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a b s t r a c t

Feeding is vital for animal growth and the maintenance of health. However, the underlying mechanisms
that mediate dietary performance have long been a so-called black box. It is only during recent years that
studies have demonstrated that nutrients act as signals that can be sensed by cells and organisms and
that play vital roles in gene expression and metabolism. Multiple signaling pathways have been identified
as being responsible for the sensing of discrete nutrients. While successes have been achieved in the
exploitation of nutrient-sensing signals in drug discovery and disease control, applications based on
the sensing and metabolic control of major nutrients (proteins, lipids, carbohydrates, etc.) in aquaculture
and land-farmed animals remain in their infancy. We thus provide a tentative perspective on future
research topics and applications of nutrient sensing in animal nutrition.
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1. Introduction

Nutrition is vital for the growth and health of animals. Nutri-
ents—especially macronutrients, including amino acids, fatty acids,
and carbohydrates—provide energy and basic building blocks that
are needed for homeostasis and biomass accretion. Traditionally,
nutrition science has focused on the physiological processes of
digestion, absorption, transport, and metabolism [1]. However,
starting in the beginning of this century, a great deal of attention
has focused on how cells and organisms sense and metabolically
respond to nutritional status through what is known as nutrient
sensing—a topic that has become a hot spot in the biological
sciences [2]. Numerous studies have demonstrated that nutrient
sensing plays critical roles in the regulation of food intake, energy
expenditure, hormone secretion, and metabolic processes in
humans and other animals [2–6].

2. Cellular nutrient-sensing pathways

2.1. Amino acids sensing

Mechanistic target of rapamycin (mTOR) signaling has become
known as the major signaling hub for sensing the availability of

nutrients, especially amino acids, and regulating the balance of
anabolism versus catabolism in cells [7,8] (Fig. 1). mTOR complex
1 (mTORC1) comprises serine/threonine kinase mTOR, raptor (a
regulatory protein associated with mTOR), Dishevelled, Egl-10
and Pleckstrin (DEP) domain-containing mTOR-interacting protein
(DEPTOR), and mLST8 (mammalian lethal with Sec13 protein 8)
[9]. Among the many downstream effectors of mTORC1, 4E-
binding protein 1 (4EBP1) and the p70 ribosomal S6 kinases
(S6K) are the fundamental players in messenger RNA (mRNA)
translation, protein synthesis, and cell proliferation regulation
[8,10]. Small guanosine triphosphatase (GTPases), such as Rag
and Rheb (Ras homolog enriched in brain), are crucial for transduc-
ing nutritional input and mTORC1 activation [11–13]. mTORC1
receives signals from growth factors that involve signaling cas-
cades consisting of cell surface receptors, Akt, tuberous sclerosis
complex (TSC), and Rheb interactions with mTORC1 [8]. The activa-
tion of mTORC1 by Rheb also requires the lysosome localization of
mTORC1 and is mediated by the Rag GTPases heterodimers of
RagA/B bound to RagC/D [12,14]. The GTP-loaded Rag GTPases
recruit mTORC1 to the surface of lysosomes when nutrients—espe-
cially amino acids—are available [13].

In recent years, a growing number of proteins have been iden-
tified as amino acid sensors that bind distinctive types of amino
acids and act as modulators of mTORC1 activities through modula-
tion of the Rag GTPases or mTORC1 complex localization [15–23].
SLC38A9, a lysosomal transmembrane protein with homology to
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amino acid transporters, can sense the arginine (Arg) levels within
lysosomes and activate the Rag GTPases through non-canonical
guanine nucleotide exchange factor (GEF) mechanisms [15,24–
26]. Cytosolic Arg sensor for mTORC1 (CASTOR)1/2 (a cellular argi-
nine sensor for mTORC1) has been identified as a cytosolic Arg sen-
sor that negatively regulates the mTORC1 pathway by binding and
inhibiting GATOR2, a positive regulator of the nutrient-sensing
pathway [16,17]. Secretion associated ras related gtpase 1b
(SAR1B) has been found to function with sestrins to sense levels
of leucine (Leu) and regulate mTORC1 signaling [21]. Intracellular
methionine levels can be sensed by S-adenosylmethionine sensor
upstream of mTORC1 (SAMTOR), which regulates mTORC1 signal-
ing through GATOR1 [23].

