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The shortage of computation methods and storage devices has largely limited the development of multi-
objective optimization in industrial processes. To improve the operational levels of the process industries,
we propose a multi-objective optimization framework based on cloud services and a cloud distribution
system. Real-time data from manufacturing procedures are first temporarily stored in a local database,
and then transferred to the relational database in the cloud. Next, a distribution system with elastic com-
pute power is set up for the optimization framework. Finally, a multi-objective optimization model based
on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the
blast furnace ironmaking process. With the application of this optimization service in a cloud factory, iron
production was found to increase by 83.91 t∙d�1, the coke ratio decreased 13.50 kg∙t�1, and the silicon
content decreased by an average of 0.047%.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ironmaking is a complicated manufacturing system that contin-
uously provides fundamental materials for other industries. The
ironmaking industry plays an important role in the raw materials
and energy markets, which utilize more than 10% of the global
total energy consumption. As China has become the world’s most
important iron and steel supplier, with half of the total global pro-
duction, it is of vital importance to achieve energy conservation
and emission reduction in this industry by means of technological
innovations [1].

Conventional approaches that address the complexity of trans-
form theory and reaction rules, based on the ironmaking mecha-
nism, have shortcomings in modeling and optimizing the blast
furnace [2,3]. Therefore, researchers have investigated a variety
of intelligent modeling methods for the ironmaking process. To
address the advantages of black box models, Chen and Gao [4]
developed a novel algorithm to enhance the transparency of a
soft-margin support-vector machine for the blast furnace. Zhou
et al. [5] proposed a recursive learning-based bilinear subspace
identification algorithm to model and control a blast furnace with
nonlinear time-varying dynamics. Furthermore, Li et al. [6] used a
fuzzy classifier to judge the product quality and thermal state by
forecasting the development tendency of the hot metal silicon con-
tent. In order to obtain gas flow distribution and optimize the
charging operation, Huang et al. [7] designed a method for three-
dimensional (3D) topography measurement based on a high-
temperature industrial endoscope to detect the blast furnace bur-
den surface. Li et al. [8] then proposed an intelligent data-driven
optimization scheme to determine the proper burden surface dis-
tribution. Although all these methods have partially improved
the operation of the blast furnace, the whole ironmaking process
requires a cloud computing architecture integrated with all kinds
of services.

Cloud computing offers the on-demand services of a computer
system, computing power, and data storage to customers, without
the customers needing to actually possess the associated objects
[9]. The availability of mass-storage devices, low-cost computers,
and high-capacity networks has led to the development of cloud
computing, while the widespread evolution of hardware resources
virtualization, autonomic utility computing, and service-oriented
architecture has also contributed to the growth of cloud services
[10]. In fact, many companies have deployed their business on
cloud platforms, resulting in cloud services being involved in every
aspect of our work and life. For example, the Yelp advertising team
depends on prediction models to analyze the likelihood of a
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customer interacting with an advertisement. They use Apache
Spark on Amazon Elastic MapReduce to process big data and train
machine learning models, which has led to an increase in revenue
and advertising click-through rate [11]. In the past, the 12306.cn
booking system always broke down when the data volume
increased dramatically at a specific time. Alibaba Cloud effectively
solved this bottleneck problemby dealingwith the remaining ticket
queries through cloud computing during the Spring Festival [12].

With the fast development of high-integration and large-scale
process industries, traditional methods are limited in modeling
and optimizing the ironmaking process. Because it is difficult to
combine conflicting goals in operation, one good indicator can
always decrease the effect of another indicator. In order to opti-
mize several goals simultaneously, we use a weighted method in
a genetic algorithm (GA) to transform the multi-objective problem
into a single-objective problem. Furthermore, a self-adaptive
scheme is implemented in the GA to improve its searching perfor-
mance. Before applying the GA to a practical problem, it is neces-
sary to learn the algorithm’s physical characteristics by means of
modeling methods. To address the need for high accuracy and
other real-time requirements, we simplify the structure of the
recurrent neural network by compressing the update and reset
gates into a single gate to model the ironmaking process. Thus,
we design a multi-objective optimization framework for a cloud
ironmaking plant based on distributed computation, as illustrated
in Fig. 1. With this service example in a cloud factory, scholars and
researchers that cooperate with ironmaking plants can work on the
plant from anywhere in the world. Along with the explanation
above, the major contributions of this paper can be briefly summa-
rized as follows:

