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a b s t r a c t

Dissolved oxygen (DO) is an important indicator of aquaculture, and its accurate forecasting can effec-
tively improve the quality of aquatic products. In this paper, a new DO hybrid forecasting model is pro-
posed that includes three stages: multi-factor analysis, adaptive decomposition, and an optimization-
based ensemble. First, considering the complex factors affecting DO, the grey relational (GR) degree
method is used to screen out the environmental factors most closely related to DO. The consideration
of multiple factors makes model fusion more effective. Second, the series of DO, water temperature, salin-
ity, and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet
transform (EWT) method. Then, five benchmark models are utilized to forecast the sub-series of EWT
decomposition. The ensemble weights of these five sub-forecasting models are calculated by particle
swarm optimization and gravitational search algorithm (PSOGSA). Finally, a multi-factor ensemble model
for DO is obtained by weighted allocation. The performance of the proposed model is verified by time-
series data collected by the pacific islands ocean observing system (PacIOOS) from the WQB04 station
at Hilo. The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency
(NSE), Kling–Gupta efficiency (KGE), mean absolute percent error (MAPE), standard deviation of error
(SDE), and coefficient of determination (R2). Example analysis demonstrates that: ① The proposed model
can obtain excellent DO forecasting results; ② the proposed model is superior to other comparison mod-
els; and ③ the forecasting model can be used to analyze the trend of DO and enable managers to make
better management decisions.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dissolved oxygen (DO) plays an important role in the sustain-
able development of aquaculture and marine ecology in coastal
cities. Nowadays,with the rapid development of industry, large volu-
mes of greenhouse gas emissions are increasingly intensifying glo-
bal warming [1]. As a result, the seawater temperature is rising and
DO is escaping from seawater [2]. If the DO concentrations in sea-
water are too low, marine organisms such as fish and shrimp will
be deprived of oxygen, leading to slow growth and even suffocation
[3]. For offshore aquaculture farmers, themassive scale of the death
of aquatic products will bring huge economic losses [4]. More
seriously, it is difficult for DO to diffuse into the depths of the ocean,
and a lack of oxygen will force aquatic organisms to change their
habitats [5]. The marine ecosystem could change significantly as a
result. Once the virtuous cycle of the ecosystem is broken, the sur-
vival of marine organisms will be greatly threatened [6]. Accurate
DO content forecasting is very necessary for marine ecological bal-
ance and for the aquaculture development of coastal cities. It can
provide a trend analysis of future changes in DO and facilitate the
management of decision-makers by enabling them to take effective
measures in advance [7,8]. Influenced by factors such as nutrients,
climate, ecological environment, and the life activities of aquatic
organisms, the DO content in seawater is nonlinear and has a
considerable time delay. This characteristic makes DO difficult to
predict. In addition, it is easy for data obtained by sensors to be lost
during transmission, and such data contains uncertain outliers,
posing more challenges to the accuracy of forecasting [9].
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1.1. Related works

In recent years, the rise of artificial intelligence (AI) technology
has spawned a wave of AI models. On this basis, DO forecasting
models can be divided into two types: physics-based models and
data-driven models. Data-driven models include AI-based models
and statistics-based models. To comprehensively evaluate state-
of-the-art efforts in DO models, we summarize the literature on
statistics-based models and AI-based models.

Statistics-based models have the advantage of easy calculation
in application. In addition, a statistics-based model can predict
an unknown situation by mining the potential relationship in the
DO series. In practical applications, DO series are nonlinear and
time-delayed. Faruk [10] used the autoregressive integrated mov-
ing average (ARIMA) model for DO forecasting to deal with the
instability and nonlinearity of time series. In the experiments of
Li et al. [11], the grey model was proposed to predict the trend
term of DO. Huan et al. [12] obtained the optimal parameter values
of the model through a Bayesian evidence framework. Khan et al.
[13] compared the new Bayesian regression model with the new
autoregressive modified fuzzy linear regression method. The com-
parison results show that the method based on fuzzy numbers can
better capture DO changes in an urban river environment. Khan
et al. [14] predicted changes in DO concentration by constructing
multiple linear regression (MLR) models, in which the uncertainty
of DO change was effectively characterized and propagated. In later
research by Kisi and Parmar [15], the MLR model was used as an
experimental comparison to explore the performance of other pre-
diction models. In general, these statistics-based models have
obtained the ideal forecasting effect for DO. However, forecasting
accuracy remains to be improved.

Compared with statistics-based models, AI-component models
have much better forecasting performance. The core of this section
focuses on describing models with AI components. Commonly used
AI algorithms include the multi-layer perceptron (MLP) [16], radial
basis neural network (RBNN) [17], back propagation neural net-
work (BPNN), extreme learning machine (ELM) [18], least square
support vector machine (LSSVM) [19], and fuzzy neural network
(FNN) [20,21], among others [22]. Since the selection of different
parameters has a huge impact on the performance of an AI model,
it is necessary to determine the optimal parameters by means of
an optimization algorithm. Ren et al. [23] used a genetic algorithm
(GA) to optimize the parameters of FNN. In addition, particle swarm
optimization (PSO) [24], cauchy particle swarm optimization
(CPSO) [25], the firefly algorithm (FFA) [26], and other optimization
algorithms are used for parameter selection for intelligent models
[27]. With its rapid development, deep learning has been widely
studied for its excellent adaptive ability. Ma et al. [28] solved the
problem of a sparse matrix by deep matrix factorization. Ren
et al. [29] used a deep brief network (DBN)’s powerful feature
extraction and functional representation capabilities to deal with
highly complex nonlinear DO time-series data. Nevertheless, given
the complex laws of DO changes and many other factors, simple
machine learning basic predictors and parameter optimization
methods are insufficient to allow accurate DO prediction. To further
improve the forecasting performance of AI models, an increasing
number of scholars are using feature selection, decomposition,
and ensemble methods for the state-of-the-art research of DO fore-
casting. Further details about such research include the following:

(1) The change in DO concentration in the ocean and in fresh-
water environments is not isolated, as it is affected by many factors
including temperature, turbidity, pH, chlorophyll, and specific con-
ductance [30]. Changes in these factors have seemingly invisible
effects on DO concentration. To effectively use these factors, the
specific effects need to be studied. Shi et al. [22] used a clustering
method to segment water quality time series, and finally improved
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the forecasting accuracy of DO. Ren et al. [23] arranged the factors
that are positively and negatively correlated with DO through cor-
relation analysis. It was found that the model showed a better fore-
casting performance when factors strongly related to DO were
entered into the model [31]. From the perspective of the genera-
tion and consumption of DO, these influencing factors should be
organically incorporated rather than directly and crudely input
into the prediction model. This is not a comprehensive considera-
tion. The direct superposition of a multi-factor forecasting series
may prove to reduce the DO forecasting accuracy of a model. The
weight allocation of each influencing factor needs to be analyzed,
and the optimal combination method needs to be identified [32].
Therefore, exploring methods involving the multi-factor analysis
of DO forecasting has great research value [33].

