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With the concepts of Industry 4.0 and smart manufacturing gaining popularity, there is a growing notion
that conventional manufacturing will witness a transition toward a new paradigm, targeting innovation,
automation, better response to customer needs, and intelligent systems. Within this context, this review
focuses on the concept of cyber–physical production system (CPPS) and presents a holistic perspective
on the role of the CPPS in three key and essential drivers of this transformation: data-drivenmanufacturing,
decentralizedmanufacturing, and integrated blockchains for data security. The paper aims to connect these
three aspects of smart manufacturing and proposes that through the application of data-driven modeling,
CPPS will aid in transforming manufacturing to becomemore intuitive and automated. In turn, automated
manufacturing will pave theway for the decentralization of manufacturing. Layering blockchain technolo-
gies on top of CPPS will ensure the reliability and security of data sharing and integration across decentral-
ized systems. Each of these claims is supported by relevant case studies recently published in the literature
and from the industry; a brief on existing challenges and the way forward is also provided.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Transformation in manufacturing

Value creation in the manufacturing industry has been subject
and witness to radical evolution over the past two centuries. Be
it the steam-powered factories of the First Industrial Revolution,
the application of mass production technology during the Second
Industrial Revolution, the automated manufacturing of the Third
Industrial Revolution, or—most recently—the digital revolution in
manufacturing known as ‘‘smart manufacturing,” each has dis-
rupted existing manufacturing paradigms and transformed the
efficiency, productivity, safety, and profitability of the global
manufacturing sector. Manufacturing has been a key pillar in the
global economy, and the most recent transformation toward smart
manufacturing has intrigued most developed and developing
nations. These nations are now transforming their existing manu-
facturing infrastructure and labor markets to produce personalized
and specialized products—with targeted investments in research
and development (R&D) and an emphasis on technological innova-
tion [1,2]. Table 1 presents some of the major enterprises and R&D
initiatives taken in this direction across the world.
1.2. Enablers of a paradigm shift in manufacturing

The advancement and expansion of information and communi-
cation technologies (ICT), wireless networks, and the Internet of
Things (IoT) in the last decade have created an unprecedented
opportunity to access and use data ubiquitously across various
domains and, more specifically, in manufacturing processes [6,7].
Moreover, the rise of artificial intelligence (AI) algorithms, includ-
ing machine learning, deep learning, reinforcement learning, and
knowledge graphs, have fostered the operation and control of
manufacturing systems to become more intuitive, intelligent, and
informed [3,8]. Technologies such as the Industrial Internet of
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Table 1
Evolution of global smart manufacturing initiatives over the decade [1,3–5].

Country Initiative Year of
inception

Germany Industry 4.0 2011
UK High Value Manufacturing Catapult 2011
USA Smart Manufacturing Leadership

Coalition
2012

Sweden Production 2030 2013
Republic of Korea Manufacturing Innovation Strategy

3.0
2014

China China Manufacturing 2025 2015
Singapore Industry Transformation Maps 2017
Japan Connected Industries 2017

Fig. 1. The future of factories driven by the integration of various cyber technolo-
gies with physical systems (machines and humans) for automated and smart
manufacturing technologies.
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Things (IIoT), cloud computing, edge computing, and fog comput-
ing have enabled otherwise resource-constrained and dispersed
industrial devices and systems to gain powerful computation capa-
bilities with explicit communication and coordination, thereby
enabling near real-time data-driven decision-making [9–11]. The
application of these computational resources and network-based
technologies in driving the shift toward next-generation manufac-
turing systems is often referred to as ‘‘smart manufacturing” or the
‘‘factories of the future” [3,7].

Along with the acceptance of this current generation of compu-
tation technologies, a strong and sustained market desire and a
push for personalized products have contributed equally to the
change of trends in manufacturing practices [12,13]. The concept
of modularity, which has been adopted by the automobile sector
in recent years, is an ideal example. Modularity on the automotive
shop floor requires identical automobile components to be mass
produced in a conventional assembly line. It is only at the finish
(i.e., the last stage of the assembly line) that custom modules are
added to give each model/product its unique characteristics. Thus,
mass production has become hybridized with customization to
allow for the production of unique goods at scale, thereby enabling
strategies for ‘‘mass customization” by producing highly personal-
ized products in dynamic batch sizes and efficiencies at the cost of
conventional assembly lines [14]. In particular, the confluence of
modern digital technologies and networks (ICT and AI), along with
the drive toward mass customization in producing personalized or
customized products, has triggered a disruption in existing manu-
facturing paradigms and aims to transform global manufacturing
into a smarter, more automated, and decentralized version of itself
[2,13,15], as represented in Fig. 1.

In this review, we present a broad overview of cyber–physical
production system (CPPS) and offer our views on how CPPS will
act as key enablers of next-generation manufacturing systems.
We do not intend to provide a systematic and detailed review of
the literature pertaining to CPPS, nor do we present a thorough
review of its enabling technologies, as these are reported
elsewhere [16,17]. Rather, we focus on three aspects of smart
manufacturing through the lens of CPPS: ① data-driven modeling,
② decentralized systems, and ③ integrated blockchains for data
security. We also establish a link among these aspects and explain
how one engenders the other. The remainder of this paper is out-
lined as follows. Section 2 presents a brief introduction and lists
essential characteristics of a CPPS with respect to smart manufac-
turing. Section 3 delves into CPPS-enabled data-driven manufac-
turing through the real-time data analytics, monitoring, control,
and optimization of manufacturing processes. In Section 4, we
reflect on decentralized manufacturing, its enablers, and the way
forward. Section 5 discusses the role of blockchain-enabled CPPS
for traceable, transparent, and secure data management across
decentralized manufacturing units. Lastly, the challenges in this
roadmap and the conclusive understanding of this study are pre-
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sented in Sections 6 and 7, respectively. The overall theme of the
review, as depicted in Fig. 2, is to bring forth the idea that CPPS will
aid in transforming manufacturing to become more data-driven
and automated, which in turn will pave the way for decentralized
manufacturing. The layering of blockchain technologies on top of
CPPS will ensure the reliability and security of the data shared
across such distributed systems.
2. Cyber–physical production systems