(1) An improved GA is implemented in conjunction with a
recurrent neural network to optimize a multi-objective problem
in the ironmaking process.

(2) A cloud computing platform for a digital twin is constructed
based on the Rancher and Harbor frameworks.

(3) The hybrid multi-objective model is deployed to the cloud
computing platform as an optimization service.

2. Methodology

An ironmaking factory generates a large amount of data during
the manufacturing process from programmable logic controllers,
Fig. 1. Schematic architecture of a c
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industrial sensors, and local indicators [13]. There are hundreds
of ironmaking plants and thousands of blast furnaces across China,
and the data amount and computing demand of these factories are
much greater than the factories can afford. For a blast furnace with
thousands of measuring points sampled at the minutes level, the
total data amount can be as large as a terabyte every day. However,
these big industrial data are insufficiently exploited and become a
burden for ironmaking plants. Even though major progress has
been made in both cloud services and the ironmaking process,
few academic studies or industrial applications have attempted
to combine the two. Therefore, we have designed a distribution-
system-based cloud factory, as shown in Fig. 2, to explore the hid-
den information by making full use of these big industrial data. At
first, the process data are temporarily stored in local servers at the
data center of the ironmaking factory. After some necessary pre-
treatment and reformatting, the clean data is directly transferred
to the relational database. With its industrial data backed up on
the cloud database, the factory does not need to expand its storage
devices to scale to the increasing data volumes. Then, if we want to
modify the algorithm and train datasets from the cloud storage, we
can extract samples from either the local server or the cloud
database.

The cloud ironmaking blast furnace consists of the storage,
framework, and service layers. The storage layer backs up the
stream data from the manufacturing system by means of a cloud
relational database. The computing framework layer, which sits
between the storage and service layers, contains a hybrid model
based on deep learning and an evolutionary algorithm. Moreover,
the computing cluster is an instance of Apache Spark and is associa-
ted with virtual machines from the local cloud service provider.
With the support of a computing framework and storage capacity,
the cloud factory is able to provide a multi-objective optimization
service to the blast furnace ironmaking process. Finally, we use
Apache Spark to deploy the multi-objective optimization frame-
work on a virtual machine to provide cloud computing service
for the cloud factory. Both the factory and academia can benefit
from the cloud ironmaking plant: There is no need for the ironmak-
ing plant to store all the manufacturing data, while academic
researchers can work on practical data from other places. By using
Apache Spark and cloud computing, we have successfully applied a
multi-objective optimization service with clustering, modeling,
and optimizing models to the blast furnace ironmaking process.
loud ironmaking blast furnace.



Fig. 2. System flowchart of a cloud factory interacting with a real-life factory.

Fig. 3. Internal structure of the dGRU.
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The integration of the hybrid model combines the clustering,
modeling, and optimizing procedures into an indivisible whole.
Based on the preprocessing of the cluster analysis, modeling meth-
ods are used to obtain the dynamic information of the blast furnace
ironmaking process. After that, optimization approaches search for
real-time optimal solutions for production indices under critical
constraints. Thus, the objective function of this optimization prob-
lem can be written as follows:

min F xð Þ ¼ w1; � � � ;wn½ � � f 1 xð Þ; � � � ; f n xð Þ½ �T
f xð Þ ¼ g u xt ;ht�1 dtjð Þ½ �

(
ð1Þ

where w is the weight matrix, u and g are the activation functions,
dt is the disposition gate, and T is the generation. F(x) is the compre-
hensive fitness function, while f(x) is a single fitness function for
each optimization object. xt is the input variable x at t moment,
and ht-1 is the hidden state at t-1 moment.