(2) The nonstationary properties of the original DO series are
not favorable for forecasting. The extreme volatility of the DO ser-
ies makes it difficult to predict. The birth of the decomposition
method largely solved this problem. A decomposed sub-series
has independent oscillation components and is more stable, mak-
ing it easier to predict [34,35]. To apply this theoretical effect to
practical problems, many data preprocessing decomposition meth-
ods for AI models have been proposed. Widely used decomposition
algorithms include ensemble empirical mode decomposition
(EEMD) [12], discrete wavelet transform (DWT), and variational
mode decomposition (VMD) [36]. DO series are more predictable
after decomposition. However, the current mainstream decompo-
sition methods require users to determine the number of decom-
position layers based on experience. This practice inevitably adds
human error [37]. To improve the forecasting model performance,
a decomposition algorithm that can adaptively determine the
decomposition level should be investigated.

(3) After years of research and development, some ensemble
models can be used for the intelligent forecasting of DO. An ensem-
ble model can combine the advantages of multiple forecasting
models to achieve better forecasting performance [35]. By means
of a layered ensemble, Zhu et al. [38] successfully solved the prob-
lem of it being impossible to simultaneously achieve the accuracy
of high and low concentration forecasting. Iterated stepwise multi-
ple linear regression (ISMLR) is used to preprocess the data. An
artificial neural network (ANN) and MLP are used to run layered
forecasting. Finally, compromise programming (CP) is used to eval-
uate and select the best results. Kisi et al. [39] proposed a new
bayesian model averaging (BMA) method as an ensemble model.
Through comparison experiments with ELM, ANNs, an adaptive
neuro-fuzzy inference system (ANFIS), a classification and regres-
sion tree (CART), and MLR, it was found that the BMA ensemble
method is very effective for DO prediction. The essence of an
ensemble model is to improve the forecasting accuracy and scope
of model application by making use of the complementary advan-
tages of multiple models. Unfortunately, the ensemble methods
described above only use multiple models for hierarchical predic-
tion, and then simply superimpose the results. A direct ensemble
of multiple models will greatly increase the complexity of the
ensemble model, which can easily lead to overfitting. At the same
time, the shortcomings of a single model cannot be compensated
for by other models. Therefore, it is very important to select a rea-
sonable ensemble of models. Different machine learning prediction
models have individual characteristics and can cope with time ser-
ies in different states. If they can be combined organically, the
ensemble model will have complementary advantages. Appropri-
ate weight allocation can cover up the prediction defects of bench-
mark models and enhance the advantages of benchmark models.
Therefore, it is necessary to explore the scientific ensemble method
of multiple models.

The DO forecasting models discussed above have been demon-
strated to be effective. Still, there are gaps in scientific research
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that need to be filled in order to further improve DO forecasting
performance. Table 1 [10–19,21–30,36,38–40] summarizes the
reviewed state-of-the-art works using data-driven methods in
DO forecasting.

1.2. The novelty of this study

To summarize the above literature, it can be seen that there are
few comparative studies on multi-factor analysis, adaptive decom-
position analysis, and scientific ensemble analysis in DO forecast-
ing research. In view of the above limitations, a novel forecasting
model is herein proposed for DO forecasting: the MF-RNNs-EWT-
BEGOE model. MF represents the proposed multi-factor analysis
Table 1
A summary of the reviewed state-of-the-art data-driven DO forecasting methods.

Category Research content Reference

Statistics-based
models

ARIMA model [10]

Grey model [11]

Bayesian model [12]

[13]

MLR model [14]

[15]

AI-component models Basic prediction models [21]

[18]

[17]

[30]

[16]

[19]

Optimization method for neural networks [23]

[24]

[27]

[25]

[26]
Deep learning methods [28]

[29]

Optimization method for decomposition
algorithms

[40]

Ensemble methods [38]

[39]

Feature-selection methods [22]

[23]
Decomposition methods [36]

[12]
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method. RNNs represents the replicator neural networks outlier
detection method, EWT stands for empirical wavelet transform,
BEGOE stands for BFGS-ENN-GRNN-ORELM-ELM. This model can
be divided into the three stages of multi-factor analysis, adaptive
decomposition, and optimization-based ensemble. Each sub-layer
under the four factors uses the same type of benchmark model
to predict; finally, the forecasting results of the model are obtained
through a combination of the results. In the optimization ensemble
phase, the ensemble weights for the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) model, elman neural network (ENN) model, general
regression neural network (GRNN) model, outlier-robust extreme
learning machine (ORELM) model, and ELM model are optimized
by particle swarm optimization and gravitational search algorithm
Year of
publication

Contribution

2010 The ARIMA method was applied to study stationary and
nonstationary time series

2018 The grey model was proposed to forecast the trend term of
DO

2018 A bayesian evidence framework was applied to obtain
optimal parameter values

2017 The performance of the new bayesian regression model
and the new autoregressive modified fuzzy linear
regression method in DO prediction were compared

2013 The MLR model was used to characterize and propagate
the uncertainty of DO changes

2016 The MLR model was utilized to evaluate the performance
of multiple models, such as LSSVM, multivariate adaptive
regression splines (MARS), and the M5 model tree
(M5Tree)

2016 The improved fuzzy neural network method was used to
predict low DO events

2020 The prediction performance of ELM and MLP on daily DO
concentration was compared

2012 The MLP and RBNN models based on ANNs were used as a
comparison with MLRmodels based on statistical methods

2013 ANNs, ANFIS, and gene expression programming (GEP)
were used to compare the prediction performance of DO
concentration

2014 The k-means clustering method and MLP were combined
to improve the prediction accuracy of the model

2018 Several data-driven methods were used for modeling a
comparison of daily DO concentration prediction, such as
LSSVM, MARS, and M5Tree

2018 The GA algorithm was adopted to optimize the center and
width of the FNN

2018 The best parameters of the BPNN were determined by the
PSO algorithm

2019 The dual-scale DO soft-sensor modeling method was
applied to improve forecasting performance

2014 The CPSO was employed to optimize the kernel parameter
and the regularization parameter of the LSSVR model

2017 The FFA was used to optimize the three parameters of MLP
2020 Deep matrix factorization was adopted for DO forecasting
2020 A deep belief network was applied to improve forecasting

performance
2019 The decomposed series was reconstructed by the sample

entropy (SE) method to make forecasting easier
2018 ISMLR + MLR + ANN was used to hierarchically predict

high and low concentration data
2020 By a comparison with multiple models such as ELM, ANNs,

ANFIS, CART, and MLR, the application potential of the
BMA ensemble model was verified

2019 k-medoids clustering based on segmentation was applied
to select features

2018 Correlation analysis was adopted for feature selection
2019 DWT and VMD were adopted to decompose the original

data
2018 EEMD was utilized to improve DO forecasting

performance
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(PSOGSA) to obtain the BEGOE model. Section 2 provides the
details of the proposed model. To fully understand the role of each
part of the model, we performed numerous comparative
experiments.

The innovations and contributions of this study are described
below.

