

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Materials for Molecular Separations—Article

客体溶剂导向策略构筑异构金属有机框架材料实现二氧化碳和甲烷的动力学分离

赖丹ª#,陈富强ª#,郭立东ª,陈俐吭ª,陈洁ª,杨启炜ab,张治国ab,杨亦文ab,任其龙ab,鲍宗必ab*

^a Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China ^b Institute of Zhejiang University–Quzhou, Quzhou 324000, China

ARTICLE INFO 摘要 Article history: 利用吸附分离技术实现二氧化碳和甲烷的分离是提高天然气品质的一种有效手段。然而,基于热力学分 Received 24 August 2021 离的吸附剂对二氧化碳往往表现出很强的亲和力,因此再生过程会产生巨大的能耗。相较而言,尽管精 Revised 10 January 2022 准调控吸附剂孔径以实现吸附质扩散速率的显著差异仍具有巨大挑战,动力学分离技术仍是变压吸附 Accepted 20 March 2022 (PSA)过程的首选。本文报道了一种用于在亚埃尺度精准调控吸附剂孔径的客体溶剂导向策略,实现了 Available online 20 February 2023 二氧化碳和甲烷的高效动力学分离。基于4,4-(六氟异丙基亚甲基)-双(苯甲酸)和双核铜的轮桨型结构 单元,我们构筑了一系列异构的金属有机框架材料。结果表明,得益于周期性扩张和收缩的孔道以及理 关键词 想的孔径尺寸,CuFMOF·CH,OH(CuFMOF-c)能够有效地捕获二氧化碳并阻碍甲烷的扩散,从而表现出 客体溶剂导向策略 优异的动力学分离性能,其具有极高的动力学选择性(273.5)和平衡-动力学综合选择性(64.2)。分子动 金属有机框架 力学(MD)模拟阐明了分离机制,固定床穿透实验验证了材料优异的分离性能。 二氧化碳 © 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher 甲烷 Education Press Limited Company. This is an open access article under the CC BY-NC-ND license 动力学分离 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

天然气主要由甲烷(CH₄)组成,在未来几十年将占 全球能源需求的四分之一[1-3]。然而,低品质天然气中 的CH₄浓度较低,与二氧化碳(CO₂)浓度基本相当,无 法满足工业应用的需求[4-6]。因此,在运输过程中,必 须去除CO₂以提高燃烧效率并防止设备和管道腐蚀[7-13]。目前,成熟的CO₂去除工业技术是胺吸收法,但由 于其需要巨大的能量投入进行吸收剂再生,并且容易受氧 化和热降解的影响,因此成本昂贵[14-17]。

基于吸附剂的吸附分离技术已被提出作为一种备选技

术,其吸附剂再生能耗较低、效率较高且操作更为便捷 [18-30]。然而,尽管很多吸附剂表现出卓越的热力学选 择性[31-34],但是多孔吸附剂如沸石和氨基功能化的硅 胶材料仍然显示出较高的CO₂吸附焓。相反,如果吸附剂 具有亲水性且表现出显著的动力学选择性,基于扩散速率 差异的动力学分离方式更为优选。例如,碳分子筛可以基 于动力学分离来净化天然气,其CO₂的吸附热仅为 10.9 kJ·mol⁻¹ [35,36]。然而,通过碳化工艺来精确控制碳 吸附剂的微孔结构以调控CO₂/CH₄的动力学选择性仍然具 有挑战性[37-39]。

多功能金属有机框架(MOF)材料由于其结构多样

^{*} Corresponding author.

E-mail address: baozb@zju.edu.cn (Z. Bao).

^{*} These authors contributed equally to this work.

^{2095-8099/© 2023} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2023, 23(4): 64-72

引用本文: Dan Lai, Fuqiang Chen, Lidong Guo, Lihang Chen, Jie Chen, Qiwei Yang, Zhiguo Zhang, Yiwen Yang, Qilong Ren, Zongbi Bao. Guest Solvent-Directed Isomeric Metal–Organic Frameworks for the Kinetically Favorable Separation of Carbon Dioxide and Methane. *Engineering*, https://doi.org/10.1016/j.eng.2022.03.022

性和可调孔径的特性,可被视为满足动力学分离严格前提的理想多孔吸附剂[40-54]。例如,Lee等[55]在同构的锌柱撑轮桨型MOFs中通过控制孔径和晶体的晶面形态,成功实现了丙烯/丙烷的高效动力学分离。类似地,Lyndon等[56]提出了一种混合配体策略,用于精准调控具有柔性特征的孔道(直径约3Å),以促进乙烯的动力学扩散。最近,Kitagawa团队[57]报道了一种铜(Cu)基MOF,其中框架结构内的分子翻转运动提供了动力学门控功能,可实现氧/氩和乙烯/乙烷的高效分离。然而,迄今为止,鲜有研究致力于构建用于CO₂/CH₄的动力学分离的MOFs,这在一定程度上是因为制备具有亚埃级精度的孔道具有挑战性,同时也因为CO₂(3.3Å)和CH₄(3.8Å)的动力学直径非常接近。

本文中, 基于 Cu(hfipbb) (H₂hfipbb)₀₅ [简称为 CuFMOF-a, 其中, H,hfipbb为4,4'-(六氟异丙基亚甲 基)双(苯甲酸)]MOFs材料,我们报道了一种溶剂导 向的微孔调控策略,并应用于CO₂/CH₄的动力学分离。 CuFMOF-a具有周期性扩张和收缩的孔隙结构,瓶颈尺寸 为 3.2 Å × 3.5 Å, 阻碍了 CH₄ 的扩散。它的衍生物 CuFMOF·CH₃OH(简称CuFMOF-c)具有类似的孔表面 且孔隙尺寸增加了0.2 Å,促进了CO,的扩散并且仍能有 效阻碍CH,的扩散,实现了创纪录的CO₂/CH,动力学分离 选择性。CuFMOF·DMF(简称CuFMOF-b; DMF: N,N-二甲基甲酰胺)的孔隙尺寸进一步增加了0.2 Å,进一步 促进了CO₂和CH₄的扩散,却减弱了CO₂/CH₄的动力学分 离性能。此外,CuFMOF-c表现出适中的CO₃/CH₄的热力 学分离选择性;因此,协同的平衡-动力学效应增强了 CO₂/CH₄气体混合物的高效分离。巨正则蒙特卡洛(GC-MC)和分子动力学(MD)模拟进一步证明了孔隙尺寸 调控对于动力学分离的关键作用。