General control nonderepressible 2 (GCN2) kinase functions as
a sensor for amino acid deficiency [27]. An amino acid shortage
leads to the accumulation of uncharged aminoacyl-transfer RNA
(tRNA), which binds to the aminoacyl-tRNA synthetase-like
domain of GCN2, and then to phosphorylate eukaryotic translation
initiator factor 2a (eIF2a) in turn, and thereby suppresses general
protein synthesis [28]. While these amino-acid-sensing pathways
are ubiquitously expressed, their activities are regulated in a
tissue-specific manner [29].

2.2. Lipid sensing

The fatty acid transporter cluster of differentiation 36 (CD36) is
considered to play an important role in lipid sensing [2] (Fig. 1).
Under the condition of fatty acid deficiency, CD36 forms a complex
with Src kinase Fyn and AMPK kinase LKB1. When fatty acids are
abundant, their interaction with CD36 dissociates Fyn from the
protein complex, allowing LKB1 to activate AMPK [30]. Multiple
G protein-coupled receptors (GPRs) respond to different types of
fatty acids (Fig. 1). For example, GPR40 and GPR120 respond to
medium- and long-chain fatty acids, GPR41 and GPR43 to short-
chain fatty acids, and GPR119 to lipid derivatives [31–33]. Lipid-
sensing nuclear receptors, including liver X receptor (LXR),
pregnane X receptor (PXR), and peroxisome proliferators-activated
receptor c (PPARc), can interact with fatty acids and cholesterol to

modulate the transcription of lipid metabolism-related genes such
as FASN, SREBP1, and CD36 [34,35]. The sterol regulatory element
binding transcription factor 1 (SREBP1) cleavage activating protein
(SCAP) is a cholesterol-sensing protein that binds to cholesterol
and regulates SREBP1 transcriptional activity [36]. Carnitine
palmitoyltransferase-1 (CPT-1) regulates the entry of long-chain
fatty acyl-coenzyme A (LCFA-CoA) into mitochondria for b oxida-
tion. It also affects multiple processes, from insulin resistance
and insulin secretion to appetite control, and plays diversified roles
in the brain, liver, pancreas, and muscle [37].

2.3. Glucose sensing

Glucose is sensed in different tissues, including the pancreatic
islets, liver, muscle, hypothalamus, and adipose tissue, and is inter-
linked with hormones and metabolic fluxes. The glucose metabo-
lism and signals are regulated by tissue-specific factors and the
nutritional status of the tissue [38]. The first step in glucose utiliza-
tion is the phosphorylation of glucose by glucokinase (GCK), which
also functions as a glucose sensor [2] (Fig. 1). GCK has a signifi-
cantly lower affinity compared with other hexokinases and is only
active under the condition of glucose abundance [39]. GCK is
highly expressed in liver, the most active metabolic organ [40].
The specific expression pattern allows the GCK-generated glucose
6-phosphate (G6P) to be shunted into glycolysis or glycogen syn-
thesis according to the metabolic needs (i.e., for energy production
or storage) [2]. While the GCK functions as an intracellular glucose
sensor, the membrane-located glucose transporter type 2 (GLUT2)
can sense extracellular glucose levels. Similar to GCK, GLUT2 has a
relatively low affinity to glucose, allowing it to only import glucose
under high glycaemia conditions. Furthermore, GLUT2 can trans-
port glucose bidirectionally [41,42]. Thus, GLUT2-mediated input
occurs during transient hyperglycemic states, and GLUT2-
mediated output occurs when the intrahepatic glucose levels are
high, making GLUT2 a key controller of glucose homeostasis [2].
GLUT2 is expressed in multiple tissues. In pancreatic b-cells, GLUT2
is required for glucose-stimulated insulin secretion. In the nervous
system, GLUT2-dependent glucose sensing controls feeding and
thermoregulation [41].