(1) A hybrid three-stage ocean DO forecasting ensemble model
is designed. The model considers multi-factor analysis, adaptive
decomposition analysis, and scientific ensemble analysis, thereby
filling three of the research gaps described in Section 1.1. The
multi-factor analysis reasonably considers the effects of tempera-
ture, salinity, turbidity, chlorophyll, and oxygen saturation on the
concentration of DO in the ocean. EWT decomposition is utilized
to adaptively improve the predictability of time series. The non-
stationarity of DO series is reduced. The PSOGSA optimization
method is used to optimize the weights of multiple benchmark
models. The complementation of the benchmark model further
improves the performance of the hybrid model. These three mod-
ules work together to achieve accurate forecasting of DO.

(2) Several factors that affect the concentration of DO in the
ocean are reasonably considered. The multi-factor analysis method
not only considers the influence of single and multiple factors on
model accuracy, but also considers correlations among multiple
factors. In this way, a hybrid model with better fusion performance
can be obtained, avoiding the unilateral influence and local disad-
vantage of a single factor. This method also makes up for the short-
comings of direct multi-factor input, as such input may have a
negative effect. This approach can take into account the reasons
for a change in DO concentration from various aspects.

(3) The adaptive data preprocessing method has achieved ideal
results in regard to the decomposition effect. Compared with the
mainstream decomposition method, adaptive decomposition
avoids the error caused by the artificial selection of decomposition
layers. In this way, the decomposition layer can be predicted more
easily. In addition, the EWT decomposition method discards the
residual signal of the decomposition mode to extract meaningful
Fig. 1. The modeling flow of the proposed three-stage model. GR: grey relational; GWO:
WOA: whale optimization algorithm; NBA: new bat algorithm.
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information from the ocean DO time series. The EWT method also
compensates for the sensitivity of some decomposition algorithms
to noise and sampling to a certain extent. The support of mathe-
matical theory allows the machine learning algorithm performance
to develop effectively.

(4) The organic combination of multiple benchmark models fills
the research gap for the ensemble model. A meta-heuristic opti-
mization algorithm is used to assign weights to BFGS, ENN, GRNN,
ORELM, and ELM. The ensemble approach can achieve the advan-
tages of multiple benchmark models while reducing the adverse
effects of a single model. The ensemble model solves the poor
robustness problem of some forecasting models and fully demon-
strates the superiority of the complementary performance. There-
fore, a multi-model complementary ensemble framework based on
meta-heuristic optimization algorithm has great value.

2. The proposed multi-factor forecasting model

As mentioned earlier, the modeling process of the proposed MF-
RNNs-EWT-BEGOE model can be divided into three stages: multi-
factor feature extraction, EWT decomposition, and multi-model
optimization ensemble optimization ensemble. Fig. 1 shows the
modeling flow. It is worth mentioning that the proposed model
uses the multi-input multi-output strategy (MIMOS), which is
commonly used in the field of time-series forecasting [41]. Com-
pared with recursive strategy (RS), the MIMOS has a smaller cumu-
lative error [42]. Fig. 2 shows the schematic diagram of the RS and
MIMOS.

2.1. Stage 1: The multi-factor analysis method

2.1.1. Substage 1.1: Replicator neural networks outlier detection
Outlier rejection is an important process for DO data. Prepro-

cessing makes the data look more orderly and makes it more easily
learned by the forecasting model, without paying attention to the
sources of the outliers. It is worth noting that only the training sets
grey wolf optimizer; BA: bat algorithm; MVO: multi-verse optimization algorithm;



Fig. 2. Schematic diagram of multi-step forecasting strategies.
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are corrected, while the test sets remain the same. This is a more
convincing way to verify the validity of the model. RNNs is used
to detect outliers of the original ocean DO series. This is a multi-
layer feed-forward neural network [43].

Assuming that the output of the ith neuron in the k layer of the
RNNs is Sk Ikið Þ, Iki represents the input of the ith neuron in the k
layer, and Sk represents the activation function used in the k layer.
The input of the neuron can be expressed as follows:

h ¼ Iki ¼
XLk�1

j¼0

wkijZ k�1ð Þj ð1Þ

where Wkij is the weight that connects ith neuron in the k layer and
jth neuron in the k�1 layer, Zkj is the output of the jth neuron in the
k layer, and Lk is the number of neurons in the k layer. In this exam-
ple, when k = 2, 4, the activation function can be expressed as
follows:

Sk hð Þ ¼ tanh akhð Þ k ¼ 2;4ð Þ ð2Þ
where ak is set to 1. For the intermediate layer where k = 3, its acti-
vation function can be expressed as a class step-like function. The
activation function can be expressed as follows:

S3 hð Þ ¼ 1
2
þ 1
4

XN�1

j¼1

tanh a3 h� j
N

� �� �
ð3Þ

where N represents the number of steps and a3 represents the rate
of promotion to the next level.

In general, continuous data entering the third layer is converted
into a batch of discrete values through the S3 stepwise activation
function of the RNNs. This is equivalent to mapping the series sam-
ple to N clusters. Finally, the RNNs can calculate a single outlier and
a small cluster of outliers. This completes the outlier detection of
marine data at the WQB04 site. Algorithm S1 in the Appendix A
shows the pseudo-code of the RNNs outlier detection method.

2.1.2. Substage 1.2: Multi-factor analysis of the grey relational (GR)
degree method

To screen out the most favorable factors for DO forecasting, the
GR degree method is used to select the features of the original
multi-factor series. In this example, the GR degree method is used
to calculate the correlation of environmental factors such as tem-
perature, salinity, turbidity, chlorophyll, and oxygen saturation.
The greater the degree of grey correlation between time series,
the closer the distance between the two series. Feature selection
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is used to determine the series that are most associated with DO.
The specific calculation method of the GR degree is presented as
follows [44,45]:

It is assumed that R0 ¼ r0 1ð Þ; r0 2ð Þ; r0 3ð Þ; :::; r0 nð Þð Þ is a series
group of system characteristic behaviors, and
Ri ¼ ri 1ð Þ; ri 2ð Þ; ri 3ð Þ; :::; ri nð Þð Þ 1 < i < Nð Þ is a series of related
behaviors. Thus, the correlation coefficient between the two series
can be obtained by the following calculation method:

ai kð Þ ¼ miniminkjr0 kð Þ � ri kð Þj þ bmaximaxkjr0 kð Þ � ri kð Þj
jr0 kð Þ � ri kð Þj þ bmaximaxkjr0 kð Þ � ri kð Þj ð4Þ

where the absolute difference between r0 kð Þ and ri kð Þ is point k,
miniminkjr0 kð Þ � ri kð Þj is the smallest difference between two lay-
ers, maximaxkjr0 kð Þ � ri kð Þj is the biggest absolute difference
between the two layers, and b (the resolution factor) is usually 0.5.