2. 实验

2.1. 实验原料

有机配体4,4'-(六氟异丙基亚甲基)-双(苯甲酸)(H₂hfipbb,98%纯度)购置于TCI公司(中国)。氯化铜二水合物(CuCl₂·2H₂O,99.99%纯度)和硝酸铜三水合物(CuNO₃·3H₂O,99%纯度)分别从阿拉丁公司(中国)和麦克林公司(中国)购得。二氧化碳(99.999%)、甲烷(99.999%)、氦气(99.999%)以及混合气体CH₄/CO₂(50/50,体积比)均由金工有限公司(中国)定制。所有化学品均从商业渠道获得,并未经进一步纯化,直接使用。

2.2. CuFMOF-a的制备

CuFMOF-a的合成遵循Li等[58]之前报道的方法。过 量 的 H₂hfipbb (729 mg, 1.86 mmol) 与 Cu(NO₃)₂·3H₂O (145 mg, 0.60 mmol)和 30 mL 去离子水在150 ℃下加热 12 h,得到蓝色柱状晶体。冷却至室温后,将产物用*N*,*N*-二甲基甲酰胺 (DMF)洗涤,以去除多余的H₂fipbb; 然 后用去离子水洗涤,最后在空气中干燥。

2.3. CuFMOF-b的制备

将 H₂hfipbb (235.4 mg, 0.6 mmol) 和 Cu(NO₃)₂·3H₂O (145 mg, 0.60 mmol) 溶 解 在 DMF (36 mL) 和 去 离 子 水 (12 mL) 的混合溶液中。将溶液在 65 ℃的高压反应釜中 加热 48 h, 以得到蓝色晶体。产品用 DMF (30 mL)洗涤三 次, 然后用 甲醇 (30 mL)洗涤三次, 最后在室温下 干燥。

2.4. CuFMOF-c的制备

将 H₂hfipbb (117.7 mg, 0.3 mmol) 和 CuCl₂·2H₂O (51.2 mg, 0.3 mmol)溶解在 DMF (14 mL)和甲醇 (14 mL) 的混合溶液中,并添加 0.1 mol·L⁻¹的 HCl 溶液 (0.7 mL) 以酸化溶液。将溶液在 80 ℃的高压反应釜加热 24 h,以得到蓝色花瓣状晶体。产品用 DMF (30 mL)洗涤三次,然后用甲醇 (30 mL)洗涤三次,最后在室温下干燥。

2.5. 气体吸附测试

为了去除材料中的客体溶剂分子,将CuFMOF-c样品 (约300 mg)在气体吸附测试前在120 °C下真空脱气处理 24 h。CO₂和 CH₄吸附等温线使用 Micromeritics ASAP 2460仪器(Micromeritics Instrument Corp.,美国)进行测 量。CuFMOF·CH₃OH 和 CuFMOF 的 Brunauer-Emmett-Teller (BET)比表面积通过在195 K下进行 CO₂吸附-脱附 等温线测定后进行计算。

2.6. 吸附动力学测试

吸附动力学曲线是在智能重量分析仪(IGA001,英 国Hiden公司)上测量的,该仪器采用重量分析技术,在 不同操作条件下准确测量了气体吸附作为时间函数的瞬时 吸附量。每次测试中,约使用120 mg的MOF样品,将其 装填到样品篮中,然后在进行动态气体吸附测量之前在 393 K下抽真空脱气处理8h。吸附动力学测试是通过在给 定温度下在100 mbar(1 mbar=100 Pa)条件下测量质量 变化来进行的,通过在样品室中引入目标气体,将压力从 0 mbar升至100 mbar,升压速率为200 mbar·min⁻¹。吸附 动力学数据在不同温度(从278 K到318 K)下收集。每 次测试后,将样品室重新填充气体至1000 mbar,并且替换新样品以进行下一次测试。实验中所使用的气体(CH₄、CO₂和He)均为超高纯度气体(99.999%)。

2.7. 固定床穿透及脱附实验

 CO_2/CH_4 (50/50,体积比)混合气体的固定床穿透实 验在流速约2.5 mL·min⁻¹ (298 K, 1.01 bar)下进行。将活化 后的 MOF 颗粒(CuFMOF-a, 1.317 g; CuFMOF-b, 1.053 g; CuFMOF-c, 1.172 g)装入直径为4.6 mm、长度为100 mm的 不锈钢柱中,在氮 (N_2)气氛下进行进一步活化。在每次 穿透实验结束后,在298 K条件下,将20 mL·min⁻¹的氦 气流通入不锈钢柱中进行30 min的活化再生。基于质量 平衡,可以确定气体吸附容量如下:

$$q_i = \frac{C_i V}{22.4 \times m} \times \int_0^t \left(1 - \frac{F}{F_0}\right) \mathrm{d}t \tag{1}$$

式中, q_i 是气体i的平衡吸附容量(mmol·g⁻¹); C_i 是进料 气体浓度;V是体积进料流速(mL·min⁻¹);t是吸附时间 (min); F_0 和F分别是入口和出口气体的摩尔流速;m是 吸附剂的质量(g)。