Clustering carries out the task of classifying a collectionof objects
into several groups, where objects belonging to the same cluster are
more similar to each other than to the objects in other clusters
[14,15]. It is the main task of exploratory data mining and a general
approach for the statistical analysis used inmachine learning. At the
very beginning, we utilize a Gaussian mixture model (GMM) to
group data into different clusters and select ideal datasets to realize
knowledge discovery. A GMM is a distribution-basedmodel that fits
the datasets with a certain number of Gaussian functions [16,17].
The probability density function of the GMM is listed in Eq. (2).

p xð Þ ¼
XK
k¼1

p kð Þp x kjð Þ ¼
XK
k¼1

k � N x lk;Rk

��� �

¼
XK
k¼1

k

exp �0:5 x� lk

� �TR�1
k x� lk

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ÞK Rkj j

q ð2Þ

where k represents the kth cluster, l is the mean, R is the variance,
p is the probability density function, N is the number of observa-
tions, p is the mixture weight, and the sum of p is 1.

When original data from the ironmaking process have been pre-
treated by GMM clustering, it is necessary to reconstruct the iron-
making process using intelligent approaches. Among a variety of
deep learning methods, recurrent neural networks (RNNs) exhibit
an excellent performance in learning the physical characteristics
of time-series data [18,19]. However, the structure of the tradi-
tional gated recurrent-unit recurrent neural network (GRU-RNN)
is somewhat complicated and cannot fulfill the high real-time
requirements of the process industries [20]. Therefore, a novel
RNN is proposed for the ironmaking process by simplifying the
update and reset gates of the GRU-RNN into a single disposition
gate [21]. The mathematical definitions of the disposition gated
recurrent unit (dGRU) are illustrated in Eq. (3), and a visualization
of the internal architecture is provided in Fig. 3.

ht ¼ 1� dtð Þ � ht�1 þ dt � ht

ht ¼ tanh Wxt þ U dt � ht�1ð Þ½ �
dt ¼ r Wdxt þ Udht�1ð Þ

8><
>: ð3Þ
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where the activation state ht is a linear interpolation between the
candidate activation state ht and the previous activation state ht�1.
r is the activation function.U andW are theweights of input variable
and activation threshold.Wd andUd represent theweight and thresh-
old of disposition gate. The dt gate makes compromises between the
historical memory ht�1 and the candidate information xt. The infor-
mation flowing in and out of the unit in the dGRU is manipulated
by only one gate, resulting in an increase in computing efficiency.

The back propagation of the dGRU transforms errors backward
in time and space to update its parameters. Therefore, the back
propagation error at time t � 1 can be written as Eq. (4).

dt�1 ¼ Ddlþ1
t�1 þ dlt�1 ¼ Ddlþ1

t�1 þ @E
@ht�1

¼ Ddlþ1
t�1 þ

@E
@netd;t

@netd;t
@ht�1

þ @E
@net

h
�
;t

@net
h
�
;t

@ht�1
þ @E
@ht

@ht

@ht�1

¼ Ddlþ1
t�1 þ dd;tUd þ d

h
�
;t
U � dt

� �
� dt þ dt

ð4Þ

where E is the output estimation, and net is the dGRU network. d is
the output error, l represents the step, d is the disposition gate, and
~h represents the candidate state. The internal errors dd,t and dh,t can
be transformed into the expressions in Eq. (5).
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Thus, the gradients to update the weights and thresholds in dt
and ht have the prototypes shown in Eq. (6). With this learning



Fig. 4. Correspondence between fitness skewness and population size. N(t)+ and
N(t)� represent the increase and decrease processes of population during the
evolution.

Table 1
List of symbols in the article.