The relationship q between the series of r0 and ri is shown as
follows:

q r0; rið Þ ¼
Xn

k¼1
ai kð Þ

n
; i ¼ 1;2;3; :::;nð Þ ð5Þ
2.2. Stage 2: The EWT-decomposition method

After the multi-factor analysis method, EWT decomposition is
utilized to adaptively decompose the DO, water temperature, salin-
ity, and oxygen saturation series. The flag corresponding to the sth
predictor is #s. Fig. 3 shows the decomposition scheme of the
time-series data. In the training phase, the decomposition is
carried out in total X1

s; :::;X1247
s;X1248

s� �
. X represents the DO

data sample point. In the forecasting phase, the data is divided
into validation sets X1249

s; :::;X1343
s;X1344

s� �
and test sets

X1345
s; :::;X1439

s;X1440
s� �
. The validation set is used for ensemble

model optimization, and the test set is used to test the perfor-
mance of the proposed model. In this process, the BFGS, ENN,
GRNN, ORELM, and ELM models are used to predict the sub-
series, and the forecasting phase of the 1249th–1440th series can
be obtained. The decomposition process includes the forecasting
results of 1-step–3-step. Algorithm S2 in the Appendix A shows
the pseudo-code of the EWT-decomposition method.

2.3. Stage 3: The multi-model optimization ensemble method

To further improve the forecasting performance, the BFGS, ENN,
GRNN, ORELM, and ELM are combined to obtain the BEGOE model.
The ensemble weights are optimized by the PSOGSA. Fig. 4 shows
the weighted optimization scheme. The optimization objective
function of PSOGSA is minimizing the mean absolute percent error
(MAPE). The MAPE refers to the average absolute percentage error
between different samples’ actual and forecasting values. The
objective function is calculated in the validation data. The specific
objective function is shown as follows:

ObjectMAPE ¼ min
PP
p¼1

Et ED ŷp t;Dð Þ� �� Ee Y t; eð Þ½ �� 	2h i
=P

( )

s:t: ŷp t;Dð Þ ¼
P5

a¼1 X̂a
p t;Dð Þ �wa


 �
w1 þw2 þw3 þw4 þw5ð Þ

0 � wa � 1

ð6Þ

where Y t; eð Þ is the actual DO series at time twith noise e and by t;Dð Þ
represents the forecasting results of BEGOE at time t, where BFGS,
ENN, GRNN, ORELM, and ELM are trained with the samples D.
Et; ED; and Ee represent the expectation over time, for training
samples with noise e. As for Ee, Ee Y t; eð Þ½ � is equal to the actual DO
series without noise. Nevertheless, the noise of the actual series



Fig. 3. EWT-decomposed and layer-by-layer forecasting.

Fig. 4. The PSOGSA optimization ensemble process under multi-factor analysis.
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cannot be eliminated, because the actual DO series is not an
artificial series. To approximate Ee Y t; eð Þ½ �, Ee Y t; eð Þ½ � is considered
to be equal to Y t; eð Þ [46]. In addition, P is the maximum forecasting
step, w1;w2;w3;w4;w5½ � are the ensemble weights, and
X̂p

1
; X̂p

2
; X̂p

3
; X̂p

4
; X̂p

5
; ŷp are the p-step forecasting results
1756
of BFGS, ENN, GRNN, ORELM, ELM, and BEGOE for the validation
data.

Considering that the DO, water temperature, salinity, and oxy-
gen saturation series are involved in this example, the input of
the BEGOE model are four series, and the output is a DO series.



H. Liu, R. Yang, Z. Duan et al. Engineering 7 (2021) 1751–1765
By minimizing the objective function MAPE, appropriate ensemble
weights can be obtained. The effects of water temperature, salinity,
and oxygen saturation are added to the DO series. Finally, the fore-
casting results of the BEGOE can be obtained. Algorithm S3 of the
Appendix A shows the pseudo-code of the multi-model optimiza-
tion ensemble method.

3. Experiment and analysis

In this section, multiple comparative experiments are carried
out to verify the effectiveness of the proposed model. In
Section 3.1, six real-time series sets collected by the ocean observ-
ing system are introduced. In Section 3.2, the performance indices
for evaluating the forecasting results are demonstrated. In Sec-
tion 3.3, the implementation details and the contributions of each
stage are explained. In Section 3.4, two experiments are set up.
Experiment I compares the contributions of the model components
horizontally, and Experiment II compares several state-of-the-art
models to demonstrate the superiority of the proposed model.

3.1. Data description

In this section, time-series data such as DO, temperature,
salinity, turbidity, chlorophyll, and oxygen saturation collected
by the Pacific Islands Ocean Observing System from the WQB04
station at Hilo are used for experimental research. The time inter-
val of the six time-series data is 15 min. To effectively build the
subsequent models, the dataset is divided into three parts: a
training set, validation set, and test set. The data corresponding
to the six factors were all selected from the time period of 1–
30 December 2016. Among them, the data for 16–30 December
is regarded as Dataset #1, while the data for 1–15 December is
regarded as Dataset #2. The total length of each series corre-
sponding to each factor is 1440. The training set contains the
1st–1248th data, the validation set contains the 1249th–1344th
data, and the test set contains the 1345th–1440th data. Fig. S1
and Table S1 in the Appendix A present the dataset information
after RNN outlier processing.

3.2. Performance evaluation

An index set is applied to evaluate the deterministic forecasting
performance, including the coefficient of determination (R2), Nash–
Sutcliffe Efficiency (NSE) [47] index, Kling–Gupta fficiency (KGE)
[48], standard deviation of error (SDE), and MAPE. The expressions
of these five indices are shown as follows:
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SDE ¼
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where bY is the forecasting results, Y is the actual data, and NY is the
number of the actual data.

3.3. Modeling analysis

3.3.1. Multi-factor analysis
The DO in the ocean is affected by many factors. In this paper, a

variety of factors affecting the increase and decrease of DO concen-
trations are analyzed. Fig. 5 shows the system dynamics model.

As shown in Fig. 5, many factors affect DO concentrations. Usu-
ally, atmospheric diffusion, water exchange, mechanical aerobics,
aquatic photosynthesis, and the like are the main sources of DO.
Under natural conditions, the DO content in the ocean is closely
related to the partial pressure of oxygen in the air and the tempera-
ture of the water. When the rate of oxygen dissolved into the water
is equal to the rate of oxygen escaping from the water, the dissolu-
tion reaches a dynamic equilibrium. The equilibrium of DO in the
ocean is also affected by salinity, turbidity, pH, and other factors.
In addition, chemical oxidation reactions, organic decomposition,
breathing by phytoplankton at night, and aquatic respiration are
the main factors of marine DO consumption. In short, there are
many factors affecting changes in DO content, and the law of dis-
tribution variation is difficult to explain by a simple mechanism.