2.8. 密度泛函理论计算

本文使用 Materials Studio 的 CASTEP 模块进行了第一 性原理密度泛函理论(DFT)计算。对于所有的结构几何 优化计算,采用了 Vanderbilt 型超软赝势和 Perdew-Burke-Ernzerhof (PBE)交换相关的广义梯度近似(GGA)。截断 能量为 544 eV, 3×3×2 k 点网格足以使总能在每原子 0.05 MeV 内收敛。优化后的结构与实验确定的配位网络 的晶体结构一致。

2.9. 巨正则蒙特卡洛和分子动力学模拟

本文使用巨正则蒙特卡洛(grand canonical Monte Carlo, GCMC)[59]和分子动力学(molecular dynamics, MD)分别对 CuFMOF-a、CuFMOF-b和 CuFMOF-c中的 CO₂和CH₄进行吸附和扩散模拟。所有模拟均使用刚性的 MOF 结构,在室温下进行。所有模拟均采用了 2×2×2 的 晶体学单胞。假设 MOF 是刚性的,极大地减少了为这些 模拟定义原子间势能的复杂性,同时提高了计算效率。甲 烷被建模为球形 Lennard-Jones (LJ)粒子[60],而二氧化碳 则基于 EPM2 模型[61]被建模为刚性的三位点分子,并且 具有 LJ 势和原子电荷的全原子模型可近似表示 CO₂ 的四 极矩。实验吸附等温线(图 S1)与模拟吸附等温线 (图 S2)的比较表明,模拟吸附数据略高于实验吸附数 据。然而,在理想情况下,由于存在单元缺陷和其他问 题,理论数据将略高于实际数据。因此,这些参数在模拟 本文采用Lorentz-Berthelot 混合规则,对框架原子使 用通用力场(UFF)[62]来计算吸附剂-MOF LJ交互作用 参数。MOF 骨架中的原子电荷是通过使用 Materials Studio 软件包中的 Accelrys DMol3 模块进行色散校正的密 度泛函理论(DFT-D)计算来确定的。DFT 计算采用 GGA 和 PBE 以及双数值加极化(DNP)基组进行。计算 中包括了半经验的色散校正,以考虑范德瓦尔斯相互作 用。几何优化使用了 4.0 Å的截断半径和 2×2×2 k 点网格, 并在计算中使用了精准的收敛容限。我们使用 MD 计算了 CO₂的自扩散系数。MD 计算是基于 Nose-Hoover 恒温器 [63]中进行了 20 ns 的时间尺度进行的,其初始状态是基 于 GCMC 结果创建的。自扩散系数的计算基于 Einstein 方程:

$$D_{s}(c) = \frac{1}{2dN_{m}} \lim_{t \to \infty} \frac{d}{d_{t}} \left\langle \sum_{j=1}^{N_{m}} |r_{j}(t) - r_{j}(0)|^{2} \right\rangle$$
(2)

式中, c 是吸附剂分子的浓度; d 是系统空间的维度; $N_{\rm m}$ 是系统中分子的数量; $r_i(t)$ 是标记粒子j 在时间t 的位移。

3. 结果与讨论

3.1. 材料合成及表征

基于先前报道的方法[58]成功合成了 CuFMOF-a。单 晶 X 射线衍射分析表明,通过将羧酸 hfipbb²⁻配体连接到 六连接节点的顶部位置,进一步扩展得到了 CuFMOF-a 的 三维(3D)骨架结构[图1(a)]。这些材料的 hfipbb²⁻配 体的每个弯曲形状都呈现螺旋延伸,以连接上下层,构建 了一个周期性展开和收缩通道横截面的结构[图1(b)]。 因此,孔道结构为由迭代的笼状空间相互连接的狭窄瓶颈 结构。

CuFMOF-a的孔径尺寸为3.5Å,略大于CO₂的动力学 直径(3.3Å)但小于CH₄的动力学直径(3.8Å)。由于 CuFMOF-a合成过程中所使用的有机配体在水中的溶解度 相当低,因此我们添加了DMF以溶解该配体。令人惊讶 的是,由此获得了一种新型MOF晶体,称为CuFMOF-b。 与母体CuFMOF-a的结构不同的是,CuFMOF-b中的轮桨 型铜原子充当四连接节点,连接平面内两个弯曲配体的四 个氧原子,而节点的顶部位置连接DMF分子,形成了*bc* 平面中的单层网络[见图1(c)、附录A中的表S1]。

有趣的是,CuFMOF-b的手性孔道由缠绕的左旋螺旋 双链形成,而CuFMOF-a的手性孔道则由缠绕的右旋螺旋 双链形成。值得注意的是,CuFMOF-a中V形构建单元 hfipbb²⁻的弯曲角度(72.8°)略大于 CuFMOF-b (71.8°), 这是由于铜正方锥形配位结构中顶部连接基团不同而导致 的[图1 (b)、(d)],因此 CuFMOF-b 具有稍大的瓶颈尺 寸,孔径为3.9 Å。类似地,通过将水替换为甲醇作为溶 剂,首次制备了具有异构孔表面的另一种 MOF,命名为 CuFMOF-c [图1 (e)、表 S1]。根据单晶分析结果,合成 得到的 CuFMOF-c 为 *Pccn*空间群,具有由缠绕的左旋螺 旋双链形成的异构手性孔道结构,类似于 CuFMOF-b,其 弯曲角度较小,瓶颈尺寸缩小到3.7 Å [图1 (f)]。这种 变化可能源自铜原子轴向位置的不同配位溶剂分子,从而 影响 MOF 层的超分子排列。为进一步证明协同溶剂分子 在调控异构孔道结构中的作用,对活化后的 MOFs进行了 单晶 X 射线衍射测试。结果发现,在120 ℃真空中活化 24 h 后,溶剂分子仍然牢固地与铜原子协同配位(附录 A 中的表 S2)。