2.1. Conceptual overview and research impact

Smart manufacturing represents an advanced kind of manufac-
turing system in which the exchange and analysis of data in real
time, across all forms of the product life cycle (including the shop
floor, supply chain, and enterprise) [2,6] aids in the improvement
of the overall efficiency, productivity, and profitability of manufac-
turing processes through informed decision-making [8,18]. A CPPS
is the interactive and responsive platform of such an automated
manufacturing environment, as it amalgamates real-world,
dynamic physical processes with cyber systems through a
communication–computation–control loop, thereby ensuring
real-time acquisition, exchange, process, and feedback of data for
efficient and informed decision-making [11,19]. In contrast
to the typical automation pyramid that exists in conventional
manufacturing (which is a hierarchical system of field sensor–
programmable logic controllers–process control–optimization–
enterprise decision-making), CPPS offer more decentralized
characteristics that enable a multitude of instruments or machines
on the shop floor to seamlessly communicate and interact with
each other and with human operators, primarily aided by the IIoT
and data-driven models [16,17].

Since the inception of this ideology, CPPSs have garnered sub-
stantial interest in the manufacturing scientific community. Speci-
fic to this review, the visualization of similarities (VOS) viewer, an
open-source text mining and visualization program [20], was
employed to present a visual representation of the research direc-
tions pertaining to CPPS-aided manufacturing. Fig. 3 presents the
network plots generated from the viewer, in which three clusters
are identified for research topics of interest with respect to CPPS.



Fig. 2. The structured layers of a smart factory enabled by CPPS, in which data-driven manufacturing enables decentralized manufacturing through automation and
connected entities. The subsystems of a decentralized manufacturing system are exclusive to each other, but receive and exchange data with individual entities to make
informed decisions. This sharing of data and information necessitates blockchain technology, which in turn enables a transparent and secure smart manufacturing ecosystem.

Fig. 3. Network plots as visualized in the VOS viewer. A keyword search for terms
such as cyber–physical production systems and manufacturing was performed in
the Web of Science for the time period 2015–2019. Based on this filter, the first 50
terms that occurred a minimum of 30 times (in the title, keyword, or abstract) were
selected to generate the network plot. In the network plot, the size of the label and
its corresponding circle represent the weight (i.e., significance according to the
frequency of occurrence in literature) of the topic.
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The color of each term is determined by the cluster it belongs to,
while the lines represent co-occurrence of the term in the pub-
lished literature.

The green cluster with the term system as the centroid repre-
sents studies on the more basic and essential attributes of CPPS
and includes terms such as production system, digital twin, data,
and control. The blue cluster with the term architecture as the cen-
troid encompasses the concept of a CPPS as a platform and includes
terms such as network, demand, efficiency, and flexibility while
1214
the red cluster with technology as the centroid depicts the applica-
tion of CPPS, as evident through terms such as manufacturing,
research, enterprise, and Fourth Industrial Revolution.
2.2. Characteristics of CPPS

2.2.1. Real-time data access and analytics
In manufacturing, conventional production and scheduling

tasks have relied on deterministic planning, based on expert
human knowledge and experience. However, with the changing
paradigms in factories of the future, pervasive sensing objects that
are integral to CPPS will foster the real-time access, acquisition,
and storage of relevant manufacturing data, both perennially and
ubiquitously [11]. Recent developments and applications of seam-
less and tether-free methods of data acquisition, channelization,
transfer, distribution, and storage in a central database through
protocols such as message queuing telemetry transport (MQTT),
constrained application protocol, simple text-oriented messaging
protocol, and extensible messaging and presence protocol
[17,21], which are essentially IIoT technologies, have fostered a
greater degree of agility and dynamicity for data within manufac-
turing. Moreover, in addition to data acquisition, transfer, and stor-
age capabilities, data-driven AI models specifically devised from
machine learning, or deep learning algorithms that are integral
characteristics of CPPS [3], transform the aggregated data into
actionable and insightful information. This is done by devising
complex multivariate linear or nonlinear relationships (supervised
learning) without needing to significantly understand the physical
system, or by exclusively identifying underlying patterns in the
data itself (unsupervised learning), which would otherwise not
be conceivable [6,8]. The application of these analytical models
involves the concepts of descriptive analytics, causal analytics, pre-
dictive analytics, and prescriptive analytics, the application of
which is transforming manufacturing into highly optimized and
smart production facilities through planned and informed
decision-making.
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2.2.2. Decentralized system and interoperable capabilities
The advancement and development of CPPS have not only given

rise to highly automated and intelligent manufacturing systems,
but also brought forth the notion of decentralized manufacturing.
A decentralized manufacturing system has its resources geographi-
cally distributed, yet interconnected through central nodes to form
collaborative networks that are self-aware and have the capability
to make their own decisions [15]. The CPPS thus facilitates the
integration of distributed manufacturing resources and functional
departments into a single entity and provides visibility for all such
entities in the distributed network [22]. In this way, the potential
of shared manufacturing is also realized [23]. The concept of
shared manufacturing, which is still in its early developmental
stage, is based on the sharing economy that promotes peer-to-
peer (P2P) collaborations in the utilization of idle capacity and
the optimization of resource allocation across the manufacturing
network in order to improve production efficiency and thereby
enhance manufacturing competitiveness [23]. CPPS thus allows
for interoperable collaborations between distributed business
applications. On the shop floor, the CPPS autonomously recognizes
and responds to dynamic and unexpected situations, such as
machine breakdown, an abrupt lack of raw materials, or last-
minute demand orders. In this way, the CPPS demonstrates its dis-
tinction from the traditional manufacturing enterprise hierarchy,
while simultaneously rendering better control of production pro-
cesses with high quality and flexibility, and mitigating the risk or
uncertainty.
2.2.3. Human-in-the-loop CPPS
The confluence of a human workforce in a CPPS aims to blend