In this experiment, the relationship between temperature,
salinity, turbidity, chlorophyll, oxygen saturation, and DO concen-
trations is calculated by using the GR degree method. Table 2
shows the specific results. According to Table 2, temperature, salin-
ity, and oxygen saturation have the highest correlation degree with
DO. The correlation indicators reach 0.61, 0.68, and 0.87, respec-
tively, and all exceed the set threshold of 0.5. It is worth mention-
ing that salinity contains nutrients, and nutrients play an
important role in DO concentration. Considering that high concen-
trations of turbidity will influence the photosynthesis of plants in
water and affect oxygen production, turbidity was also input into
the model as a DO-related factor. The experiment adopts the form
of multi-factor variable input and single-factor variable output. In
an actual comparison of repeated experiments, it was found that
the forecasting accuracy is the best when temperature, salinity,
and oxygen saturation are input into the model as the influential
factors of DO. The experimental results show that if low-
correlation factors such as turbidity, chlorophyll, and pH are input
into the model, the forecasting accuracy decreases accordingly. In
this case, the index of chlorophyll always maintains a value of
�8.8 � 10�7. Therefore, it does not show a correlation with the
change in DO, so the correlation coefficient between chlorophyll
and DO is not a number.

3.3.2. Decomposition model analysis
In this section, the EWT is used to reduce the non-stationarity of

the DO series, the water temperature series, the salinity series, and
the oxygen saturation series, all of which are adaptively decom-
posed. It is worth mentioning that only the training set data is
decomposed. After the original DO series and the highly correlated
series are decomposed, the sub-series having more stable charac-
teristics are easier to predict. The primary predictor simply concen-
trates on a certain frequency band within these sub-series.
Eventually, the final result after data preprocessing can be obtained
by superimposing the prediction result of the sub-predictor. This



Fig. 5. System dynamics model diagram of dissolved oxygen change.

Table 2
Correlation coefficient between environmental factors and dissolved oxygen in the WQB04 dataset.

Indicator Correlation coefficients

Temperature Salinity Turbidity Chlorophyll Oxygen saturation

Dissolved oxygen 0.61 0.68 0.32 NaN 0.87

NaN: not a number.
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section compares the performance changes of the forecasting mod-
els by decomposing the input series.

3.3.3. Optimization method analysis
In this section, the PSOGSA is compared with multiple alterna-

tive methods, including the grey wolf optimizer (GWO), bat algo-
rithm (BA), multi-verse optimization algorithm (MVO), PSO,
whale optimization algorithm (WOA), and new bat algorithm
(NBA). Most of these optimization algorithms are based on heuris-
tic bionic algorithms, and it is difficult to clearly explain which is
more suitable from a theoretical point of view. Therefore, experi-
ments are needed to verify the DO prediction effect of each opti-
mization algorithm in this situation.

3.4. Comparison study

3.4.1. Experiment I: Comparisons with each component of the
proposed model

In Experiment I, five baseline models based on the components
of the proposed model are constructed and used to evaluate the
proposed model. Table 3 lists their specific expressions. To com-
pare the effects of environmental parameters related to DO in
actual calculations, we established a multi-factor analysis experi-
ment. Models 1–3 are trained without multi-factor analysis. In
the same situation, Models 4 and 5 and the proposed model are
added with multi-factor analysis. In other words, Models 4 and 5
and the proposed model are trained with environmental factors
Table 3
Experimental setup of baseline models and the proposed model.

Model Experimental setups

Model 1 RNNs-BFGS/ENN/GRNN/ORELM/ELM
Model 2 RNNs-BEGOE
Model 3 RNNs-EWT-BEGOE
Model 4 MF-RNNs-BFGS/ENN/GRNN/ORELM/ELM
Model 5 MF-RNNs-BEGOE
Proposed model MF-RNNs-EWT-BEGOE
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including DO series, temperature series, salinity series, and oxygen
saturation series. To compare the effects of the optimization
ensemble, a multi-model ensemble comparison experiment is
established. Compared with Models 1 and 4, Models 2 and 5 are
optimized and combined with five benchmark models. To verify
the superiority of the EWT decomposition method, a set of experi-
mental comparisons with or without data preprocessing are also
implemented. More specifically, Model 3 and the proposed model
add a module for EWT data preprocessing to reduce the instability
of the original series. Tables 4 and 5 list the DO testing dataset
forecasting results. In addition, in order to reflect the impact of
optimization algorithms, the seven optimization algorithms
described in Section 3.3.3 are used in the multi-model optimiza-
tion ensemble module. Fig. 6 shows testing dataset forecasting
results in 3-step of the PSOGSA and other optimization algorithms.

The conclusion can be summarized from Tables 4 and 5, and
Fig. 6 as follows:

(1) Model 2 (RNNs-BEGOE) is significantly better than Model 1
(RNNs-BFGS/ENN/GRNN/ORELM/ELM) regardless of whether in
Dataset #1 or Dataset #2, which shows that the multi-model
ensemble method is effective. This method combines the advan-
tages of five benchmark models. The multiple iterations of the opti-
mization algorithm complete the combination of each model
through the optimal weight allocation. The ensemble model incor-
porates the advantages of each benchmark model while discarding
their negative performance. Taking the 1-step forecasting results of
Dataset #1 as an example, the MAPE of RNNs-BFGS, RNNs-ENN,
RNNs-GRNN, RNNs-ORELM, RNNs-ELM, and RNNs-BEGOE are
1.76%, 1.51%, 2.74%, 1.49%, 1.61%, and 1.32%, respectively. Other
evaluation indicators such as NSE, KGE, SDE, and R2 all show that
Model 2 is better than Model 1 in forecasting performance.

(2) Model 3 (RNNs-EWT-BEGOE) is significantly better than
Model 2 (RNNs-BEGOE), which shows that the decomposition-
based data preprocessing method can have a positive effect on
improving model prediction performance. The EWT adaptively
decomposes the original series into multiple sub-series. The
decomposed series has independent oscillation components and
strong stability. The EWT has strong mathematical support while



Table 4
Evaluation indices of the compared models in Experiment I (Dataset #1).

Horizon Model NSE KGE MAPE (%) SDE (mg∙L�1) R2

1-step RNNs-BFGS 0.47 0.69 1.76 0.16 0.50
MF-RNNs-BFGS 0.61 0.77 1.45 0.14 0.62
RNNs-ENN 0.55 0.69 1.51 0.15 0.56
MF-RNNs-ENN 0.62 0.75 1.41 0.14 0.63
RNNs-GRNN �0.24 0.19 2.74 0.19 0.35
MF-RNNs-GRNN 0.52 0.56 1.63 0.15 0.53
RNNs-ORELM 0.58 0.77 1.49 0.14 0.62
MF-RNNs-ORELM 0.62 0.77 1.41 0.14 0.63
RNNs-ELM 0.53 0.71 1.61 0.15 0.55
MF-RNNs-ELM 0.60 0.76 1.44 0.14 0.61
RNNs-BEGOE 0.70 0.75 1.32 0.10 0.83
MF-RNNs-BEGOE 0.91 0.90 0.67 0.07 0.91
RNNs-EWT-BEGOE 0.97 0.96 0.38 0.04 0.97
MF-RNNs-EWT-BEGOE 1.00 1.00 0.11 0.01 1.00