通过195 K下CO₂的吸附-脱附测试表征了材料的超微 孔结构,其吸附曲线呈现典型的微孔特征,其在相对压力 0~0.01范围内的吸附量急剧增加(附录A中的图S3)。值得 注意的是,CuFMOF-b和CuFMOF-c在相对压力从0.7到0.8 时等温线急剧上升可能是由于MOFs间的颗粒聚集引起的。 计算得出CuFMOF-a、CuFMOF-b和CuFMOF-c的BET比表 面积分别为56.4 m²·g⁻¹、126.4 m²·g⁻¹和82.6 m²·g⁻¹。

3.2. 静态吸附测试及吸附动力学测试

基于材料合适的孔径尺寸及发达的孔隙率,对CO₂和 CH₄的吸附等温线进行了测试[图2 (a)、附录A中的图S1]。 如图2 (a)所示,CuFMOF-c在298 K和100 kPa下表现出 最高的CO₂吸附量,为0.93 mmol·g⁻¹,超过了CuFMOF (0.64 mmol·g⁻¹)和CuFMOF-b (0.80 mmol·g⁻¹),与BET比表 面积的大小顺序一致。此外,从CuFMOF-c到CuFMOF-a, 其对CH₄的吸附量从0.58 mmol·g⁻¹降至0.31 mmol·g⁻¹,均 低于CO₂的吸附量,表明CH₄分子与MOF结构之间的亲 和性较弱。CuFMOF-a、CuFMOF-b和CuFMOF-c对CO₂/ CH₄的Henry系数选择性分别为5.0、3.2和2.9,略低于5A (Sinopec)沸石 (7.8) [64]和BF-CMS (5.2) [35]。通过使

图1. 材料合成过程及结构的示意图。材料沿b轴方向的一维孔道: (a) CuFMOF-a; (c) CuFMOF-b; (e) CuFMOF-c。弯曲 hfipbb²⁻配体的二面角及 Connolly表面表示的材料的瓶颈尺寸: (b) CuFMOF-a; (d) CuFMOF-b; (f) CuFMOF-c。为了更清楚阐述材料结构,结构中氢原子被省略。不同的 原子用不同颜色表示: Cu (绿色)、F (黄色)、C (灰色)、O (红色)、N (蓝色)。

用 Clausius-Clapeyron 方程并基于 Langmuir-Freundlich 模型对 278 K、298 K和318 K下收集的单组分吸附等温线进行拟合,计算了等量吸附热(Q_{st})(附录 A中的图 S2、表 S3 至表 S5)。其中,CuFMOF-c在吸附量接近零覆盖时具有适度的CO₂和CH₄的 Q_{st} 值,分别为21.97 kJ·mol⁻¹和17.66 kJ·mol⁻¹,表明其易于活化再生并在实际节能应用中具有巨大潜力

精巧的孔道结构使得这些MOFs在CO₂/CH₄动力学分 离方面也具有巨大的应用潜力。为此,在从278 K到318 K 的各种温度下测量了CH₄和CO₂的吸附量随时间变化的动 力学吸附等温线[图2(b)、(c)和附录A中的图S4]。如 预期一致,在整个温度范围内,所有MOFs对CO₂的扩散 速率明显快于CH₄。在298 K和100 mbar下,CO₂在 CuFMOF-b和CuFMOF-c中的吸附在5 min内达到平衡 [图2(b)]。相比之下,CuFMOF-a由于其较窄的孔径, 在相同条件下直到30 min才达到平衡,CO₂的扩散速率最 低。至于CH₄的扩散,CuFMOF-b由于其瓶颈处具有进一 步增大的孔径,表现出最快的扩散速率。对于CuFMOF-a 和CuFMOF-c而言,即使在60 min后,它们对CH₄的吸附 量仍未达到平衡状态。因此,CO₂和CH₄在CuFMOF-c中 的扩散行为差异最大。

为了更好地定量比较扩散速率差异,采用了经典的微

孔扩散模型[65]来量化动力学选择性。通过计算CO,和 CH_4 的扩散时间常数 (D_c/r_c^2) , 可以得到动力学选择性 (附录A中的表S6、表S7)。CuFMOF-a具有最小的孔径 尺寸,在CO,和CH,的吸附动力学上表现出细微的差异。 在298 K下, CuFMOF-a中CO,和CH₄的扩散时间常数分 别为0.195×10⁻³ s⁻¹和1.215×10⁻⁵ s⁻¹, CO₂/CH₄的动力学 选择性仅为16.1,因为不仅CH₄在从一个中心笼子通过瓶 颈扩散到另一个相邻中心笼子时受到限制,而且由于孔径 太窄, CO,的扩散也受到限制。具有最大孔径尺寸的 CuFMOF-b对CO₂/CH₄的动力学选择性达到36.1,在298 K 时 CH_4 的扩散时间常数大幅增加到 7.31×10^{-5} s⁻¹, CO₂的 扩散时间常数略微增加到2.64×10⁻³ s⁻¹。值得注意的是, CuFMOF-c在298 K时的CO,和CH₄的扩散时间常数分别 为1.803×10-3 s-1和1.795×10-5 s-1,从而实现了高达 100.5的CO₂/CH₄动力学选择性。这些结果可以通过狭窄 瓶颈的尺寸变化来定性解释,狭窄的瓶颈有助于较小的 CO,分子扩散,同时也为较大尺寸的CH₄分子的扩散设置 了屏障。与CuFMOF-a和CuFMOF-b相比,CuFMOF-c中 的孔径(3.7Å)是CO,和CH₄动力学分离的最佳孔径,其 尺寸略小于CH₄的动力学直径,使得CO₂可以自由扩散且 有效抑制了CH₄的扩散,从而实现了高CO₂/CH₄动力学选 择性。这些结果表明,通过溶剂替代进行 MOFs 孔径调控

