, ..., q_{i_j}$ },则*Q*是 非奇异的。

**定理1**:对于**引理1**中描述的拓扑结构,将(*L*+*P*)转化为约当标准型*J*,则He(*J*)为正定矩阵。

**证明**:对于**引理1**中定义为(2)和(3)的拓扑结构, 矩阵(*L*+*P*)是实对称的。显然,He(*J*)是正定的,因 为*J*是对角矩阵。对于**引理1**中定义为(1)的拓扑 结构,(*L*+*P*)的特征值大于或等于1。*J*可表示为如 下形式:

$$J = \begin{pmatrix} J_{n_{1}}(\bar{\lambda}_{1}) & & \\ & J_{n_{2}}(\bar{\lambda}_{2}) & \\ & & \ddots & \\ & & & \ddots & \\ & & & & J_{n_{r}}(\bar{\lambda}_{r}) \end{pmatrix}$$
(14)

式中, $\bar{\lambda}_i$ 是( $\mathcal{L}$ + $\mathcal{P}$ )的特征值; $J_{n_1}(\bar{\lambda}_1), J_{n_2}(\bar{\lambda}_2), \dots, J_{n_r}(\bar{\lambda}_r)$ 是大小 为 $n_1, n_2, \dots, n_r$ 的约当块。于是有

$$\operatorname{He}(J) = \begin{pmatrix} \operatorname{He}(J_{n_{1}}(\bar{\lambda}_{1})) \\ & \operatorname{He}(J_{n_{2}}(\bar{\lambda}_{2})) \\ & & \ddots \\ & & \operatorname{He}(J_{n_{r}}(\bar{\lambda}_{n_{r}})) \end{pmatrix}$$
(15)

对于每个He(J)块,它有以下形式:

4

$$\operatorname{He}(J_{n_{i}}(\bar{\lambda}_{n_{i}})) = \begin{pmatrix} 2\bar{\lambda}_{n_{i}} & 1 & & \\ 1 & 2\bar{\lambda}_{n_{i}} & 1 & \\ & 1 & \ddots & 1 \\ & & 1 & 2\bar{\lambda}_{n_{i}} \end{pmatrix}$$
(16)

根据Gershgorin圆盘准则,He(*J*)的所有特征 值都不小于零,因为 $\bar{\lambda}_{n_i} \ge 1$ 且 $a_{ii} \ge \sum_{j=1,j\neq i}^{n} |a_{ij}|$ ,其中, He(*J*)=[ $a_{ij}$ ]  $\in \mathbb{R}^{n \times n}$ 。根据引理2,可确定He( $J_{n_i}(\bar{\lambda}_{n_j})$ )是非 奇异的,因为 $a_{11} \ge \sum_{j=2}^{n} |a_{1j}|$ 并且He( $J_{ni}(\lambda_n)$ ))是三阶对角矩 阵。如果He(*J*)是一个准对角矩阵,则He(*J*)也是非奇 异的。故而He(*J*)的所有特征值都大于零。如果He(*J*) 是对称的,则可证明He(*J*)是正定矩阵。

表1给出了满足**引理1**中条件的一些典型拓扑结构的He(J)的最小特征值。在参考文献[15]中描述了这些拓扑结构,其中包括前车跟随式(predecessor following, PF)拓扑结构、前车-领导者跟随式(predecessor-leader following, PLF)拓扑结构、双前车跟随式(two predecessors following, TPF)拓扑结构、双前车-领导者跟随式(two predecessor-leader following, TPLF)拓扑结构、双向跟随式(bidirectional, BD)拓扑结构和双向领导者式(bidirectionalleader, BDL)拓扑结构。

注4: 定理1表明, He(J)的最小特征值会影响多智 能体系统的稳定裕度。从表1可以看出,随着跟随者*N* 的增加, PF和BD拓扑结构的稳定裕度将变差,而PLF、 TPF、TPLF和BDL拓扑结构的稳定裕度则与*N*的大小无 关。来自领导者的信息对于系统的稳定裕度很重要,选 择适当的拓扑结构(如PLF和BDL)可以提高系统的稳 定裕度。无向拓扑结构BD和BDL的结果与参考文献[27] 中所示相同。未来将进行严格的理论分析。