the worker’s experience and expert knowledge, with the computa-
tional and cognitive power of a CPPS [24]. Such hybrid systems
tend to be symbiotic in nature and present the dimension of adap-
tive automation, wherein, if one of the entities (human or CPPS)
falls short in performing its activities, the latter is expected to step
up and aid the former to perform the tasks at hand, according to
the expected quality of performance criteria. The concepts of
human-in-the-loop and human-in-the-mesh that pertain to
human–CPPS interactions for increased flexibility have garnered
specific interest in recent years [25,26]. The former combines
data-driven models with human knowledge and actions, augment-
ing the advance of machine intelligence while crediting the human
factor as the first in line and master of the production environ-
ment. The latter describes the role of humans as one of minimalis-
tic intervention, and acknowledges the CPPS as the lead driver of
the production environment. The confluence of human operators
and CPPS also increase the scope and convenience of flexible or
remote work, while introducing better control and decision-
making ability to the human workforce through the cognitive
abilities of CPPS [24]. More specifically, these advantages stem
from technologies such as AI, augmented reality and virtual reality,
and interconnected machines [26,27]. Such synergy would provide
human workers with sufficient response time to react and respond,
thus alleviating workers’ stress or even workload under anomalies
and faulty manufacturing conditions.
3. Data-driven modeling in manufacturing

Contemporary manufacturing enterprises, whether small or
large in scale, are equipped with a variety of commercial ICT tools
and solutions ranging from field sensors to planning and produc-
tion control (PPC), manufacturing execution systems (MESs), and
enterprise resource planning (ERP) in the hierarchy of order [2].
Each tool or solution is responsible for managing the different
levels of the enterprise. Through these platforms, data—regardless
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of whether it is historical or real-time, structured or unstructured—
can be collected and leveraged for informed actions and decision-
making across the life cycle of the product. These actions could
take the form of descriptive, predictive, and prescriptive analytics
depending upon the need, with descriptive and predictive analytics
having found prominence in recent times. To enable such actions, a
fundamental understanding of real-time production is essential.
While conventional approaches such as lean manufacturing and
six sigma, discrete-event models, and agent-based models have
been used in the past for making informed decision making, these
methodologies are rigid and meticulous in their formulation. They
are not cross-deployable and fail to capture all the intricate
dynamics at the enterprise level in real time [3,8]. In contrast,
data-driven models powered by machine learning and deep learn-
ing algorithms, which are generic in nature and cross-deployable,
can ideally source the data generated from the abovementioned
systems and leverage it for production monitoring, process control,
or real-time optimization as needed. Fig. 4 represents the flow
schematic of data-driven modeling for the abovementioned appli-
cations within the framework of CPPS [3].

3.1. Real-time process monitoring

Given the pervasive nature of data in modern manufacturing
enterprises, it is not only recommended to make use of the data
offline, but also online for improved manufacturing operations
and data-driven decision-making in real time. In today’s demand-
ing manufacturing environments, precise and dependable mea-
surements or estimates of product quality via process monitoring
are critical.

Dong and Qin [28] applied and evaluated dynamic-inner princi-
pal component analysis (PCA), dynamic-inner partial least square,
and dynamic-inner canonical correlation analysis algorithms for
the modeling of multidimensional manufacturing time-series data
for prediction, diagnosis, and feature analysis. Tennessee-Eastman
process data was used to validate the efficacy of these dynamic
models, and it was observed that the principal dynamic latent vari-
ables were the most predictable components in the whole data
space and had the fewest prediction errors. Papananias et al. [29]
developed a probabilistic model based on Bayesian linear regres-
sion for predictive analytics and advanced control in multistage
manufacturing. The model predicted the quality and associated
uncertainties of the online process monitoring data, after a training
period and was validated against experimental measurements for
flatness tolerance. Dong et al. [30] applied a Laplacian-based
weighting score to ease the otherwise cumbersome independent
component analysis and support vector data description (ICA-
SVDD) process that is typically used for multivariate process mon-
itoring. The model was tested on an online hot-rolling process to
monitor steel production. It enabled efficient monitoring of the
process, which involved non-Gaussian and highly correlated fea-
tures; reduced the complexity of the SVDD model; and signifi-
cantly improved the monitoring accuracy. Gajjar et al. [31]
proposed sparse PCA, a variant of conventional PCA, which pro-
duces the principal component with sparse loading via a
variance-sparsity trade-off and significantly improved the inter-
pretability of the principal components for online process monitor-
ing and fault detection. To monitor the transition of manufacturing
process variables from steady state to transient state and vice
versa, Zhao and Huang [32] proposed an integrated framework
by combining cointegration analysis (CA) with slow-feature analy-
sis (SFA), which is an unsupervised dimension-reduction method-
ology to determine varying latent variables from temporal data.
The framework was applied to an industrial-scale multiphase
chemical production process, where all the stationary and
non-stationary variables were identified a priori, followed by the