Symbol Content

h Pattern
fi Fitness value for candidate i

f
� Mean fitness value

nh
i t þ 1ð Þ Expected quantity of offspring

Nh(t) Quantity of solutions
l(h) Defined length of pattern
L Encoding length of candidate
pc Crossover probability
pm Mutation probability
n Order of pattern
k A positive integer
t tth generation
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schema, the dGRU is able to optimize its internal structure during
the iterations.

DUd ¼ @E
@Ud

¼ @E
@netd;t

@netd;t
@Ud

¼ dd;tht�1

DWd ¼ @E
@Wd

¼ @E
@netd;t

@netd;t
@Wd

¼ dd;txt

DU ¼ @E
@U

¼ @E
@neth;t

@neth;t
@U

¼ dh;t dt � ht�1ð Þ

DW ¼ @E
@W

¼ @E
@neth;t

@neth;t
@W

¼ dh;txt

ð6Þ

where DWd and DW are the weights of input variables in dt gate and
candidate activation state, DUd and DU are the weights of activation
threshold in dt gate and candidate activation state.

Among the evolutionary algorithms, the GA is a global optimum
approach to solve combined optimization problems [22]. The
major elements of a GA are encoding/decoding types, fitness func-
tion, genetic operators, and control parameters; more specifically,
a GA can perform the following tasks:
� Encoding the solutions of optimization issues;
� Creating a population that includes N(t) encoded solutions at
the tth generation;

� Establishing a fitness function that evaluates the optimality of
solutions;

� Using genetic operators to generate offspring to produce a new
population;

� Setting control parameters.

In recent years, most investigations on GAs have focused on
probability distribution, genetic operators, and chromosome
encoding [23,24]. Population size receives little attention, even
though it dramatically influences the computing efficiency. Gener-
ally speaking, the population size is directly proportional to the
solution accuracy and inversely proportional to the computational
efficiency. To address this issue, Koumousis and Katsaras [25] pro-
posed a saw-tooth GA whose population size increased and
decreased periodically. To maintain accuracy and efficiency at the
same time, we designed a self-adaptive population genetic algo-
rithm (SAPGA) whose population size changes along with the solu-
tions of fitness function [26]. The ideal fitness distribution in each
generation is supposed to be a normal distribution, which is always
difficult to implement due to the randomness of genetic operators.
The degree of deviation from a real distribution to a normal one is
defined as the skewness (Sk) in Eq. (7).

Sk ¼ f
�
�f e
r

ð7Þ

where fe is the media, f
�
is the average, and r is the standard devi-

ation. The relationship between the skewed distribution and popu-
lation size is visualized in Fig. 4, with an explanation in Eq. (8).

N t þ 1ð Þ ¼ N tð Þ þ k; Sk tð Þ < 0
N t þ 1ð Þ ¼ N tð Þ � k; Sk tð Þ > 0



ð8Þ

where Sk is the fitness skewness, N is the population size, and k is an
integer of the population size transformation interval. As for the
SAPGA, the rising tendency of Sk represents an increase in superior
solutions, leading to a demand for new candidates to increase the
genetic diversity. The decline of Sk indicates that there is a majority
of inferior solutions, which need to be eliminated in order to keep
the SAPGA in good searching performance. To summarize, when
the skewness of the fitness distribution turns from negative to pos-
itive, it signals that the proportion of superior solutions increase, or
the inferior individuals decrease, and the fitness of the candidates
needs to be adjusted back to a normal distribution.
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To compare the performance of the SAPGA and a standard
genetic algorithm (SGA), a theoretical analysis for the fitness of
solutions based on the symbols in Table 1 has been made according
to pattern theory.

In the latter stage of the evolutionary process, the increasing of
the mean fitness causes decreasing in the population size. T is the
generation at which the population of the SAPGA becomes less
than that of the SGA. Therefore, we state a lemma defined as
follows.