### 4. 切换拓扑结构下的稳定性

很显然,对于有限切换系统,如果最终拓扑结构能

| 表1 | 拓扑结构的min{ $\lambda$ (He( $J_{\sigma}$ ))} |
|----|-------------------------------------------|
|----|-------------------------------------------|

够用第3节提出的控制律来稳定系统,则可以实现稳定 性。在无限切换条件下和某类拓扑结构下,系统将通过 式(6)中所示的控制律实现稳定。收敛速度也能同时 得到保证。

**引理4** [28]: 给定从ℝ"到ℝ"的一族函数 $f_{\sigma}$ ,其中, Σ是索引集,可以代表一系列系统 $\dot{x}=f_{\sigma}(x)$ , $\sigma \in \Sigma$ 。如 果系列中的所有系统共享相同的Lyapunov函数,那 么切换系统 $\dot{x}=f_{\sigma}(x)$ 是全局一致且渐近稳定的。

这个定理将被用来证明我们的主要理论结果。在证 明之前,将介绍矩阵论中的一些引理。

**引理5**:考虑一个正定实矩阵*M*和一个正实数*ξ*,*ξ* <min{λ(*M*)},其中,λ(*M*)表示*M*的特征值。矩阵*M*-*ξ*I仍为正定。

**证明**:如果 $\lambda_i$ 是*M*的特征值,则存在满足*M* $x_i = \lambda_i x_i$ 的特征向量 $x_i$ 。于是有(*M*- $\xi I$ ) $x_i = (\lambda_i - \xi) x_i$ 。由于0< $\xi$ <min{ $\lambda(M)$ },(*M*- $\xi I$ )的所有特征值都是正的。很显然,(*M*- $\xi I$ )仍然是对称的。因此,*M*- $\xi I$ 为正定矩阵。

**引理6** [16]: 考虑一个稳定的线性常数系统*z*=*Hz*, 设计其李雅普诺夫方程 $H^{T}T+TH+vT=0$ ,其中,*z*是 状态向量,*H*是状态矩阵,*v*是正实数,*T*是这个 方程的正定解。该系统的李雅普诺夫函数是V(x)= $z^{T}Tz$ ,系统的收敛速度V(x)可以用v来估计,即 $V(x) < V(x_{0})e^{-v/2(t-t_{0})}$ ,其中,*t*是系统的时间, $x_{0}$ 和 $t_{0}$ 分别是系 统初始状态和时间。

本文的主要定理如下。

**定理2**: 考虑一类切换互连拓扑结构 {*G<sub>σ</sub>*: *σ*∈*Σ*}, 其中每个拓扑结构的矩阵(*L*+*P*)的所有特征值都是正 实数。对于任何*G<sub>σ</sub>*,利用等式 (12)和不等式 (13) 设计控制参数。切换系统全局一致渐近稳定,具有 共同李雅普诺夫函数*V*(*X*)= $\frac{1}{2}X^{T}\xi I \otimes P X$ 。其收敛速 度满足*V*(*X*) < *V*(*X*<sub>0</sub>)e<sup>-2δ(*t*-*t*<sub>0</sub></sub>,其中,*X*=[ $\tilde{x}_{1}, \tilde{x}_{2}, \cdots, \tilde{x}_{N}$ ]<sup>T</sup> ∈ ℝ<sup>*n*N×1</sup>, *N*是跟随者的数量,*n*是每个智能体的维 数,*δ*是响应系数,且有 $\xi < \min{\lambda(W_{\sigma}^{T}W_{\sigma}), 1}$ 。</sup>