Fig. 4. The data from historical or real-time databases can be sourced and subjected to data-driven modeling via machine learning algorithms. The output of these models can
be stored in a separate database and further used for the offline visualization and analysis of production or process parameters via operator human machine interface (HMI)
screens, or they can be sent to distributed control systems (DCSs) so that essential control actions can be taken on the production line. ML: machine; LIMS: labratory
information management system; PIMS: production information management system. Reproduced from Ref. [3] with permission of John Wiley & Sons, Inc., � 2020.
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application of CA and SFA to monitor the variables. Statistical infer-
ences were devised to detect and distinguish the various states of
the process variables during changes of operation or at faulty oper-
ation states by checking the corresponding deviations, either from
steady-state or transient conditions. Shang et al. [33] proposed SFA
for the concurrent monitoring of deviations of process variables
from operating points (ranges) and the associated process dynam-
ics. Four process monitoring indices were devised based on the
derived slow features and their physical interpretations were
explained, which made it possible to suitably distinguish whether
the changes to process variables in the steady state or under
dynamic conditions were normal or faulty. In a related study,
Zhong et al. [34] employed unsupervised regularized slow-
feature analysis for online product quality estimation of the puri-
fied terephthalic acid process. Modified just-in-time learning fur-
ther improved the online prediction performance by addressing
the nonlinearity of the systems. The methodology as a whole could
adequately handle the process dynamics by exploring the temporal
relationship among the entire set of input variables.

3.2. Data-driven process control and optimization

Conventional manufacturing has resorted to statistical process
control for measuring and controlling production quality during
1216
the manufacturing process, rather than applying advanced process
control such as model predictive control (MPC), which finds exten-
sive application in the hydrocarbon sector, primarily due to the
cost versus application constraints and the need for dedicated dis-
tributed control system (DCS) architecture [10,35]. However,
developing data-driven control systems and deploying them on a
CPPS platform offer the possibility of widespread control and opti-
mization throughout the product life cycle in manufacturing enter-
prises, thereby alleviating the aforementioned constraints.

Wang et al. [35] studied real-time control in a two-machine
geometric serial line by developing a Markov chain model to ana-
lyze the transient behavior with constraints on the minimum
required and maximum allowable residence time. The structural
properties of the system were analyzed, and an iterative algorithm
was devised to perform real-time control, which improved the sys-
tem performance by balancing the trade-off between the produc-
tion rate and the scrap rate. Chen et al. [36] used real-time
production data to devise max-plus linear models to emulate the
dynamic relations between system input and corresponding sys-
tem machine status. The max-plus linear model was then layered
by time-varying, event-driven MPC to modify the job release plans
and thereby address the real-time feedback control problem in
order to develop a coherent planning structure, which could even-
tually be incorporated into the ERP or MES.



M. Suvarna, K.S. Yap, W. Yang et al. Engineering 7 (2021) 1212–1223
Wong et al. [37] devised recurrent neural networks (RNNs)-
based MPC (RNN-MPC) for applications in pharmaceutical manu-
facturing. RNNs aptly simulated the dynamics of a continuous
stirred-tank reactor (CSTR) in pharmaceutical manufacturing and
enabled a satisfactory closed-loop performance for the MPC of a
complex reaction in the CSTR, which are essential to meet the reg-
ulations of critical quality attributes. Min et al. [38] proposed a
machine learning-based control method to increase the yield of
light oil in a petrochemical production unit. They developed the
LightGBM model to simulate the production process based on
real-time data from the plant and eventually integrated it online
with supervisory control and data acquisition, for real-time recom-
mendations and production control. Shang et al. [39] devised a
piecewise linear kernel-based support vector cluster (SVC) to for-
mulate the uncertainty of a data-driven robust optimization. The
uncertainty set was nonparametric in nature, and aided in solving
the mixed-integer linear programming optimization formulation
that was specifically designed for production planning in a chemi-
cal process plant. Ning and You [40] proposed a data-driven
approach for optimization under uncertainty based on multistage
adaptive robust optimization and nonparametric kernel density.
This data-driven optimization model was applied for the short-
term scheduling of multipurpose batch processes, and yielded
31.5% more profits than conventional optimization scheduling
applications.
3.3. Section summary

Within the manufacturing framework, the increased adoption
of the IIoT has made data acquisition and storage more pervasive
than ever before. A gradual question arises as to how to effectively
and efficiently make use of all that data in actionable insights, con-
sidering the deterministic nature of traditional manufacturing
operations, which are currently heavily reliant on human experts.
In this context, the more recent ‘‘technology push” in the field of
AI as a whole and its ‘‘market pull” within the context of smart
manufacturing have only expanded their application to make use
of this massive data generated across the various hierarchical
levels in manufacturing. Thus, through CPPS, a dynamic knowledge
base for the shop floor, supply chain, and enterprise can be devel-
oped, in which data-driven models can learn from historical trends
and patterns and aid in taking informed actions and decision-
making. Such data-driven practices are more intuitive and data-
oriented, and mitigate any negative effects on the production pro-
cess or decision-making; in this way, they prove advantageous to
both the cost and the quality of a production process, thus intro-
ducing the ‘‘smart” aspect of manufacturing. Through real-time
process monitoring, analytics, and the data-driven control of pro-
duction processes, CPPS also foster new service models such as
predictive maintenance, fault diagnosis, and performance opti-
mization, all of which are pushing conventional production-
oriented manufacturing toward a more service-based
manufacturing.
4. Decentralized manufacturing

Traditionally, manufacturing systems are an integration of
heterogeneous systems, characterized by the concentration of
capital, materials, and machineries in a single manufacturing
facility [41], with decision-making capabilities (e.g., production
planning, scheduling, and control) performed at one central node
(e.g., computers and servers) [42]. Such a centralized system offer
various benefits in terms of ease of control, a simple database
design and architecture that permits ease of data management,
and adherence to standardized policies and procedures [43].
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However, these systems tend tobehighly inflexible due to their rigid
structure [10], to suffer from bottlenecks in the case of increased
demandwhile operating under limited capacity [44], to be suscepti-
ble to whole-system breakdown and failure, and to have mainte-
nance issues, as the whole system depends on its central unit.