图2. (a) CuFMOF-a(蓝色)、CuFMOF-c(红色)和CuFMOF-b(绿色)在298K下对CO₂和CH₄的单组分吸附等温线;实线代表通过朗缪尔方程拟 合得到的曲线,实心点和实心圆代表实验数据。(b)、(c)在不同时间尺度下,CuFMOF-a(蓝色)、CuFMOF-c(红色)和CuFMOF-b(绿色)在 298K和100 mbar下对CO₂和CH₄的气体吸附动力学曲线。(d)不同吸附剂在CO₂/CH₄上的性能比较。(e)在298K和1 bar条件下,以2.5 mL·min⁻¹的流速对CO₂/CH₄二元混合物(50/50, *V/V*)的固定床穿透曲线。

是一种有前景的实现动力学分离的策略。

值得注意的是,气体扩散速率随着温度降低而逐渐减 小,CH₄的扩散速率受温度影响显著大于CO₂。当温度进 一步降低至278 K时,在CuFMOF-c上获得了非常高的 CO₂/CH₄动力学选择性(273.5),明显高于其他报道的动力 学选择性吸附剂,如CMS-3K(1.1)[66]、CMS-T3A(91.7) [67]、BF-CMS(180)[35]和5A沸石(3.6)[64],仅次于 CMS-3A(537.3)[35](表S7)。使用Arrhenius方程计算了 CO₂和CH₄的扩散活化能(请参阅附录A)。与CO₂相比, CH₄显著更高的扩散活化能进一步证明了这些MOFs对CO₂ 相对于CH₄的高动力学选择性(附录A中的表S8)。此外, 进一步计算和比较了平衡-动力学综合选择性[68]。如图2 (d)和表S7所示,CuFMOF-c具有非常高的综合选择性 (64.2),超越了大多数报道的吸附剂,甚至与商业碳分子筛 如CMS-3A(64.9)[35]和BF-CMS(69.8)[35]等相媲美,进 一步表明了CuFMOF-c在CO₂/CH₄分离中的巨大潜力。

3.3. 固定床穿透实验及材料稳定性测试

为了进一步考察材料用于 CO_2/CH_4 实际分离过程的潜力,进行了瞬时固定床穿透实验。 CH_4 在1 min·g⁻¹时间内便从 CuFMOF-c 的吸附柱中流出,而 CO_2 则保留到10 min·g⁻¹。 CO_2 在 CuFMOF-b和 CuFMOF-a 的吸附柱中保留时间更短,分别为7 min·g⁻¹和5 min·g⁻¹,而 CH₄的保留时间均不到1 min·g⁻¹。CuFMOF-a、CuFMOF-b和 CuFMOF-c 对 CO_2 的动态吸附量分别为0.50 mmol·g⁻¹、0.58 mmol·g⁻¹

和 0.76 mmol·g⁻¹, 与静态吸附测试结果较为吻合[图 2 (e)]。此外,通过固定床穿透实验可以获得高纯度的 CH_4 (> 99%), CuFMOF-a、CuFMOF-b和 CuFMOF-c 对 高纯 CH_4 的产率分别为 0.22 mmol·g⁻¹、 0.18 mmol·g⁻¹和 0.24 mmol·g⁻¹。

并且在5次固定床循环穿透实验后,CO₂的动态吸附 吸附量没有明显的下降[附录A中的图S5(a)~(c)], 表明材料在CO₂/CH₄分离方面具有出色的可循环性。在穿 透实验结束后,使用氦气吹扫吸附柱后得到了相应的解吸 曲线[图S5(d)~(f)],表明材料可以在温和的条件下 活化再生。

吸附剂的稳定性同样值得关注,为此通过热重分析 (TGA) 手段对材料的热稳定性进行了考察(附录A中的 图 S6)。CuFMOF-a、CuFMOF-b和CuFMOF-c在温度分 别达到 563 K、548 K和488 K之前都具有优异的热稳定 性。此外,对不同条件下处理的材料进行了粉末X射线衍 射(PXRD)测试(附录A中的图 S7)。将MOFs浸泡在 水中24 h或在空气中暴露一个月后,材料的晶型仍能保 持,证实了材料具有良好的结构稳定性。

3.4. 巨正则蒙特卡洛和分子动力学模拟

为了从结构上阐释 CO₂和 CH₄在材料的一维(1D)通 道中扩散,进行了 GCMC 和 MD 模拟。GCMC 模拟的吸 附等温线(附录 A 中的图 S8)与实验结果相吻合。如图 3 (a)~(c)所示,当每个晶胞中含有两个气体分子时,

图3. (a) ~ (c) 在 298 K 下, CO₂在 CuFMOF-a (a)、CuFMOF-b (b) 和 CuFMOF-c (c) 中的自扩散。(d) ~ (e) CH₄ (红色) 和 CO₂ (蓝色) 在 CuFMOF-a (d)、CuFMOF-b (e) 和 CuFMOF-c (f) 中沿着一维孔道轴向扩散的最小势能。

CuFMOF-a、CuFMOF-c和CuFMOF-b中CO₂的自扩散系 数分别为 1.2×10^{-6} cm²·s⁻¹、 11.9×10^{-6} cm²·s⁻¹和 15.1×10^{-6} cm²·s⁻¹,与从动力吸附测试中获得的CO₂扩散速率的顺序一致。值得注意的是,随着气体分子负载量的增加,CO₂的自扩散系数会减小。然而,CH₄不能在纳秒时间尺度内通过MD计算所使用的相邻笼子之间的狭窄瓶颈,这与Sholl等[69]的研究结果一致。