2-step RNNs-BFGS 0.28 0.57 2.00 0.19 0.36
MF-RNNs-BFGS 0.43 0.66 1.78 0.17 0.47
RNNs-ENN 0.38 0.59 1.75 0.17 0.41
MF-RNNs-ENN 0.47 0.63 1.72 0.16 0.48
RNNs-GRNN �0.33 0.15 2.84 0.20 0.28
MF-RNNs-GRNN 0.32 0.41 1.99 0.18 0.33
RNNs-ORELM 0.36 0.67 1.91 0.17 0.48
MF-RNNs-ORELM 0.45 0.66 1.76 0.16 0.48
RNNs-ELM 0.39 0.58 1.85 0.17 0.41
MF-RNNs-ELM 0.46 0.65 1.72 0.16 0.48
RNNs-BEGOE 0.53 0.65 1.69 0.13 0.68
MF-RNNs-BEGOE 0.81 0.82 1.03 0.09 0.82
RNNs-EWT-BEGOE 0.92 0.92 0.67 0.06 0.92
MF-RNNs-EWT-BEGOE 0.99 0.99 0.14 0.02 1.00

3-step RNNs-BFGS 0.02 0.46 2.28 0.22 0.22
MF-RNNs-BFGS 0.24 0.54 2.06 0.19 0.32
RNNs-ENN 0.23 0.47 1.99 0.19 0.29
MF-RNNs-ENN 0.29 0.51 1.99 0.19 0.33
RNNs-GRNN �0.41 0.11 2.92 0.20 0.23
MF-RNNs-GRNN 0.21 0.34 2.15 0.19 0.24
RNNs-ORELM 0.09 0.56 2.31 0.19 0.33
MF-RNNs-ORELM 0.27 0.54 2.04 0.19 0.33
RNNs-ELM 0.22 0.46 2.12 0.20 0.27
MF-RNNs-ELM 0.27 0.53 1.99 0.19 0.33
RNNs-BEGOE 0.47 0.60 1.80 0.14 0.64
MF-RNNs-BEGOE 0.71 0.76 1.24 0.11 0.75
RNNs-EWT-BEGOE 0.80 0.88 1.07 0.10 0.80
MF-RNNs-EWT-BEGOE 0.98 0.98 0.17 0.04 0.99
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eliminating the interaction between different sub-series. The com-
bination of these advantages makes EWT an excellent candidate for
data preprocessing. Taking the 1-step forecasting results of Dataset
#1 as an example, the NSE, KGE, MAPE, SDE, and R2 are 0.70, 0.75,
1.32%, 0.10 mg∙L�1, and 0.83 for Model 2, and 0.97, 0.96, 0.38%,
0.04 mg∙L�1, and 0.97 for Model 3, respectively.

(3) Models 4 (MF-RNNs-BFGS/ENN/GRNN/ORELM/ELM) and 5
(MF-RNNs-BEGOE) and the proposed model with multi-factor
analysis performed significantly better in comparison with the cor-
responding Models 1–3 without multi-factor analysis. This work
shows that environmental factors such as temperature, salinity,
and oxygen saturation have an impact on DO concentration. There
is a complex nonlinear relationship between them, and the consid-
eration of a single DO factor is not comprehensive. Taking the 1-
step forecasting results of Dataset #1 as an example, the NSE,
KGE, MAPE, SDE, and R2 are 0.70, 0.75, 1.32%, 0.10 mg∙L�1, and
0.83 for Model 2, and 0.91, 0.90, 0.67%, 0.07 mg∙L�1, and 0.91 for
Model 5, respectively. The experimental results show that the
multi-factor consideration is correct. When multiple factors are
reasonably input into the forecasting model, a more accurate and
more scientific forecasting result can be obtained.

(4) Considering all the experimental datasets, forecasting steps,
and different model evaluation indicators, the proposed hybrid
model has the most outstanding forecasting performance. The
excellent robustness and accuracy of the proposed model make
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its prediction result very close to the actual DO value. Taking the
1-step forecasting results of Dataset #1 as an example, the NSE,
KGE, MAPE, SDE, and R2 of the proposed model are 1.00, 1.00,
0.11%, 0.01 mg∙L�1, and 1.00, respectively. Taking the 1-step fore-
casting results of Dataset #2 as an example, the NSE, KGE, MAPE,
SDE, and R2 of the proposed model are 1.00, 0.98, 0.18%,
0.01 mg∙L�1, and 1.00, respectively. Both sets of experiments show
that the proposed model has good durability.

In summary, multi-factor analysis, adaptive decomposition
analysis, and scientific ensemble model analysis are indispensable
for improving the performance of the proposed hybrid model. The
framework of the hybrid model has strong interpretability, and it
provides a direction for the improvement of DO forecasting.

3.4.2. Experiment II: Comparison with existing models
In recent years, many AI-based models have been proposed for

DO prediction. In Experiment II, we reproduced three state-of-the-
art models that were published in 2018–2020 to compare them
with our proposed hybrid model in order to verify the DO forecast-
ing performance. These models are relatively complex, and basic
machine learning models can also achieve satisfactory results. To
complete a reasonable and scientific model evaluation, we added
the support vector machines (SVM) model based on ANN, and
the DBNmodel based on deep learning for comparison. The specific
model introduction is elaborated as follows:



Table 5
Evaluation indices of the compared models in Experiment I (Dataset #2).

Horizon Model NSE KGE MAPE (%) SDE (mg∙L�1) R2

1-step RNNs-BFGS 0.77 0.85 1.20 0.12 0.78
MF-RNNs-BFGS 0.80 0.89 1.12 0.11 0.80
RNNs-ENN 0.75 0.76 1.39 0.12 0.75
MF-RNNs-ENN 0.79 0.85 1.17 0.11 0.79
RNNs-GRNN 0.07 0.35 2.84 0.19 0.46
MF-RNNs-GRNN 0.39 0.63 2.31 0.19 0.45
RNNs-ORELM 0.79 0.89 1.15 0.11 0.80
MF-RNNs-ORELM 0.80 0.86 1.13 0.11 0.80
RNNs-ELM 0.76 0.83 1.26 0.12 0.76
MF-RNNs-ELM 0.78 0.82 1.24 0.12 0.78
RNNs-BEGOE 0.87 0.78 1.04 0.09 0.90
MF-RNNs-BEGOE 0.95 0.94 0.60 0.06 0.95
RNNs-EWT-BEGOE 0.98 0.99 0.35 0.03 0.98
MF-RNNs-EWT-BEGOE 1.00 0.98 0.18 0.01 1.00

2-step RNNs-BFGS 0.60 0.74 1.68 0.15 0.63
MF-RNNs-BFGS 0.64 0.81 1.57 0.15 0.66
RNNs-ENN 0.58 0.63 1.86 0.16 0.59
MF-RNNs-ENN 0.64 0.75 1.65 0.15 0.64
RNNs-GRNN 0.00 0.33 2.95 0.20 0.40
MF-RNNs-GRNN 0.23 0.56 2.61 0.21 0.34
RNNs-ORELM 0.62 0.81 1.68 0.15 0.66
MF-RNNs-ORELM 0.66 0.76 1.59 0.14 0.66
RNNs-ELM 0.60 0.72 1.73 0.16 0.60
MF-RNNs-ELM 0.62 0.69 1.78 0.15 0.62
RNNs-BEGOE 0.78 0.71 1.36 0.12 0.81
MF-RNNs-BEGOE 0.88 0.91 0.95 0.08 0.89
RNNs-EWT-BEGOE 0.94 0.95 0.62 0.06 0.95
MF-RNNs-EWT-BEGOE 0.99 0.97 0.28 0.02 0.99