The limitations of a centralized system, accompanied by new
manufacturing paradigms and the push toward mass customiza-
tion, are guiding the manufacturing industry toward decentraliza-
tion. This is described as a P2P system in which all peers
communicate symmetrically and perform equal roles [43]. Various
decentralized manufacturing concepts and networks exist,
including segmented manufacturing, fractal manufacturing,
decentralized mini-factories, strategic networks, virtual enter-
prises, and cluster concepts [15], and offer several advantages. In
terms of resources, a distributed structure allows the final products
to be manufactured closer to customers, thus reducing the costs
associated with production, storage, and transportation [10]; facil-
itates the acquisition of timelier information [13] and raises its
responsiveness to the consumer market, so that decisions can be
made promptly and the production-to-sale time can be reduced;
distributes workloads across multiple suppliers and machines, so
that the failure of one of these components does not cause a total
production halt [10]; makes use of excess or idle capacity through
resource sharing; supports production scalability to adapt
throughputs to the changing demand [45]; and, lastly, enables
on-demand production so as to minimize the need to forecast
demand and keep large inventories, thus minimizing resource
waste [14]. In terms of the network architecture, a decentralized
system enhances system diversity and flexibility [15] and mini-
mizes performance bottlenecks by balancing the overall load
between all the nodes, as well as by reducing the overall network
latency through edge and fog computing [46].

4.1. Technology enablers of decentralized manufacturing

Several technologies have emerged over the years that serve as
enablers for the decentralization of CPPS. The rise of ICT cannot be
undermined, as it serves as one of the key drivers for CPPS [16]. In
particular, in a connected industry, the effective exchange of data
between decentralized units (e.g., machines, factories, supply
chains) is crucial in order to perform data analysis for near real-
time decision-making and control. A key technology in the realiza-
tion of decentralized control systems is middleware, which is a
reusable software layer between the operating system and dis-
tributed applications [47]. These technologies facilitate the com-
munication in industrial control systems, as well as the
integration of heterogeneous devices and subsystems [47]. Some
commonly known middleware architectures include open plat-
form communications unified architecture (OPC UA), data distribu-
tion service, and real-time common object request broker
architecture. It has been observed that none of these middleware
technologies are able to support all the requirements of DCSs
[47]. Accordingly, the growth in high-speed Internet, including
5G, as well as the more recent multi-protocols that support indus-
try standards such as Message Queuing Telemetry Transport
(MQTT), Eclipse, and RabbitMQ, are of paramount interest to the
success of middleware adoption. The middleware technology itself
would not cause a redesign in the production structure, but would
ensure low latency in the network and supports near real-time
communication between decentralized units [46]. This is especially
significant in the era of big data and in a landscape where the man-
ufacturing environment is constantly changing. Furthermore, the
deployment of radio-frequency identification devices would be
vital in providing efficient real-time monitoring and data acquisi-
tion of the distributed production lines and supply chain under
operational and environmental uncertainties [48].
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4.2. Relevant case studies

In a decentralized manufacturing system, job dispatching and
resource allocation must be processed in multiple distributed fac-
tories, each of which consist of an independent and unique produc-
tion line. Feasible planning and scheduling methods must be able
to tackle the inherent challenges posed by a decentralized manu-
facturing system. Therefore, ongoing research has been conducted
on this specific topic—and a chronological review of the same is
presented here. Block et al. [49] introduced a new CPPS-oriented
PPC approach for a decentralized MES. The decentralized frame-
work consisted of edge computing, where data acquisition was
performed in real time, and stored and evaluated at the edge
devices. P2P communication was implemented using Hyper text
Transfer Protocol (HTTP) requests via representational state trans-
fer and WebSockets. Li et al. [41] proposed a multi-agent system
(MAS)-based approach to achieve global optimal scheduling for
distributed manufacturing and resource sharing. The approach
comprised an enterprise-level multi-agent subsystem, which
included the job, resource, and manager agents; an enterprise alli-
ance; and the mediator and scheduling agents. Experimental inves-
tigation showed that the MAS approach increased the scheduling
efficiency by up to 35.2%. Vespoli et al. [50] introduced a decentral-
ized scheduling approach for the job sequencing of a constant
work-in-progress production line. The approach was validated
through a multi-agent simulation, which resulted in an increase
in the system’s productivity by 4%. Fu et al. [51] proposed a
stochastic multi-objective brain storm optimization algorithm to
solve the scheduling problem (by minimizing the tardiness and
energy consumption) of a distributed manufacturing system com-
prising multiple factories, each of which consisted of an indepen-
dent production line. The proposed algorithm was compared
with two algorithms, non-dominated sorting genetic algorithm II
[52] and multiple-objective genetic local search [53], with a set
of test data and outperformed the other two. Kumar et al. [54]
developed an agent-based approach for operations planning, which
allowed the distribution of decision-making to various functional
agents. The approach was applied to solve the complex four oper-
ation functions integration problem for an automotive manufac-
turing firm. The performance of the proposed approach was
compared with the firm’s existing planning approach, and was
found to provide up to 21.6% and 50.8% reduction in production
cost and computational time, respectively. However, this work
was not performed under dynamic conditions, which was a limita-
tion of the study.