当一个分子沿着材料的一维通道移动时, $CO_2 和 CH_4$ 的最小势能差异[图3(d)~(f)]是导致它们扩散速率不同的内在原因。最低能量出现在宽敞的笼子中心,那里是主要容纳 $CH_4 和 CO_2 分子的空间(附录A中的图 S9)。在CuFMOF-a中,CH_4 和 CO_2的扩散能垒分别高达69.8 kJ·mol⁻¹和22.4 kJ·mol⁻¹[图3(d)],表明气体分子在CuFMOF-a中的扩散速率很低。随着孔径的增大,在CuFMOF-c中,CH₄和CO₂的扩散能垒降低到55.6 kJ·mol⁻¹和15.4 kJ·mol⁻¹[图3(f)]。至于CuFMOF-b,由于其具有最大的孔径,CH₄和CO₂的扩散能垒仅为38.4 kJ·mol⁻¹和16.7 kJ·mol⁻¹[图3(e)],表明气体分子可以容易地通过通道。然而,在CuFMOF-b中CH₄和CO₂扩散行为的微小差异导致其CO₂/CH₄的动力学选择性较低。因此,CuFMOF-c具有最适合CO₂和CH₄动力学分离的孔径。$

3.5. 密度泛函理论计算

为了进一步深入了解气体分子与材料之间的相互作用,分析了当一个刚性气体分子沿着一维通道移动时, CO₂和 CH₄在最大和最小能量位置与骨架的相互作用 (图4和附录A中的图S10、图S11)。在CuFMOF-c宽敞笼 状空间的中心,CO₂分子与MOF骨架的相互作用主要为 弱的O^{δ-}-H^{δ+}偶极-偶极相互作用(C-H···O),作用力键长 为3.07~3.08Å[图4(c)]。此外,CH₄分子与富含π电子 的芳香环一侧形成C-H···π键,距离芳香环侧的距离为 3.31Å[图4(e)]。然而,在将CH₄和CO₂移动到沿b轴 方向连接两个笼子的狭窄瓶颈时存在很大的能垒。在这个 狭窄的位置,CO₂被更强的C-H···O键约束,距离范围为 2.45~3.08Å[图4(d)]。由于CH₄的分子尺寸与瓶颈结构 的孔径尺寸相当,CH₄被4个周围对称芳香环形成的C-H···π相互作用牢牢束缚,其键长范围为3.11~3.22Å[图4 (f)],这形成了很大的空间位阻,从而抑制了CH₄的扩 散。如图S10、图S11所示,类似的现象也发生在 CuFMOF-a和CuFMOF-b中。这些结果与扩散能垒的计算 结果一致,进一步证明了孔径调控对于扩散的重要性。

4. 结论

总而言之,本文报道了一种客体溶剂导向策略,实现 了在水热合成过程中对MOFs几何结构的微调,从而在材 料一维孔道瓶颈处产生了微妙的差异。得益于精巧的孔隙 结构,材料实现了在宽泛的温度范围内对CO₂和CH₄的高 效动力学分离。材料周期性收缩和扩张的孔结构可以允许 CO₂的进入,但严重阻碍了CH₄的扩散。CuFMOF-c上实 现了超高的动力选择性和平衡-动力学综合选择性,超越 了大多数性能优异的吸附剂。此项工作不仅提出了调节材 料结构的新策略,还进一步证实了适当的孔隙大小是高效 动力分离的关键,为尺寸相当和结构相似的其他气体混合 物的动力分离提供了重要参考。

图4. CO₂分子(a)和CH₄分子(b)通过一维通道扩散的示意图。CO₂和CH₄在CuFMOF-c中孔笼中心及瓶颈处的结合位点,对应于最低势能图中的 最低点和最高点。为了方便阐述,不同连接位点的颜色不同:Cu(绿色)、F(黄色)、C(灰色)、O(红色)。

致谢

本研究得到了国家自然科学基金(21722609、 21878260)和浙江省自然科学基金(LR170B060001)的 支持。

Compliance with ethics guidelines

Dan Lai, Fuqiang Chen, Lidong Guo, Lihang Chen, Jie Chen, Qiwei Yang, Zhiguo Zhang, Yiwen Yang, Qilong Ren, and Zongbi Bao declare that they have no conflict of interest or financial conflicts to disclose.

Data availability statement

All crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre. The data shown in the plots and those that support the findings of this study are available from the corresponding author on reasonable request.

CIF data for CuFMOF-a (CCDC number: 232689). CIF data for CuFMOF-b (CCDC number: 1872560). CIF data for CuFMOF-c (CCDC number: 2004270).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2022.03.022.

References

- Energy Information AdministrationUS. International energy outlook 2017. Washington, DC: US Energy Information Administration; 2017.
- [2] Saha D, Grappe HA, Chakraborty A, Orkoulas G. Postextraction separation, onboard storage, and catalytic conversion of methane in natural gas: a review. Chem Rev 2016;116(19):11436–99.
- [3] Connolly BM, Aragones-Anglada M, Gandara-Loe J, Danaf NA, Lamb DC, Mehta JP, et al. Tuning porosity in macroscopic monolithic metal – organic frameworks for exceptional natural gas storage. Nat Commun 2019; 10(1):2345.
- [4] Chen FQ, Zhang ZG, Yang QW, Yang YW, Bao ZB, Ren QL. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading lowquality natural gas. ACS Sustain Chem Eng 2020;8(2):977–85.
- [5] Saleman TL, Li G, Rufford TE, Stanwix PL, Chan KI, Huang SH, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chem Eng J 2015;281:739–48.
- [6] Chen FQ, Wang JW, Guo LD, Huang XL, Zhang ZG, Yang QW, et al. Carbon dioxide capture in gallate-based metal–organic frameworks. Sep Purif Technol 2022;292:121031.
- [7] Al-Amri A, Zahid U. Design modification of acid gas cleaning units for an

enhanced performance in natural gas processing. Energy Fuels 2020; 34(2): 2545-52.