Fig. 1. Major nutrient sensing signaling pathways. tRNA: transfer RNA; GCN2: general control nonderepressible 2; Leu: leucine; Arg: arginine; Met: methionine; SAR1B:
secretion associated ras related gtpase 1b; LRS: leucyl-tRNA synthetase 1; CASTOR: cytosolic arginine sensor for mTORC1; SLC38A9: solute carrier family 38 member 9;
SAMTOR: S-adenosylmethionine sensor upstream of mTORC1; GLUT2: glucose transporter type 2; GCK: glucokinase; G6P: glucose 6-phosphate; FBP: fructose-1,6-
bisphosphate; ATP: adenosine triphosphate; AMPK: adenosine monophosphate-activated protein kinase; CD36: cluster of differentiation 36; LKB1: liver kinase B1; Fyn: Src
family tyrosine kinase; LXR: liver X receptor; PXR: pregnane X receptor; PPARc: peroxisome proliferators–activated receptor c; SREBP1: sterol regulatory element binding
transcription factor 1; FASN: fatty acid synthase; GPRs: G protein-coupled receptors.
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Insulin and glucagon are two hormones that control glycaemia.
Increased glucose uptake elevates the intracellular adenosine
triphosphate (ATP) levels in b-cells; this is followed by the closing
of membrane potassium channels and membrane depolarization,
which in turn cause a transient intracellular calcium pulse and
insulin secretion [43]. Sodium–glucose luminal transporter-1
(SGLT-1) mediates the transport of glucose into the enteroen-
docrine cells and initiates subsequent signaling through the secre-
tion of gut hormones such as glucagon-like peptide (GLP)-1 [44].
Glucose sensing is also achieved by the taste receptor T1R2-T1R3
heterodimer on enteroendocrine cells, which plays a role in trig-
gering the secretion of incretin hormones for improved glycemic
and lipemic control [45]. Glucose levels can also be indirectly
sensed by two key metabolic regulators: AMPK and mTORC1 sig-
naling. For example, aldolase senses a low level of glucose meta-
bolic intermediate fructose-1,6-bisphosphate (FBP) and active
AMPK signaling [46]. The mechanisms of glucose-regulated Rag
GTPases and mTORC1 activation is still unclear [47].

3. Regulation of nutrient sensing in mammalian growth and
disease

Nutrient-sensing signaling pathways—and mTOR in particular—
receive external nutrients and environmental inputs to regulate
biomass accretion and health. Dysregulated sensing signals have
been shown to be involved in pathological processes such as can-
cer, cardiovascular diseases, and neurodegenerations [48–50]. Lack
of mTOR activity leads to early-onset myopathy and hinders
growth in mice [51]. mTOR is also an important regulator of
immune responses. Accumulated evidence shows that mTOR pro-
motes the differentiation, activation, and function of T cells, B cells,
and antigen-presenting cells [52,53]. Furthermore, mTOR activities
are involved in driving the growth and proliferation of stem and
progenitor cells, and in dictating the differentiation program of
multipotent stem cell populations [54,55]. In particular, mTOR reg-
ulates multiple intestinal epithelial cell lineages and promotes
stem and progenitor cell activity during intestinal epithelium
repair post injury [56–58]. Taken together, this evidence highlights
the importance and necessity of understanding and manipulating
nutrient sensing in animals.

4. Nutrient-sensing studies in animal nutrition

4.1. Nutrient sensing in land-farmed animals

Numerous studies have confirmed the fundamental roles of
nutrient sensing in farmed animals, both in vitro and in vivo. Most
nutrient-sensing molecules and functions for amino acids, lipids,
and carbohydrates are well conserved in farmed animals such as
pigs [59]. Methionine, Leu, Arg, and other amino acids have been
found to activate the mTOR pathway in cell lines from quail,
cow, porcine, and other domesticated animals [60–62]. In addition,
branched-chain amino acids are able to activate the mTORC1 path-
way in lactating cows and piglets in vivo [63]. Long-chain fatty
acids stimulate the release of GLP-1 and GLP-2 from porcine ileal
tissues [64], while linoleic acid input has been specifically corre-
lated with CD36 levels in the skeletal muscle of broilers [65]. The
phosphoinositide 3-kinases (PI3K)–protein kinase B (PKB)–mTOR
pathway has also been found to be involved in the infections of
porcine epithelial diarrhea virus [66]. Dietary Leu supplementation
could attenuate the decrease of mucin production in the jejunal
mucosa of weaned pigs infected by porcine rotavirus [67]. General
decreases in villus height and intestinal dysfunction during wean-
ing have been found to be accompanied by reduced mTOR activi-
ties in piglets [68]. Dietary supplementation of glutamate

improved mTOR signaling, suppressed inflammation, and allevi-
ated intestine injury in weanling pigs challenged with lipopolysac-
charide [69]. mTOR activators, including branched-chain amino
acids, have also been found to enhance muscle growth in weanling
piglets [70,71].