The concept of a distributed MPC (DMPC) with respect to
decentralized manufacturing necessitates a special mention, as
the individual controllers in the DMPC counter the challenges asso-
ciated with data transmission issues, the control of a multitude of
process variables, and computational complexities in large-scale
decentralized plants with their numerous subsystems [55,56].
DMPCs utilize an array of unique controllers to perform the control
calculations and actions in distinct processors, while the individual
controllers communicate among themselves to achieve the closed-
loop process objectives. Farina et al. [57] devised a cooperative
iterative DMPC and compared it with a non-cooperative DMPC
by emulating the functioning of a real-world natural gas refrigera-
tion plant in a simulation environment. Their work summarized
that each individual controller in the DMPC required complete
working knowledge of the entire plant as compared with the
distributed predictive control (DPC), which could otherwise limit
the scalability of such controllers. However, with the easier access
to ICT technologies in modern times, along with the push toward
digital transformation, this limitation could be overcome by effec-
tively meeting the infrastructure and communication require-
ments. In the above study, the performance of the DMPC
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overpowered that of the DPC in all the tested scenarios, proving
its robustness in decentralized manufacturing processes. To cope
with the latency-related issues in data transfer in decentralized
manufacturing, Ravi and Kaisare [58] implemented a distributed
MPC framework in which the process variables of one or more
sub-entities of the whole plant were measured infrequently and
then relayed after an inherent delay. They employed the state aug-
mentation formulation and integrated it with a Kalman filter cen-
tralized estimator. This method was able to provide better
prediction control and improved the control performance under
varying latencies in linear and nonlinear systems. Yin et al. [59]
devised a distributed monitoring framework for the absorption
column in a post-combustion carbon dioxide (CO2) capture plant.
They modeled the absorption column as five distinct interacting
subsystems, and a distributed state estimation network with local
estimators was developed for the entire column. The significance
of the work was that it relied on an iterative algorithm with novel
triggering conditions to ease the trade-off between fast conver-
gence and efficient computation. Their simulation results con-
firmed that the proposed DMPC could provide good state
estimates of the absorption column subsystems.
4.3. Section summary

In an increasingly dynamic and competitive production envi-
ronment, along with the growing drive toward mass customiza-
tion, it becomes imperative to allocate the available resources
more efficiently and effectively. A decentralized manufacturing
system systematically combines the numerous distributed entities
as a conglomerate of autonomous and proactive machines or
equipment, driven by intelligent AI algorithms. Its system architec-
tures are both scalable and modular and constantly collaborate and
mutually interact with each other, aiding the aforementioned
cause. Such a system offers numerous benefits, such as flexible
architecture, the capability to meet on-demand production, and
increased responsiveness to consumer market, among others.
Given the inherent nature of such systems to evolve and scale
up, along with the evolution and application of digital technologies
in manufacturing, the trend toward decentralization will only
accelerate. This will aid the transformation in manufacturing, and
decentralization will find extensive application in production plan-
ning and control, job dispatching, resource allocation, and market-
to-customer proximity, as discussed in the preceding section.
5. Efficient and secured data sharing in manufacturing

CPPS-oriented decentralization seeks to evolve communication
architecture in manufacturing environments from the currently
existing cloud- or Internet-service-based architectures to an archi-
tecture in which all the entities involved in the systems communi-
cate and interact with one another (as in a P2P network). As a
result, the issues of data security, legitimacy, and trustworthiness
come to the fore [60]. The blockchain emerges as a promising tech-
nology to address this issue. In the broadest sense, a blockchain can
be defined as a digital distributed ledger technology that seam-
lessly stores all the data exchanges with a time-stamp on them,
to ensure legitimate tracking of data. Moreover, all the information
in a blockchain is cryptographically stored, ensuring immutability,
legitimacy, and trustworthiness [61,62]. Thus, the combination of a
blockchain and an Industrial Internet platform promotes the
notion of P2P interaction, as well as interaction among the numer-
ous physical entities in CPPS-aided decentralized manufacturing,
with trust and in an auditable manner [63].
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5.1. Essential features

5.1.1. Reliable access and secure management of edge devices and data
sources

Blockchain nodes can be used as entrances for industrial equip-
ment and other data resources to access the Industrial Internet.
Based on the blockchain, the decentralized identity and authoriza-
tionmanagement of industrial equipment can be realized. Dynamic
management actions such as device identification, registration, dis-
covery, access, and deletion can also be reliably achieved [64]. Key
data such as equipment interconnection, operation records, and
data exchange can be recorded on the blockchain to form a trusted
edge device access system. Furthermore, the blockchain can effec-
tively monitor the status of equipment connected to the Industrial
Internet platform and automatically signal the alarm for security
risks and malicious attacks by means of smart contracts [60].

5.1.2. Trusted collection and safe sharing of industrial data
A data management platform based on a blockchain can achieve

reliable data collection and secured sharing. This promotes data
exchange between different industrial platforms, thereby connect-
ing isolated information and data. A blockchain makes it possible
to establish data security and access control, as well as formulating
data transmission and authorization rules, in order to carry out
data authority management and encryption services [65]. The
life-cycle supervision of data can be implemented through data
deposit certification, transmission tracking, and user credit evalua-
tion; the blockchain features of anti-tampering, security, and
transparency make this function more credible. Such a platform
promotes the evolution of the Industrial Internet from equipment
and data networks to knowledge and value networks, while realiz-
ing cross-industry data sharing, value mining, and security protec-
tion. The trusted sharing of data, algorithms, services, and models
in different industries and different fields also boosts the applica-
tion of digital twins and other simulated models in the Industrial
Internet with the aid of this platform [62].

5.1.3. Supply-chain management based on blockchains
Based on the Industrial Internet platform, real-time information

synchronization among multiple parties can be achieved. Key ele-
ments of the industrial supply chain, such as property rights
design, service orders, production processes, and product informa-
tion, can be stored on the blockchain. Based on real data, product
evaluation, service, and credit, many value-added services in
supply-chain management can be realized, such as shared design
requirements, collaborative production, intelligent matching of
supply and demand, product anti-counterfeiting traceability, and
intelligent operation and maintenance [66,67].