3-step RNNs-BFGS 0.46 0.67 1.96 0.17 0.51
MF-RNNs-BFGS 0.47 0.73 1.95 0.18 0.53
RNNs-ENN 0.47 0.54 2.14 0.18 0.49
MF-RNNs-ENN 0.50 0.65 1.99 0.17 0.51
RNNs-GRNN �0.06 0.30 3.06 0.20 0.35
MF-RNNs-GRNN 0.18 0.54 2.71 0.22 0.31
RNNs-ORELM 0.44 0.72 2.13 0.18 0.53
MF-RNNs-ORELM 0.53 0.67 1.90 0.17 0.54
RNNs-ELM 0.47 0.64 2.02 0.18 0.49
MF-RNNs-ELM 0.49 0.61 2.07 0.17 0.50
RNNs-BEGOE 0.69 0.65 1.60 0.14 0.73
MF-RNNs-BEGOE 0.77 0.84 1.39 0.12 0.78
RNNs-EWT-BEGOE 0.87 0.91 0.95 0.09 0.89
MF-RNNs-EWT-BEGOE 0.96 0.94 0.58 0.04 0.98
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Li et al. [31] used a recurrent neural network, long short-term
memory network (LSTM), and gate recurrent unit (GRU) to con-
struct three DO forecasting models, respectively, in order to deter-
mine the most suitable one. In the experiment, the correlation
coefficients between pH, turbidity, temperature, NH, and DO are
calculated, and then these series are uniformly input into the fore-
casting model. Compared with Li’s direct inputting of all parame-
ters, we set thresholds and experimental screening methods to
finally determine the factors that can have a positive effect on
DO forecasting. Li’s approach risks reducing accuracy. In fact, the
correlation coefficient of the impact factors can only be used as a
reference indicator, and the true relationship between these envi-
ronmental factors and DO is very complicated.

Huan et al. [12] combined the EEMD data preprocessing method
and LSSVM to improve the model’s performance for DO forecasting.
EEMD is used to decompose the DO series, and then LSSVM is used
to predict these intrinsic mode function (IMF) components sepa-
rately. The synthesized prediction result is obtained by superposi-
tion. Before the final DO forecasting results are generated, BPNN is
used to reconstruct the forecast results, thereby eliminating the
wrong analysis. It is a pity that EEMD lacks sufficient theoretical
support in terms of mathematical definition, which results in
decomposition flaws. We use a novel signal processing tool EWT
to overcome this shortcoming. At the same time, the adaptive
decomposition characteristics of EWT can determine the optimal
1760
number of decomposition layers to maximize the decomposition
effect.

Ren et al. [23] used GA to optimize the center and width of the
center layer of the FNN to determine the best combination and
improve DO prediction performance. In the proposed model, we
apply the optimization algorithm to the ensemble of multiple
benchmark models. The advantage of this approach is to reason-
ably combine the superior performance of multiple AI models
while discarding bad performance. Compared with a single
parameter-optimized predictor, the complementarity of multiple
models can make the model more mature and allow it to obtain
more adequate training. Among the models used, the reasonable
weight allocation obtained by multiple iterations plays a key role.

More specifically, Tables 6 and 7, and Figs. 7 and 8 show the DO
testing dataset forecasting results of the proposed model and state-
of-the-art models.

The conclusion can be summarized from Figs. 7 and 8, and
Tables 6 and 7, as follows:

Considering all datasets, forecasting steps, and different time-
series evaluation indicators, the proposed model has the best fore-
casting performance in comparison with the other state-of-the-art
models. Taking the 1-step forecasting results of Dataset #1 as an
example, the MAPE of SVM, DBN, Li’s model, Huan’s model, Ren’s
model, and the proposed model are 1.41%, 1.44%, 0.52%, 0.56%,
0.51%, and 0.11%, respectively. The proposed model performs well



Table 6
The DO testing dataset forecasting results of the proposed model and state-of-the-art models (Dataset #1).

Horizon Model NSE KGE MAPE (%) SDE (mg∙L�1) R2

1-step SVM 0.62 0.75 1.41 0.14 0.63
DBN 0.61 0.74 1.44 0.14 0.62
Li’s model [31] 0.95 0.94 0.52 0.05 0.95
Huan’s model [12] 0.95 0.96 0.56 0.05 0.95
Ren’s model [23] 0.95 0.96 0.51 0.05 0.95
Proposed model 1.00 1.00 0.11 0.01 1.00

2-step SVM 0.47 0.63 1.72 0.16 0.48
DBN 0.45 0.61 1.75 0.16 0.48
Li’s model [31] 0.84 0.83 0.90 0.09 0.85
Huan’s model [12] 0.87 0.92 0.83 0.08 0.87
Ren’s model [23] 0.86 0.91 0.87 0.08 0.86
Proposed model 0.99 0.99 0.14 0.02 1.00

3-step SVM 0.29 0.51 1.99 0.19 0.33
DBN 0.26 0.47 2.06 0.18 0.32
Li’s model [31] 0.79 0.76 1.05 0.10 0.80
Huan’s model [12] 0.85 0.91 0.89 0.08 0.86
Ren’s model [23] 0.73 0.85 1.21 0.12 0.74
Proposed model 0.98 0.98 0.17 0.04 0.99

Fig. 6. Testing dataset forecasting results in 3-step of the PSOGSA and other optimization algorithms (the above-mentioned different optimization methods are all based on
the multi-factor-EWT-BEGOE ensemble model to conduct control variable comparison experiments) (Dataset #1). Time (15 min) indicates that the sampling interval of data
is 15 minutes.

H. Liu, R. Yang, Z. Duan et al. Engineering 7 (2021) 1751–1765
in forecasting robustness and can still perform satisfactorily even
in higher prediction steps. Taking the 3-step forecasting results
of Dataset #1 as an example, the MAPE of SVM, DBN, Li’s model,
Huan’s model, Ren’s model, and the proposed model are 1.99%,
2.06%, 1.05%, 0.89%, 1.21%, and 0.17%, respectively. Based on other
persistence indices, the performance of the proposed model is very
outstanding. Taking the 3-step forecasting results of Dataset #1 as
an example, the NSE, KGE, MAPE, SDE, and R2 of the proposed
model are 0.98, 0.98, 0.17%, 0.04 mg∙L�1, and 0.99, respectively.
Taking the 3-step forecasting results of Dataset #2 as an example,
1761
the NSE, KGE, MAPE, SDE, and R2 of the proposed model are 0.96,
0.94, 0.58%, 0.04 mg∙L�1, and 0.98, respectively.