证明:遵循等式(12)和不等式(13)中的控制律,

| $\mathbb{K}$ = $\mathbb$ |        |     |     |      |        |     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|------|--------|-----|--|--|--|
| Number of follower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PF     | PLF | TPF | TPLF | BD     | BDL |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2679 | 2   | 2   | 2    | 0.1620 | 2   |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1981 | 2   | 2   | 2    | 0.1162 | 2   |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1522 | 2   | 2   | 2    | 0.0874 | 2   |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1206 | 2   | 2   | 2    | 0.0681 | 2   |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0979 | 2   | 2   | 2    | 0.0546 | 2   |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0810 | 2   | 2   | 2    | 0.0447 | 2   |  |  |  |

可得到如下不等式:

$$A^{\mathrm{T}}P + PA - PBB^{\mathrm{T}}P < -2\delta P \tag{17}$$

多智能体系统的闭环动力学为:

$$A_{c_{\sigma}} = I_N \otimes A - (\mathcal{L} + \mathcal{P})_{\sigma} \otimes BK$$
(18)

对于正实拓扑结构,(*L*+*P*)。被转换为约当标准形。闭环动力学矩阵也被转换成对角块矩阵:

$$\begin{aligned}
\widetilde{A}_{c_{\sigma}} &= (W_{\sigma} \otimes I_{N})^{-1} A_{c_{\sigma}} (W_{\sigma} \otimes I_{N}) \\
&= (W_{\sigma} \otimes I_{N})^{-1} [I_{N} \otimes A - (\mathcal{L} + \mathcal{P})_{\sigma} \otimes BK] (W_{\sigma} \otimes I_{N}) \quad (19) \\
&= I_{N} \otimes A - J_{\sigma} \otimes BK
\end{aligned}$$

将不等式(13)替换为式(19),则有

$$\widetilde{A}_{c_{\sigma}} = I_N \otimes A - J_{\sigma} \otimes \alpha B B^{\mathrm{T}} P$$
(20)

矩阵

$$\widetilde{A}_{c_{\sigma}}^{\mathrm{T}}(I_{N}\otimes P) + (I_{N}\otimes P)\widetilde{A}_{c_{\sigma}}$$
  
=  $I_{N}\otimes \left(A^{\mathrm{T}}P + PA\right) - \mathrm{He}(J_{\sigma})\otimes \left(\alpha PBB^{\mathrm{T}}P\right)$  (21)

### 仍然是对称的。根据**定理1**,He(*J*<sub>*a*</sub>)是正定矩阵。 根据引理5,可得不等式如下:

$$\widetilde{A}_{c_{\sigma}}^{\mathrm{T}}(I_{N} \otimes P) + (I_{N} \otimes P)\widetilde{A}_{c_{\sigma}}$$

$$= I_{N} \otimes \left(A^{\mathrm{T}}P + PA\right) - \mathrm{He}(J_{\sigma}) \otimes \left(\alpha PBB^{\mathrm{T}}P\right)$$

$$< I_{N} \otimes \left(A^{\mathrm{T}}P + PA - PBB^{\mathrm{T}}P\right)$$

$$< I_{N} \otimes (-2\delta P)$$
(22)

因此,

$$\widetilde{A}_{c_{\sigma}}^{\mathrm{T}}(I\otimes P) + (I\otimes P)\widetilde{A}_{c_{\sigma}} - I_{N}\otimes(-2\delta P) < 0$$
(23)

将不等式左边分别左乘 $(W_{\sigma} \otimes I_{N})^{T}$ 以及右乘 ( $W_{\sigma} \otimes I_{N}$ ),可得到一个新的不等式:

$$A_{c_{\sigma}}^{T}\left(W_{\sigma}^{T}W_{\sigma}\right)\otimes P+\left(W_{\sigma}^{T}W_{\sigma}\right)\otimes PA_{c_{\sigma}}$$

$$<-2\delta A_{c_{\sigma}}^{T}\left(W_{\sigma}^{T}W_{\sigma}\right)\otimes P$$
(24)