Lemma : N tð ÞSAPGA ¼ N tð ÞSGA � k; where t > T:

Due to the influence of mutation and crossover, the expected
number of offspring produced by candidate i under pattern h is
given in Eq. (9) and the definitions of symbols are shown in Table 1.

nh
i t þ 1ð Þ � f i

f
� 1� l hð Þ

L� 1
pc

� �
1� npmð Þ ð9Þ

In the tth generation, the fitness at order n under pattern h can
be expressed as Eq. (10).

Mn
h tð Þ ¼ 1

Nh tð Þ
X
i2h

f ið Þn ð10Þ

The expected mean fitness of pattern h in the (t + 1)th genera-
tion consists of two parts. One is the original solution inherited
from the parent population without destruction; the other is the
new solution produced by recombination operations.

The mean fitness of the solutions under pattern h in the (t + 1)th
generation is represented by Eq. (11).
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Mq
h t þ 1ð ÞSAPGA ¼

P
i2hn

h
i
tþ1ð Þf iþ

P
j2hnj f jP

i2hn
h
i
tþ1ð Þþ

P
j2hnj

¼
P

i2h f ið Þqþ1 1� l hð Þ
L�1pc

 �
1�npmð Þ= f

�
þ
P

j2hnjf jP
i2h f ið Þq 1� l hð Þ

L�1pc

 �
1�npmð Þ= f

�
þ
P

j2hnj

¼ Mqþ1
h

tð Þ Nh tð Þ�k½ �aþ
P

j2hnjf j

Mq
h
tð Þ Nh tð Þ�k½ �aþ

P
j2hnj

ð11Þ

where q is the selected candidates to be measured by pattern the-

ory; a ¼ 1� l hð Þ
L�1 pc

h i
1� npmð Þ= Skrþ f eð Þ

As a comparison, the corresponding prototype for the mean fit-
ness of the solutions under pattern h in the SGA is given in Eq. (12)
[27].

Mq
h t þ 1ð ÞSGA ¼ Mqþ1

h tð ÞNh tð ÞbþP
j2hnjf j

Mq
h tð ÞNh tð ÞbþP

j2hnj
ð12Þ

where b ¼ 1� pcð Þ 1� pmð Þn
From Eqs. (11) and (12), it is obvious that the SAPGA has a

higher mean fitness than the SGA under pattern h. Therefore, the
self-adaptive population schema promotes the SAPGA to have
more accurate solutions and a faster convergence speed.

Mq
h t þ 1ð ÞSAPGA � Mq

h t þ 1ð ÞSGA ð13Þ
3. Experiments and results

The data in this section were originally collected from one blast
furnace with a working space of 2650 m3. When algorithms needed
to be verified before going online, we obtained datasets from the
local server by sampling from the Oracle database. As data quality
is one of the most important issues in identifying data sources, the
GMM method is used to group the datasets into different cate-
gories and eliminate the one that does not satisfy the high data-
quality requirements. The Calinski–Harabasz index [28], a cluster-
ing evaluation function shown in Eq. (14), is taken into account to
determine the optimal number of cluster centers. A higher Calin-
ski–Harabasz index represents a better clustering performance,
which is caused by less covariance inside the cluster and greater
covariance between clusters. Therefore, it is easy to determine that
the best cluster number in Fig. 5 is 4. Moreover, there are three
working patterns in the ironmaking process: the ascended, des-
cended, and stationary operation trends.

Therefore, the cluster with the worst performance is eliminated
to adjust the iron production conditions.

s mð Þ ¼ tr Bmð Þ
tr Wmð Þ

k�m
m� 1

ð14Þ
Fig. 5. Correlation between the evaluation index and cluster numbers.
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where k is the number of samples,m is the number of clusters, Bm is
the covariance matrix between different clusters, Wm is the covari-
ance inside the cluster, and tr is the trace of the matrix.