Nutrient sensing in the intestine plays a fundamental role in
signaling the nutritional status to the central nervous system and
regulating feeding behavior in pigs [59]. Artificial sweeteners,
which are routinely included in piglets’ diet to reduce post-
weaning enteric disorders and promote growth, are now believed
to function through enhanced sodium–glucose luminal
transporter-1 (SGLT-1) activity and glucose absorption [72]. Taste
receptors and nutrient sensors in the intestine also play key roles
in food intake and appetite control in chickens [73].

4.2. Nutrient sensing in aquaculture

Nutrient sensing has received a considerable amount of attention
in aquaculture species in recent years and has been comprehensively
reviewed elsewhere [3,6]. Fish share the main regulatory networks of
growth, feeding, and metabolism with other vertebrates. Nutrient-
sensing signaling pathways, including mTOR, peroxisome prolifera-
tors–activated receptors (PPARs), and AMPK, are also highly con-
served in fish [4,74,75]. Nevertheless, there are also unique
features of nutrient sensing in fish. For example, as poikilotherm ani-
mals, fish respond to cold resistance by stimulating lipid catabolism
and autophagy, and require nutrient-sensing signaling such as the
Carnitine palmitoyltransferase-1 (CPT-1) and mTOR pathways [76].
Also, peroxisome proliferators-activated receptors a (PPARa), the
critical modulator for lipid catabolism in both mammals and fish,
has been found to not be activated by a high-fat diet in Nile tilapia
(Oreochromis niloticus), although it can be activated by a high-fat diet
in mammals and stimulates lipid breakdown. This finding suggests
that the self-protective mechanism of fish in response to high energy
intake has not been well established from an evolutionary perspec-
tive [77]. Nutrient sensing after meals is present in multiple tissues
in fish, such as the intestine, liver, pancreas, muscle, and brain
(hypothalamus) [3]. Nutrient-sensing systems may detect nutrients
either directly or indirectly by sensing some derived metabolite that
reflects nutrient abundance.

Digestive enzymes, endocrine peptides, and hormones are
responsive to food ingestion. The hypothalamus has been demon-
strated to be a signaling integratory center for nutrient sensing and
regulating appetite through anorexigenic and orexigenic neu-
ropeptides [6]. Nutrient sensing in the central nervous system
coordinates with that in the periphery to modulate metabolism
in organs through secreted neuropeptides and hormones [78].
Early studies have demonstrated that mTOR activities are respon-
sive to feeding and regulate metabolic processes, including protein
synthesis, glycolysis, gluconeogenesis, lipogenesis, and so forth
[79,80]. The fatty acids sensor CD36 is expressed and regulated
by diet in the silver pomfret (Pampus argenteus), grass carp
(Ctenopharyngodon idella), Atlantic salmon (Salmo salar L.), and
large yellow croaker (Larimichthys crocea) [81–84]. Dysregulated
PPAR signaling was found to be closely related to fatty liver disease
in Nile tilapia [85]. Similarly, dietary carbohydrate levels influence
levels of glucose-sensing molecules such as glucokinase (GK) and
GLUT2, as well as AMPK signaling [78,86–88].

Compared with terrestrial animals, fish require a high level of
dietary protein, optimally from fishmeal, which is a limited natural
resource that is unsustainable for the development of aquaculture
[89]. Replacing fishmeal with plant proteins in aquafeeds has been
a long-term goal, and a great deal of effort has been made in this
endeavor. Regardless of the trend of reduced fishmeal inclusion
in fish diets, however, it is generally acknowledged that the perfor-
mance of fishmeal is superior to that of other protein sources [90].
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Our previous studies demonstrated that, after fishmeal replace-
ment with other protein sources, the postprandial activation of
mTOR signaling was reduced and thus provided less drive for ana-
bolic processes after feeding in turbot (Scophthalmus maximus L.)
[91,92]. We further showed that imbalanced amino acids [93]
and anti-nutritional factors such as gossypol [94], saponin [95],
and lectin from plant proteins [96] all contribute to the inhibition
of mTOR activation in fish. Supplementation of mTOR activators,
such as branched-chain amino acids [97], glutamate [98], and
phosphatidic acid [99], could be beneficial for dietary utilization
and growth in various fish species. We also found that targeting
the nutrient-sensing pathway by simply increasing feeding fre-
quency could fine-tune postprandial responses and improve fish
growth by 7.68% and protein retention by 4.01% in turbot [97].