- [8] Lin RB, Li L, Alsalme A, Chen B. An ultramicroporous metal–organic framework for sieving separation of carbon dioxide from methane. Small Struct 2020;1(3):2000022.
- [9] Cui H, Ye Y, Liu T, Alothman ZA, Alduhaish O, Lin RB, et al. Isoreticular microporous metal–organic frameworks for carbon dioxide capture. Inorg Chem 2020;59(23):17143–8.
- [10] Belmabkhout Y, Bhatt PM, Adil K, Pillai RS, Cadiau A, Shkurenko A, et al. Natural gas upgrading using a fluorinated MOF with tuned H₂S and CO₂ adsorption selectivity. Nat Energy 2018;3:1059–66. Corrected in: Nat Energy 2019;4:83.
- [11] Mao VY, Milner PJ, Lee JH, Forse AC, Kim EJ, Siegelman RL, et al. Cooperative carbon dioxide adsorption in alcoholamine- and alkoxyalkylaminefunctionalized metal-organic frameworks. Angew Chem Int Ed Engl 2020;59 (44):19468–77.
- [12] Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, et al. Microporous metalorganic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 2012;3(1):954.
- [13] Li JR, Yu J, Lu W, Sun LB, Sculley J, Balbuena PB, et al. Porous materials with pre-designed single-molecule traps for CO₂ selective adsorption. Nat Commun 2013;4(1):1538.
- [14] Jahandar Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO₂ adsorbents: a multifaceted puzzle. Chem Soc Rev 2019;48(12):3320–405.
- [15] Reynolds AJ, Verheyen TV, Adeloju SB, Meuleman E, Feron P. Towards commercial scale postcombustion capture of CO₂ with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 2012;46(7):3643–54.
- [16] Dutcher B, Fan M, Russell AG. Amine-based CO₂ capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 2015;7(4):2137–48.
- [17] Rochelle GT. Amine scrubbing for CO_2 capture. Science 2009; 325(5948): 1652–4.
- [18] Siegelman RL, Milner PJ, Kim EJ, Weston SC, Long JR. Challenges and opportunities for adsorption-based CO₂ capture from natural gas combined cycle emissions. Energy Environ Sci 2019;12(7):2161–73.
- [19] Chen F, Ding J, Guo K, Yang L, Zhang Z, Yang Q, et al. CoNi alloy nanoparticles embedded in metal-organic framework-derived carbon for the highly efficient separation of xenon and krypton via a charge-transfer effect. Angew Chem Int Ed Engl 2021;60(5):2431–8.
- [20] Chen F, Lai D, Guo L, Wang J, Zhang P, Wu K, et al. Deep desulfurization with record SO₂ adsorption on the metal–organic frameworks. J Am Chem Soc 2021; 143(24):9040–7.
- [21] Godfrey HGW, da Silva I, Briggs L, Carter JH, Morris CG, Savage M, et al. Ammonia storage by reversible host-guest site exchange in a robust metalorganic framework. Angew Chem Int Ed Engl 2018;57(45):14778-81.
- [22] Zhang L, Li L, Hu E, Yang L, Shao K, Yao L, et al. Boosting ethylene/ethane separation within copper(I)-chelated metal–organic frameworks through tailormade aperture and specific π-complexation. Adv Sci 2020;7 (2):1901918.
- [23] Wang Y, Jia X, Yang H, Wang Y, Chen X, Hong AN, et al. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C₂ hydrocarbons and CO₂. Angew Chem Int Ed Engl 2020;59(43):19027–30.
- [24] Ye ZM, Zhang XW, Liao PQ, Xie Y, Xu YT, Zhang XF, et al. A hydrogenbonded yet hydrophobic porous molecular crystal for molecular-sieving-like separation of butane and isobutane. Angew Chem Int Ed Engl 2020; 59(51): 23322–8.
- [25] Cui H, Xie Y, Ye Y, Shi Y, Liang B, Chen B. An ultramicroporous metal organic framework with record high selectivity for inverse CO₂/C₂H₂ separation. Bull Chem Soc Jpn 2021;94(11):2698–701.
- [26] Kong XJ, Li JR. An overview of metal–organic frameworks for green chemical engineering. Engineering 2021;7(8):1115–39.
- [27] Chen FQ, Huang XL, Guo KQ, Yang L, Sun HR, Xia W, et al. Molecular sieving of propylene from propane in metal – organic framework-derived ultramicroporous carbon adsorbents. ACS Appl Mater Interfaces 2022; 14(26): 30443–53.
- [28] Chen FQ, Huang XL, Yang L, Zhang ZG, Yang QW, Yang YW, et al. Boosting xenon adsorption with record capacity in microporous carbon molecular sieves. Sci China Chem 2023;66:601–10.
- [29] Chen FQ, Guo KQ, Huang XL, Zhang ZG, Yang QW, Yang YW, et al. Extraction of propane and ethane from natural gas on ultramicroporous carbon adsorbent with record selectivity. Sci China Mater 2023;66:319–26.
- [30] Huang XL, Chen FQ, Sun HR, Xia W, Zhang ZG, Yang QW, et al. Separation

of perfluorinated electron specialty gases on microporous carbon adsorbents with record selectivity. Sep Purif Technol 2022;292:121059.