根据**引理5**可得如下不等式:

$$A_{c}^{T}\xi I \otimes P + \xi I \otimes PA_{c} < A_{c}^{T}\xi I \otimes P + \xi I \otimes PA_{c} + 2\delta A_{c_{\sigma}}^{T}\xi I \otimes P < 0$$
(25)

 $V(X) = \frac{1}{2} X^{T} \xi I \otimes P_{omax} X$ 是具有正实拓扑结构族的共同 李雅普诺夫函数。不等式 (25) 确保切换系统的稳定性。 根据**引理6**,系统的快速性可以用 $\delta$ 来估计,即 $V(X) < V(X_{0})e^{-2\delta(t-t_{0})}$ 。

**备注5**: 与参考文献[22]相比,定理2中讨论的拓扑 结构不必是一个平衡图,它在切换条件下扩展了有向拓 扑结构族。典型的前向拓扑结构(如PF)不是一个平 衡图(如图2中的 $\tilde{G}_1$ 、 $\tilde{G}_2$ )。此外,与参考文献[23]中 的结果相反,**定理2**中停留时间对控制器的稳定性没有 影响。

**备注6**: 在实践中,切换拓扑结构可能是未知的, 这使得对α的选择是非平凡的。较大的α有助于在这种 情况下稳定切换系统。事实上,不等式(13)只是系 统稳定性的充分条件,在理论上确保了系统的稳定性。 在我们的仿真中,与这个不等式不一致的α也可使系统 稳定。

### 5. 仿真结果

车辆队列是一种典型的多智能体系统,由于其在 交通[24]中产生的益处而受到越来越多的关注。描述 队列中的车辆之间信息流的典型拓扑结构的(*L*+*P*)矩 阵具有正实特征值[15]。我们对一个包含6辆相同车 辆的同质队列(1名领导者和5名跟随者)进行模拟 以验证其有效性。对于队列的控制推导出每个车辆的 三阶状态空间模型[17]:

$$\dot{x}_{i}(t) = A_{i}x_{i}(t) + B_{i}u_{i}(t)$$

$$x_{i}(t) = \begin{pmatrix} p_{i} \\ v_{i} \\ a_{i} \end{pmatrix}, A_{i} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1/\tau_{i} \end{pmatrix}, B_{i} = \begin{pmatrix} 0 \\ 0 \\ 1/\tau_{i} \end{pmatrix} (26)$$

式中,  $p_i$ ,  $v_i$ ,  $a_i$ 表示每辆车的位置、速度和加速度; $\tau_i$ 是车辆纵向动力学的惯性延迟,在模拟中设置为0.4 s。信息流拓扑结构如图2所示,其( $\mathcal{L}+\mathcal{P}$ )矩阵的特征值都是正实数。系统的拓扑结构被设置为每2 s周期性地从 $\tilde{G}_1$ 切换到 $\tilde{G}_2$ , $\tilde{G}_2$ 切换到 $\tilde{G}_3$ ,然后 $\tilde{G}_3$ 切换到 $\tilde{G}_1$ ,如图3所示。每辆车的初始速度为20 m·s<sup>-1</sup>,位置误差随机分布在区间

[-10 m, 10 m]内。领导者被设置为在 $v_0=20 \text{ m}\cdot\text{s}^{-1}$ 情况下持续行驶。

三种拓扑结构的He(J)的特征值列于表2。所有的特 征值都是正实的,考虑到它们的最小值,选择缩放因子 α为10。在3个场景下进行模拟,两个有不同响应系数δ 的稳定场景以及1个不稳定场景。场景1和2中的控制器 参数的设计如定理2所示。然而,场景3中的参数不满 足参考文献[15]中的稳定性条件。所有参数列于表3。

图4表明切换拓扑结构下车辆队列的状态误差。模 拟结果表明,根据等式(12)和不等式(13)设计的控 制律可以稳定车辆队列。与图5相比,结果表明较大的δ 往往能够使系统更快收敛到稳定状态。图6说明根据参 考文献[15]中不稳定区域准则选择参数的控制器性能, 这表明本文控制器设计方法的有效性。值得注意的是, **定理2**只是系统稳定性的充分条件,这意味着若控制器 参数α的选择不满足不等式(13)的条件,也可能稳定 切换系统。