To sum up, the forecasting results of different datasets show
that the proposed hybrid forecasting model has a reasonable
framework and achieves a satisfactory forecasting performance.
This is mainly because the proposed model hybridizes multi-
factor analysis, adaptive decomposition analysis, and the scientific
ensemble model analysis method. This combination is very helpful
in improving the forecasting accuracy and robustness of the pro-
posed model.



Table 7
DO testing dataset forecasting results of the proposed model and state-of-the-art models (Dataset #2).

Horizon Model NSE KGE MAPE (%) SDE (mg∙L�1) R2

1-step SVM 0.79 0.85 1.17 0.11 0.79
DBN 0.79 0.89 1.14 0.11 0.80
Li’s model [31] 0.96 0.96 0.51 0.04 0.97
Huan’s model [12] 0.97 0.96 0.50 0.04 0.97
Ren’s model [23] 0.96 0.96 0.56 0.05 0.96
Proposed model 1.00 0.98 0.18 0.01 1.00

2-step SVM 0.64 0.75 1.65 0.15 0.64
DBN 0.63 0.81 1.61 0.15 0.66
Li’s model [31] 0.91 0.91 0.81 0.07 0.92
Huan’s model [12] 0.95 0.94 0.62 0.06 0.95
Ren’s model [23] 0.92 0.94 0.77 0.07 0.92
Proposed model 0.99 0.97 0.28 0.02 0.99

3-step SVM 0.50 0.65 1.99 0.17 0.51
DBN 0.46 0.72 1.95 0.18 0.53
Li’s model [31] 0.86 0.85 1.06 0.09 0.86
Huan’s model [12] 0.94 0.94 0.68 0.06 0.94
Ren’s model [23] 0.82 0.88 1.19 0.11 0.82
Proposed model 0.96 0.94 0.58 0.04 0.98

Fig. 7. DO testing dataset forecasting results of the proposed model (MF-RNNs-EWT-BEGOE) and other models (Dataset #1).
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4. Application potential

The level of DO concentration in a marine environment is
caused by two effects: the oxygen consumption effect, which
decreases DO concentration; and the oxygen recovery effect, which
increases DO concentration. The life activities of aquatic organisms
consume a certain amount of oxygen, thereby reducing the DO
concentration. The photosynthesis of aquatic plants and the
diffusion of oxygen in the air will increase the DO concentration.
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Fig. 9(a) shows the changes of actual DO time series data and
1-step, 2-step, and 3-step forecasting results. The following facts
are illustrated in Fig. 9: ① As the temperature increases, the DO
concentration decreases, and as the temperature decreases, the
DO concentration increases. This is because higher temperatures
will force DO in the water to escape to the surface (Fig. 9(b)).
② Salinity and DO are negatively correlated, due to oxygen
consumption. Sufficient nutrients will promote the life activities
of aquatic organisms, resulting in increased breathing and oxygen



Fig. 8. Scatter plots of actual observations and corresponding forecasting results generated by the proposed model and other models.
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consumption. An increase in salinity will also promote DO to a
level closer to saturation (Fig. 9(c)). ③ High turbidity will reduce
the photosynthesis of aquatic plants and affect the production of
DO, so turbidity has a certain inhibitory relationship with the
increase of DO (Fig. 9(d)).④ The oxygen content dissolved in water
is also known as the oxygen saturation. When the oxygen
exchange between water and the atmosphere is in equilibrium,
the concentration of DO in the water is most similar to the fluctu-
ation of oxygen saturation (Fig. 9(e)). Mathematical modeling com-
bined with AI technology can make a relatively scientific prediction
of the changes in DO concentration. This prediction can provide
useful guidance to people in related industries.

This study proposes a novel hybrid model that can generate
reliable DO forecasting results. The model takes temperature,
salinity, turbidity, oxygen saturation, and many other factors clo-
sely related to DO as input variables, and finally outputs a DO fore-
casting result. Fig. 9(f) shows the division of DO data and influence
factors data. The specific multiple-input–single-output forecasting
results are shown in Fig. 9. Potential applications for users of the
proposed model are presented as follows:

� Aquaculture farmers can utilize the proposed DO forecasting
model to determine future DO concentration changes in
ponds and offshore aquaculture areas. They can then take cor-
responding emergency measures under guidance to reduce
their economic losses.

� Fishery department managers can fully understand the situa-
tion of and trends in DO by means of accurate forecasting. This
can provide a scientific decision-making basis for improving
the living environment of marine life, which is conducive to
the restoration and regulation of ecological water quality.

5. Conclusions

The development of DO forecasting technology has brought
more possibilities to seafood farmers and related industries. Accu-
rate real-time forecasting of DO can provide managers with scien-
tific guidance for decision-making. Unfortunately, the instability of
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the marine DO series and various other potential factors present
challenges to DO forecasting. In our study, a novel hybrid model
is proposed for DO forecasting: the MF-RNNs-EWT-BEGOE. The
main characteristics of this model include multi-factor analysis,
adaptive decomposition, and a multi-model ensemble. After the
analysis of the experimental results in the case study, the following
conclusions can be drawn:

(1) Considering that many factors affect DO concentration in the
ocean, a multi-factor analysis method is proposed to incorporate
the effects of these factors on DO concentration. The influence of
abundant physical, chemical, and biological systems makes the
DO fluctuation mechanism more complicated. Reasonable multi-
factor consideration will make model forecasting more accurate.

(2) An adaptive data preprocessing decomposition method is
used to reduce the instability of marine DO series, making sub-
series easier to predict. The experimental results demonstrate that
this method of forecasting after decomposing the original series is
effective.

(3) A novel multi-model ensemble method is proposed to com-
plete the combination of multiple models, which can absorb the
excellent quality of each benchmark model to make the ensemble
model more mature. A comparison with the experimental results
of multiple benchmark models shows that the complementary
advantages of multiple models can indeed cause the performance
of the ensemble model to develop in a better direction.

(4) Each component of the proposed hybrid model can signifi-
cantly improve the model’s forecasting performance for DO. By
detecting and eliminating outliers through RNNs, the negative
impact of extreme outliers on the model can be reduced. The envi-
ronmental factors that affect the change of DO can be considered
more comprehensively through the multi-factor correlation analy-
sis by GR. EWT adaptive decomposition effectively improves the
forecasting accuracy of the model and reduces the impact of series
non-stationarity. The BEGOE ensemble model combines the advan-
tages of multiple benchmark models to maximize the model’s fore-
casting performance. Thus, the proposed hybrid model is
significantly better than the other models used for comparison.



Fig. 9. DO vs input data change trend chart of the multiple–input–single–output model.
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Given the potential for application described in Section 4, it is
clear that accurate DO prediction can provide scientific guidance
enabling aquaculture farmers to reduce their economic losses.
Accurate DO forecasting can also provide a scientific basis for fish-
ery department managers to help them improve the living environ-
ment of ponds and marine life. It can also help decision-makers to
regulate and restore ecological water quality. The proposed hybrid
model has excellent multi-step forecasting performance. The
MIMOS mechanism provides sufficient information about future
DO fluctuations for relevant industry personnel, thereby allowing
effective management.
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