The samples taken from the cloud database are divided into four
groups. We take the silicon content and the top pressure as the
representation of the clusters in Fig. 6. The yellow cluster has a
wide distribution in top pressure, which is abnormal in blast fur-
nace operation. To make the top gas pressure recovery turbine
work efficiently, the blast furnace top pressure must remain stable
and fluctuate within a narrow range. Therefore, the cluster repre-
sented by a widely distributed top pressure is deleted from the
datasets to increase the data quality.

After the elimination of the unsatisfied cluster, the dGRU is ver-
ified by the remaining 2000 samples, 20% of which are divided into
a test dataset. The input arguments of the deep neural network are
the permeability index, CO2, CO, bosh gas index, theoretical com-
bustion temperature, top temperature northeast, top temperature
southwest, top temperature northwest, and top temperature
southeast. In Fig. 7, it is shown that the dGRU-RNN has an excellent
performance in following the changing trend of the output argu-
ments, including the silicon content, coke ratio, and iron yield.
The comparison between the practical data and the predicted data
indicates that the dGRU units have high accuracy and fast conver-
gence. As listed in Table 2, a root mean square error (RMSE) of
0.025 in the silicon content means that the dGRU-RNN has an
extraordinary ability to learn the physical dynamics of the iron-
making process.

It seems that the fluctuation of the coke ratio is more balanced
than the silicon content and iron yield. To obtain a more intuitive
understanding of the simulation results, the predicted coke ratio
with its corresponding error are displayed in Fig. 8. It can be seen
that the dGRU-RNN can track the change trend of the coke ratio
with minor errors most of the time. However, several major errors
at a high coke ratio indicate that the deep neural network model
can have low accuracy when encountering a sudden change. There-
fore, the dGRU has great potential in dealing with a steady industry
process such as blast furnace ironmaking.

Many variants of the SGA exist, including the adaptive genetic
algorithm (AGA) and the genetic algorithm with simulated anneal-
ing mutation probability (SAMGA) [29,30]. Four numerical test
functions (Eqs. (15)–(18)), characterized by single object optimiza-
tion, are conducted to compare the performance of the SAPGA and
SGA, as well as other GA variants. From Fig. 9, we can find Eq. (15)
with a minimum at (0, 0), Eq. (16) with a minimum at (3, 0.5),
Eq. (17) with a minimum at (p, p), and Eq. (18) with four mini-
mums at (3, 2), (�2.805, 3.131), (�3.779, �3.283) and (3.584,
�1.848), respectively.
Fig. 6. Representation of the four-component GMM in the presence of clusters.



Fig. 7. Prediction results of the dGRU-RNN for multiple ironmaking production
indices.

Table 2
A comparison of predicted and practical data.

Index Error

RMSE MSE MAE SD

Iron yield 123.5 15251 94.91 360.02
Coke ratio 4.60 21.13 3.75 12.40
Si content 0.025 0.0006 0.018 0.096

MSE: mean square error; MAE: mean absolute error; SD: standard deviation.

Fig. 8. Coke ratio error bar chart on the polar axis. Widths represent the predicted
coke ratio, and the radii are their corresponding errors.
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f = 0.26(x2 + y2) � 0.48xy ð15Þ

f = (1.5 � x + xy)2 + (2.25 � x + xy2)2 + (2.625 � x + xy3)2 ð16Þ

f = �cos(x)cos(y)exp[�(x � p)2 � (y � p)2] + 1 ð17Þ

f = (x2 + y � 11)2 + (x + y2 � 7)2 ð18Þ
The optimizing processes of Eq. (18) by four GA variants are

shown in Fig. 10, in which the SAPGA has the most outstanding
performance in terms of both searching accuracy and convergence
speed. The SAPGA can converge to the optimum within five itera-
Fig. 9. 3D graph of the test functions for GA vari
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tions, which is far less than other GAs. Under some conditions,
the SGA—as well as other GAs—can be stuck in a local extreme.
However, the SAPGA was seldom stuck in local optimums during
the test, due to its self-adaptive scheme. The combined fitness
skewness and population size schema lead to a typical phe-
nomenon in which the number of solutions will first increase
and then decrease during the evolution process, which contributes
to avoiding local extreme and improving computation efficiency.