**图2.** 切换拓扑结构。 $\tilde{G}_1$ 、 $\tilde{G}_2$ 和 $\tilde{G}_3$ 都是正实特征值拓扑结构。 $\tilde{G}_1$ 和 $\tilde{G}_2$ 是前向型, $\tilde{G}_3$ 是前向-后向型。在模拟中,拓扑结构在这三种拓扑结构之间切换。

### 6. 结论

本文研究了一类(*L*+*P*)矩阵的所有特征值都是正 实数的切换拓扑结构多智能体系统的稳定性。文中利 用图论描述了交互拓扑结构,采用赫尔维茨判据和黎 卡提不等式设计控制律,使多智能体系统达到稳定, 并对系统收敛速度进行调节。通过采用共同李雅普诺 夫函数定理,证明了切换拓扑结构系统的稳定性。本 文为这类切换拓扑多智能体系统的稳定性提供了充



#### 表2 $\tilde{G}_1$ 、 $\tilde{G}_2$ 和 $\tilde{G}_3$ 的He(J)的特征值

| Switching topology | Eigenvalue of He $(J)$       |
|--------------------|------------------------------|
| $\widetilde{G}_1$  | 0.27,1.00,2.00,3.00 and 3.73 |
| $\widetilde{G}_2$  | 0.59,1.00,2.00,3.00 and 3.41 |
| $\widetilde{G}_3$  | 0.16,1.38,3.43,5.66 and 7.37 |

#### 表3 控制器参数

| Parameters | Scenario 1 | Scenario 2 | Scenario 3 |  |
|------------|------------|------------|------------|--|
| K          | 10.07      | 1.60       | 10.00      |  |
|            | 24.00      | 8.64       | 2.10       |  |
|            | 8.00       | 3.20       | 4.00       |  |
| α          | 10.00      | 10.00      | —          |  |
| δ          | 0.50       | 0.20       | _          |  |



图4.  $\delta$ =0.5的切换拓扑结构的稳定性。(a)、(b)和(c)分别表示位置、速度和加速度的跟踪误差。切换系统在15 s内达到稳定。



图5. $\delta$ =0.2的切换拓扑结构的稳定性。与场景1中的控制器相比,该控制器的收敛时间较长,约为25 s。



图6.具有不稳定控制器的切换拓扑结构的稳定性。基于参考文献[15]中提出的不稳定区域设计参数。这表明本文控制器设计方法的有效性。

分条件,若所有拓扑结构的( $\mathcal{L}$ + $\mathcal{P}$ )矩阵的特征值都是 正实数,可实现切换系统的稳定性,且系统具有指数 收敛速度,该收敛速度受控制器中响应系数 $\delta$ 的影响。

#### 致谢

本研究得到了中国国际科技合作计划 (2019YFE0100200)和北京市自然科学基金(JQ18010) 的支持。还得到清华大学-滴滴未来出行联合研究中心 的部分支持。

### Compliance with ethics guidelines

Shengbo Eben Li, Zhitao Wang, Yang Zheng, Diange Yang, and Keyou You declare that they have no conflict of interest or financial conflicts to disclose.

### References

- Ding D, Wang Z, Shen B, Wei G. Event-triggered consensus control for discretetime stochastic multi-agent systems: the input-to-state stability in probability. Automatica 2015;62:284–91.
- [2] Weiss A, Baldwin M, Erwin RS, Kolmanovsky I. Model predictive control for spacecraft rendezvous and docking: strategies for handling constraints and case studies. IEEE Trans Control Syst Technol 2015;23(4):1638–47.
- [3] Oh KK, Park MC, Ahn HS. A survey of multi-agent formation control. Automatica 2015;53:424–40.