5.2. Recent works on blockchains in manufacturing and case studies

In recentyears, the incorporationofblockchains incyber–physical
systems has garnered much interest in the research communities of
distributedelectrical grid systems, decentralized logisticsoperations,
and decentralized data sharing in healthcare, among others. While
the application of the blockchain across various domains is evolving,
its application in themanufacturing sector is in an even earlier stage.
A fewnotableworks published recently arementioned below to pro-
vide readers with a contextual perspective on the role of the block-
chain in smart and decentralized manufacturing, followed by a
couple of actual implementations of blockchains in manufacturing,
which comprise our ongoing research initiative.

Lee et al. [63] proposed a unified three-level blockchain archi-
tecture including a connection net, cyber net, and management
net to address the key challenges of interoperability, data sharing
and security, automation, and resilience in decentralized manufac-
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turing systems. Leng et al. [68] presented 12 evaluation metrics for
the adoption of blockchains in manufacturing based on a ‘‘business
canvas model.” The key focus of their study was how these metri-
ces could support sustainable manufacturing and product life-
cycle management within the framework of CPPS-enabled smart
manufacturing. Angrish et al. [69] proposed a prototype platform
called the FabRec to handle a decentralized network of manufac-
turing entities, including both cyber and physical, in order to
enable automated transparency and smart contracts in such sys-
tems, which could be sufficiently verified through an audit trail.
They further tested their prototype in a bench-scale test bed plat-
form, which included computing nodes, physical devices such as
the Raspberry PI, and a basic computer numerical control machine
equipped with Ethereum smart contracts. They concluded that the
proof-of-concept study could be leveraged for a large-scale system
with further improvements in system design. Pal and Yasar [70]
presented a hybrid architecture for manufacturing supply-chain
information systems, which consisted of IoT applications and a
blockchain-based distributed ledger to support transaction ser-
vices in a multi-party global apparel business network. Their
model comprised an IoT-enabled smart global network with
unique addresses to foster interaction and cooperation among par-
ticipating companies in order to achieve common objectives. The
IoT was further layered with a distributed ledger (blockchain) to
support confident and reliable transaction services within such
global businesses. In a more recent study, Barenji et al. [71] pro-
posed blockchain-enabled fog computing for collaborative design
in decentralized manufacturing in order to realize customized pro-
duction. They first developed machine learning-based clustering
algorithms to categorize customer needs and expectations, fol-
lowed by the fog computing-based integration of the various phys-
ical and cyber entities of the production platform. A blockchain
layer was devised on this system to improve the data integrity,
trust, and security-related issues. For interested readers, a detailed
review on the prospects, current technology barriers, and future
directions of blockchains for CPPS-aided manufacturing is pre-
sented in a recent review article [72].

5.2.1. Accounts receivable and inventory financing
Accounts receivable and inventory financing (ARIF) is a com-

mercial loan based on asset control for warehousing in the manu-
facturing supply chain. Smart supply-chain management by the
Industrial Internet can ensure that the warehouse receipts are
taken without re-collateralization. This will assist banks in realiz-
ing the supervision and control of goods, thereby reducing loan
risks and optimizing industrial efficiency.

The life-cycle management of goods’ information can be
achieved through the Industrial Internet. Therefore, the ARIF busi-
ness model has been upgraded from a traditional strong depen-
dence on corporate credit to property-oriented risk management.
Such risk management is achieved through the application of
blockchain on big data and AI-related technologies. The key tech-
nologies are shown in Fig. 5. The status of goods can be monitored
and controlled through IoT technology in real time. This technol-
ogy helps to build smart warehouses and logistics systems, record
the outbound and inbound information of goods in real time, con-
trol the right to pick up goods, and reduce financing risks. More
specifically, this technology can perform non-contact identification
of the items to be inspected. It has the characteristics of fast read-
ing and writing, small size, strong penetration, large capacity, and
high security. GPS helps to track the location of goods in real time
and provides video data at key points in time to be noticed. AI tech-
nologies such as fingerprints and face recognition help to confirm
the identity of the operator and implement authority management.
The blockchain helps to connect data from different business sys-
tems. Each end of the industrial chain is added to the blockchain



Fig. 5. The key technologies in a warehousing logistics platform for ARIF.
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as a peer node to share necessary information. The data is simulta-
neously recorded on the blockchain and cannot be tampered with,
which ensures the authenticity of the data.

5.2.2. The Industrial Internet platform
The Industrial Internet platform connects the data flow

between consumption and production, and helps manufacturers
organize their resources and production processes flexibly. This
helps to realize low-cost, large-scale, and flexible customization
as well as experiential consumption, which improve product value
and enhance user retention. This ‘‘reverse production model,”
which is driven by users in modern manufacturing, is known as
the customer-to-manufacturer (C2M) model. This model can real-
ize the mass production of customized products according to the
individual needs of consumers. The process is shown in Fig. 6.

The C2M model innovates the design and production process
with a variety of Internet technologies. It merges data from clients,
e-commerce platforms, designers, and manufacturers to enrich the
database. Meanwhile, market trends can be predicted with the
help of massive data and machine learning technology, while a
smart production line is then created to achieve flexible manufac-
turing. Finally, mass production based on customized require-
ments is realized with the help of the e-commerce platform,
which can effectively control production costs. Through the entire
length of the supply chain and production network, as described,
the blockchain allows the consumer to seamlessly track all the
details from raw materials to the final product through the trans-
parent and real-time exchange of data, information, and communi-
cation between the customer and the manufacturer [73].