To obtain a more intuitive visualization of the optimization
effect, the optimized solutions of Eq. (18) at a certain generation
are presented in Fig. 11 by transforming the 3D graph to the
two-dimensional plane. The results indicate that the SGA has the
widest population distribution around optimal points at the final
stage. However, the SAPGA has highly concentrated solutions and
can find all four optimal points, displaying a much better perfor-
mance than other GA variants. Thus, the SAPGA is demonstrated
to be more powerful than the other three typical GA variants in
optimizing the single-objective optimization problem.
ants. f is the fitness of GA in each evolution.
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After the validation of the SAPGA, it is merged in conjunction
with the dGRU to optimize the actual ironmaking process. As for
the blast furnace, the output and input sequences can vary signif-
icantly due to different producing conditions. The iron quality sil-
icon content and the energy consumption coke ratio are
determined by the operation level of the field engineers, while
the iron yield can change dynamically according to current and
future market situations. Conflicting goals always exist among
material suppliers, iron producers, and steel customers. Therefore,
it is of vital importance for an ironmaking plant to depend on a
multi-objective optimization algorithm to balance these contradic-
tory objectives. Before uploading the model to a cloud factory sys-
tem, we must verify the multi-objective optimization algorithm by
means of three necessary procedures. First, a hybrid framework
based on the conventional GRU-RNN and the SGA is applied to
optimize the process indexes in the blast furnace. After that, the
improved algorithms replace the traditional ones and optimize
the ironmaking process in the time and space scale. Finally, we
deploy the verified dGRU-SAPGA to a distribution computing sys-
tem Spark in Standalone mode.

To take the randomness of GAs into consideration, each test is
repeated 100 times. As shown in Fig. 12, the Spark Standalone sys-
tem has a huge advantage in terms of computing efficiency. The
median running time of the dGRU-SAPGA at the distribution sys-
tem is 0.04 s, which is far less than the 0.10 s at the local server.
During local tests, the modified hybrid framework dGRU-SAPGA
runs slightly faster than the GRU-SGA. However, there are more
Fig. 10. Fitness iteration of GAs on test function.

Fig. 11. Solution distributions of GAs for test Eq. (18) terminated at the 20th
generation.
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outliers of the dGRU-SAPGA than of the GRU-SGA, which means
that the latter algorithm is more stable than the former one.

We have deployed the verified hybrid framework dGRU-SAPGA
to the cloud factory for more than two months. As illustrated in
Fig. 13, the iron production has increased by 1.29%, the coke ratio
has decreased by 3.60%, and the silicon content has decreased by
an average of 10.61%.
4. Conclusions

A highly integrated and large-scale ironmaking process manu-
facturing factory requires a timely response and an elastic comput-
ing system to deal with a variety of working conditions.
Conventional methods are limited in the ironmaking process;
therefore, a hybrid-model-based distribution computation method
was proposed to optimize the conflicting objectives of the blast
furnace ironmaking process. In the local mode, the dGRU-SAPGA
exhibits a competitive performance in modeling and optimizing
the ironmaking process. Based on three-step verification, the
hybrid optimization framework in the Spark distribution system
was applied to the #2 blast furnace of Guangxi Liuzhou Iron and
Steel Group Co., Ltd. After two months of application, the multiple
production indicators of the blast furnace were significantly
improved. It should be noted, however, that the multi-objective
optimization service alone is insufficient for the ironmaking pro-
cess. The distribution computation-based cloud factory is in need
of many other services, including intelligent detection, data fusion,
fault diagnosis, and advanced control.
Fig. 12. The computation efficiency of multi-objective optimization by different
methods.

Fig. 13. Effect of multi-objective optimization service in the blast furnace cloud
factory.
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