- [4] Cao Y, Yu W, Ren W, Chen G. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans Indust Inform 2013;9 (1):427–38.
- [5] Liu C, Li SE, Yang D, Hedrick JK. Distributed bayesian filter using measurement dissemination for multiple unmanned ground vehicles with dynamically changing interaction topologies. J Dynam Syst Measure Control 2017;140 (3):1–11.
- [6] Liu C, Li SE, Hedrick JK. Measurement dissemination-based distributed Bayesian filter using the latest-in-and-full-out exchange protocol for networked unmanned vehicles. IEEE Trans Indust Electron 2017;64 (11):8756–66.
- [7] Gao L, Cheng D. Comments on coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans Auto Control 1994;10(6):615–60.
- [8] Ren W, Beard RW. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 2005;50(5):655–61.
- [9] Abdessameud A, Tayebi A. On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst Control Lett 2010;59(12):812–21.
- [10] Olfati-Saber R, Richard M, Murray RM. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 2004;49(9):1520–33.
- [11] Olfati-Saber R, Fax JA, Murray JA. Consensus and cooperation in networked multi-agent systems. Proc IEEE 2007;95(1):215–33.
- [12] Ren W. On consensus algorithms for double-integrator dynamics. IEEE Trans Autom Control 2008;53(6):1503–9.
- [13] Ren W, Beard RW, Atkins EM. Information consensus in multivehicle cooperative control. IEEE Control Syst 2007;27(2):71–82.
- [14] Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst Control Lett 2010;59(3-4):209-17.
- [15] Zheng Y, Li SE, Wang J, Cao D, Li K. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans Intell Transport Syst 2016;17(1):14–26.
- [16] Hong Y, Gao L, Cheng D, Hu J. Lyapunov-based approach to multi-agent systems with switching jointly connected interconnection. IEEE Trans Autom Control 2007;52(5):943–8.
- [17] Zheng Y, Li SE, Li K, Borrelli F, Hedrick JK. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans Control Syst Technol 2017;25(3):899–910.
- [18] Wu Y, Li SE, Zheng Y, Hedrick JK. Distributed sliding mode control for multivehicle systems with positive definite topologies. In: Proceedings of the 2016 IEEE 55th Conference on Decision and Control; 2016 Dec 12–14; Las Vegas, NV, USA; 2016. p. 5213–9.
- [19] Barooah P, Mehta P, Hespanha J. Mistuning-based control design to improve closed-loop stability margin of vehicular platoons. IEEE Trans Autom Control 2009;54(9):2100–13.

- [20] Ploeg J, Shukla DP, Van de Wouw N, Nijmeijer H. Controller synthesis for string stability of vehicle platoons. IEEE Transa Intell Transport Syst 2014;15 (2):854–85.
- [21] Tanner HG, Jadbabaie A, Pappas GJ. Flocking in fixed and switching networks. IEEE Trans Autom Control 2007;52(5):863–8.
- [22] Qin J, Yu C, Gao H. Coordination for linear multi-agent systems with dynamic interaction topology in the leader-following framework. IEEE Trans Indust Electron 2014;61(5):2412–22.
- [23] Dong X, Hu G. Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica 2016;73:47–55.
- [24] Li SE, Zheng Y, Li K, Wu Y, Hedrick JK, Gao F, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and

opportunities. IEEE Intell Transport Syst Magaz 2017;9(3):46–58.

- [25] Lewis FL. A survey of linear singular systems. Circuit Syst Signal Proce 1986;5 (1):3–36.
- [26] Shivakumar PN, Chew KH. A sufficient condition for nonvanishing of determinants. Proc Amer Math Soc 1974;43:63–6.
- [27] Zheng Y, Li SE, Li K, Wang LY. Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control. IEEE Trans Control Syst Technol 2016;24(4):1253–65.
- [28] Chatterjee D, Liberzon D. On stability of stochastic switched systems. In: Proceedings of the 2004 IEEE 43rd Conference on Decision and Control; 2004 Dec 14–17, Atlantis, Bahamas, USA; 2004. p. 4125–7.