5.3. Section summary

This section presented the potential application of the block-
chain within the context of decentralized manufacturing for the
management of trust, security and smart contracts application,
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audits, and the detailed and legitimate traceability of records.
Moreover, as CPPS platforms make extensive use of predictive ana-
lytics via big data, which is traditionally stored in designated data-
bases, it is of paramount importance that the security of such
databases is ensured, specifically when accessed through Internet
services. In this context, the significance of the blockchain can be
realized in the form of data tracking, evaluation, anti-tampering,
and transparency, which are crucial in order to perform data anal-
ysis for near real-time decision-making and control. This section
described a few recent works on the application of blockchain-
enabled CPPS and discussed a couple of real-world applications
of blockchain catering to manufacturing practices in logistics,
inventory, and mass customization, which are directly linked to
our ongoing research endeavors to showcase the potential of
blockchain in the future of manufacturing.
6. Challenges and future perspectives

While it is well accepted in the literature that the CPPS is one of
the essential pillars in future manufacturing, its concepts, frame-
works, and success stories are still in their nascency, and several
challenges remain to be addressed and overcome for its successful
and widespread implementation. Table 2 summarizes some of
these challenges, specifically catered to the theme of this review,
as they establish the basis for future research directions.
7. Conclusions

This review collectively draws insights into the role and contri-
butions of CPPS in driving the next generation of manufacturing,
commonly referred to as ‘‘smart manufacturing” or ‘‘factories of
the future.” First, a brief overview of the prime enablers of this
paradigm shift in manufacturing was presented, after which the
concept of the CPPS was introduced. A holistic perspective on the



Table 2
Challenges in the transition toward CPPS to enable smart manufacturing.

Domain Challenges Authors Year Reference

Data exchange and
analysis

� When data is processed at edge devices and is not transmitted to the centralized unit of the system, some
information is lost by exchanging operational data over the edge computing paradigm, resulting in data
degradation. Balancing this trade-off is not straightforward.

Sprock
et al.

2019 [74]

� Currently, most of the data analysis is driven by AI and machine learning capabilities that are still performed
at the cloud. The next generation of CPPS must transfer these capabilities to the edge network.

Mocnej
et al.

2021 [44]

� Data heterogeneity remains one of the main problems encountered; it extends beyond the standard syntax
and semantics requirement needed for data exchange.

Lu and
Asghar

2020 [75]

System complexity � Interconnected devices often experience communication problems due to mutually incompatible networks.
These networks are normally provided by different vendors.

Balador
et al.

2017 [47]

� Each decentralized system could be exposed to dissimilar uncertainty patterns in the market needs, as well as
to different operational and environmental conditions.

Mocnej
et al.

2021 [44]

� The system needs to be scalable and flexible, as well as capable of self-adapting and self-organizing, so that it
is prepared to integrate new applications under any circumstances.

Mocnej
et al.

2021 [44]

Production planning
and control

� With the increasing number of product variants, the validity of planning data decreases due to the
unavailability of historical data.

Block
et al.

2018 [49]

Verification and
validation

� Standards and methods for data handling, decision-making, and execution would not be complete without
support for verification and validation. For a decentralized system, it remains a challenge to construct a
virtual simulation test bed that enables the proposed models to be tested and verified.

Sprock
et al.

2019 [74]

� The challenge of the efficient and optimum utilization of resources increases significantly for decentralized
systems under a multi-resource and dynamic environment.

Mocnej
et al.

2021 [44]

Security and data
privacy

� Governance over valuable data may be lost to the cloud solution provider, which controls a relatively large
number of standards and procedures for its own business process.

Helo
et al.

2014 [9]

� With greater interconnectivity and wider resource sharing in decentralized units, susceptibility to malicious
attacks and trust and credibility issues increase. To deal with complex interactions in CPPS, as well as trust
and consensus among various stakeholders, the peer nodes must be able to handle secure access to resources.

Bodkhe
et al.

2020 [46]

Fig. 6. The C2M business process. O2O: online to offline.

M. Suvarna, K.S. Yap, W. Yang et al. Engineering 7 (2021) 1212–1223
role of CPPS in the drive toward smart manufacturing was pre-
sented with a focus on data-driven manufacturing, decentralized
manufacturing, and integrated blockchain for secure data manage-
ment, which formed the main themes of this study.

The CPPS as a whole realizes the comprehensive connection and
management of end-to-end industrial data, equipment, products,
systems, and services. It fosters the online aggregation and config-
uration of massive industrial resources such as R&D design, manu-
facturing, operation, and maintenance services, and eventually
1221
aims to accelerate the transformation of enterprise organization
management through digital transformation. These digital tech-
nologies (i.e., big data, cloud computing, the IIoT, and AI) promote
the evolution of traditional manufacturing to an intelligent produc-
tion mode through platform convergence and intelligent applica-
tion in the CPPS. By transforming enterprises through such
intelligent production, CPPS fosters new service models such as
predictive maintenance, fault diagnosis, and performance opti-
mization, and thereby pushes conventional production-oriented
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manufacturing toward service manufacturing. Furthermore, the
IIoT-enabled CPPS platform opens up data flow between consump-
tion and production, allowing greater flexibility between manufac-
turing resources and production processes and leading to
personalized customization, which enhances product value and
boosts customer satisfaction and engagement. CPPS platforms
effectively integrate manufacturers, suppliers, consumers, develop-
ers, and other participants, and use information flow to drive tech-
nology flow, capital flow, talent flow, and material flow to form
platform-based business collaborations, capability sharing, and
other open development models. Such platforms realize the
dynamic allocation of the resource network and promotes net-
worked manufacturing, which can be decentralized in nature. By
layering the CPPS with a blockchain in such decentralized systems,
secure access to data flow and control can be established, ensuring
data security and trustworthiness, which in turn consolidate data-
driven manufacturing. Lastly, key challenges pertaining to various
aspects and applications of CPPS were presented, which serve as
research challenges to be addressed in order to expedite this jour-
ney toward the realization of smart manufacturing in the next
few years.
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