- [31] Rozyyev V, Yavuz CT. An all-purpose porous cleaner for acid gas removal and dehydration of natural gas. Chem 2017;3(5):719–21.
- [32] Dogan NA, Ozdemir E, Yavuz CT. Direct access to primary amines and particle morphology control in nanoporous CO₂ sorbents. ChemSusChem 2017;10(10): 2130–4.
- [33] Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal–organic frameworks. Science 2013;341(6149):1230444.
- [34] Mofarahi M, Gholipour F. Gas adsorption separation of CO₂/CH₄ system using zeolite 5A. Micropor Mesopor Mat 2014;200:1–10.
- [35] Jayaraman A, Chiao AS, Padin J, Yang RT, Munson CL. Kinetic separation of methane/carbon dioxide by molecular sieve carbons. Sep Sci Technol 2002; 37(11):2505–28.
- [36] Cavenati S, Grande CA, Rodrigues AE. Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 2005;19(6):2545–55.
- [37] Mohamed AR, Mohammadi M, Darzi GN. Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sustain Energy Rev 2010; 14(6):1591–9.
- [38] Yamane Y, Tanaka H, Miyahara MT. In silico synthesis of carbon molecular sieves for high-performance air separation. Carbon 2019;141:626–34.
- [39] Cai J, Qi J, Yang C, Zhao X. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH₄ and H₂ storage and CO2 capture. ACS Appl Mater Interfaces 2014;6(5):3703–11.
- [40] Ji Z, Wang HZ, Canossa S, Wuttke S, Yaghi OM. Pore chemistry of metalorganic frameworks. Adv Funct Mater 2020;30(41):2000238.
- [41] Dou Y, Zhang W, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv Sci 2020;7(3):1902590.
- [42] Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Structural engineering of lowdimensional metal–organic frameworks: synthesis, properties, and applications. Adv Sci 2019;6(12):1802373.
- [43] Liu Y, Liu G, Zhang C, Qiu W, Yi S, Chernikova V, et al. Enhanced CO₂/CH₄ separation performance of a mixed matrix membrane based on tailored MOFpolymer formulations. Adv Sci 2018;5(9):1800982.
- [44] Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and molecular-level design of functional metal–organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 2019;6(21):1901129.
- [45] Bao ZB, Chang GG, Xing HB, Krishna R, Ren QL, Chen BL. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 2016;9(12):3612–41.
- [46] Feng L, Day GS, Wang KY, Yuan S, Zhou HC. Strategies for pore engineering in zirconium metal–organic frameworks. Chem 2020;6(11):2902–23.
- [47] Li LB, Lin RB, Wang XQ, Zhou W, Jia LT, Li JP, et al. Kinetic separation of propylene over propane in a microporous metal–organic framework. Chem Eng J 2018;354:977–82.
- [48] Ding Q, Zhang Z, Yu C, Zhang P, Wang J, Cui X, et al. Exploiting equilibriumkinetic synergetic effect for separation of ethylene and ethane in a microporous metal–organic framework. Sci Adv 2020;6(15):eaaz4322.
- [49] Krause S, Hosono N, Kitagawa S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew Chem Int Ed Engl 2020;59(36): 15325–41.
- [50] Kundu T, Wahiduzzaman M, Shah BB, Maurin G, Zhao D. Solvent-induced control over breathing behavior in flexible metal–organic frameworks for natural-gas delivery. Angew Chem Int Ed Engl 2019;58(24):8073–7.

- [51] Li YP, Wang Y, Xue YY, Li HP, Zhai QG, Li SN, et al. Ultramicroporous building units as a path to bi-microporous metal–organic frameworks with high acetylene storage and separation performance. Angew Chem Int Ed Engl 2019; 58(38):13590–5.
- [52] Lv XL, Feng L, Wang KY, Xie LH, He T, Wu W, et al. A series of mesoporous rareearth metal – organic frameworks constructed from organic secondary building units. Angew Chem Int Ed Engl 2021;60(4):2053–7.
- [53] Li X, Wang J, Bai N, Zhang X, Han X, da Silva I, et al. Refinement of pore size at sub-angstrom precision in robust metal–organic frameworks for separation of xylenes. Nat Commun 2020;11(1):4280.
- [54] Chanut N, Ghoufi A, Coulet MV, Bourrelly S, Kuchta B, Maurin G, et al. Tailoring the separation properties of flexible metal–organic frameworks using mechanical pressure. Nat Commun 2020;11(1):1216.
- [55] Lee CY, Bae YS, Jeong NC, Farha OK, Sarjeant AA, Stern CL, et al. Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 2011;133(14):5228–31.
- [56] Lyndon R, You WQ, Ma Y, Bacsa J, Gong YT, Stangland EE, et al. Tuning the structures of metal – organic frameworks via a mixed-linker strategy for ethylene/ethane kinetic separation. Chem Mater 2020;32(9):3715–22.
- [57] Gu C, Hosono N, Zheng JJ, Sato Y, Kusaka S, Sakaki S, et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 2019; 363(6425):387–91.
- [58] Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, et al. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 2004;126(5):1308–9.
- [59] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys 1953; 21(6): 1087–92.
- [60] Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 1998;102(14):2569–77.
- [61] Harris JG, Yung KH. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular-model. J Phys Chem 1995;99(31):12021–4.
- [62] Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114(25):10024–35.
- [63] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego: Academic Press; 2002.
- [64] Saha D, Bao Z, Jia F, Deng S. Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 2010;44(5):1820–6.
- [65] Ruthven DM. Principles of adsorption and adsorption processes. New York City: Wiley-Interscience; 1984.
- [66] Cavenati S, Grande CA, Rodrigues AE. Separation of CH₄/CO₂/N₂ mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem Eng Sci 2006;61(12):3893–906.
- [67] Bae YS, Lee CH. Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Carbon 2005;43(1):95–107.
- [68] Liu J, Liu Y, Kayrak Talay D, Calverley E, Brayden M, Martinez M. A new carbon molecular sieve for propylene/propane separations. Carbon 2015;85:201–11.
- [69] Watanabe T, Keskin S, Nair S, Sholl DS. Computational identification of a metal organic framework for high selectivity membrane-based CO₂/CH₄ separations: Cu(hfipbb) (H₂hfipbb)_{0.5}. Phys Chem Chem Phys 2009; 11(48): 11389–94.