5. Integration of nutrient sensing with animal nutrition: What
can we do next?

Numerous studies have unequivocally demonstrated that nutri-
ent sensing plays major roles in the regulation of metabolism and
diseases. There have been extensive applications of nutrient sens-
ing in clinics. For example, various forms of fasting, protein restric-
tion, and specific reductions in the levels of essential amino acids
such as Met and the branched-chain amino acids are practiced in
order to selectively impact mTOR and AMPK signaling to promote
healthy longevity [100]. The modulation of nutrient-sensing path-
way therapeutics—particularly growth hormone secretagogues—
has been developed to improve cognitive outcomes [101]. In con-
trast, the merging of nutrient sensing with animal nutrition is still
in its infancy. From our point of view, research in the following
directions, at least, is much needed and will be beneficial to the
future of animal nutrition:

� Correlation of nutrient-sensing responses with feed formu-
lations. To date, most of the studies on this topic have been con-
ducted to elucidate the fundamental mechanisms of nutrient
sensing toward defined nutrients, either using cell lines in vitro
or animal models in vivo. However, practical diet formulations
are much more complex. Traditionally, dietary performance is
evaluated by phenotypic parameters such as growth rate, feed
conversion efficiency, protein retention rate, and so forth. Eluci-
dation of the correlated nutrient-sensing responses should be
valuable for an understanding of the mechanisms underlying
dietary performance, and for instructions for further feed
optimization.

� Integration of nutrient sensing with new methodologies
for future nutrition science. Isotopic labeling with a flooding dose
has been used for the measurement of protein synthesis rate for
decades [102]. However, metabolic flux analysis (MFA) has only
recently emerged as an important tool for studying metabolism
quantitatively [103]. The conceptual idea of MFA is that the
isotope-labeling patterns of intracellular metabolites are deter-
mined by fluxes; therefore, by measuring the labeling patterns,
we can infer the metabolic dynamics quantitatively. The wealth
of omics technologies, such as genomics, transcriptomics, pro-
teomics, and metabolomics, has been well exploited by nutrition
science to explore the interactions of foods with biological sys-
tems. A tremendous amount of data has been collected and ana-
lyzed using system biology methods to process genomic, mRNA,
protein, and metabolite information for the comprehensive
description of molecular network regulation. Nevertheless, high-
throughput profiling information needs to be categorized and
interrogated. It is only once the activities of the signaling pathways
that sense nutrients and intermediate metabolic processes are
delineated that we can obtain a functional map of how cells and
organisms act in concert.

� Precision nutrition with targeted nutrient-sensing inter-
vention. Nutrient-sensing molecules—and mTOR in particular—
have been exploited as therapeutic targets in drug discovery. Pre-
cise nutritional strategies have also been proposed to modulate
nutrient-sensing responses and promote healthcare against cancer
[104], Alzheimer’s disease [105], Down’s syndrome [106], and sar-
copenia [107], among others. Nutrient sensing also opens up a new
avenue for animal nutrition. Guided by postprandial nutrient-
sensing kinetics, systematic feed optimization can be done in order
to achieve economically valuable output. The time has come to
integrate the theory of nutrient sensing and high-throughput tech-
nologies with traditional nutrition methods, and to carry out large-
scale pilot trials for precision nutrition, which should pave the way
for the future of animal nutrition.

� Development of biomarkers and devices for real-time ani-
mal monitoring. There are features of nutrient-sensing molecules
such as mTOR that render them potentially useful as biomarkers:
Their activities are responsive to nutritional status in a dose-
dependent manner [92,97,108], and they are vital for organ-
specific functions, including muscle protein deposition and
immune responses, which can be measured and employed as sur-
rogate outcomes. A great deal of effort is needed to screen and
select potential candidates as useful biomarkers for the indication
of the nutritional and health status of farmed animals. We have
seen rapid development of the integration of biosensing technolo-
gies with the Internet of Things (IoT) paradigm to promote rapid,
on-farm, and real-time monitoring of the health and welfare of
farmed animals, especially cattle [109]. Conceptual sensors have
also been developed to monitor nutritional status in animals
[110]. Nevertheless, it is still necessary to tailor technologies effi-
ciently and accurately for particular physiological purposes and
species-specific traits. Such data should be valuable for future pre-
cision animal farming.
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