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The heterogeneous catalytic activation of peroxymonosulfate (PMS) for wastewater treatment is attract-
ing increased research interest. Therefore, it is essential to find a sustainable, economical, and effective
activated material for wastewater treatment. In this study, metal–organic framework (MOF)-5 was used
as the precursor, and a stable and recyclable material ZnO@Ni3ZnC0.7 that exhibited good adsorption and
catalytic properties, was obtained by the addition of nickel and subsequent calcination. To investigate
and optimize the practical application conditions, the elimination of rhodamine B (RhB) in water was
selected as the model process. This study demonstrated that the degradation of organic matter in the sys-
tem involved a coupling of the adsorption and degradation processes. Based on this, the mechanism of
the entire process was proposed. The results of scanning electron microscopy, infrared spectrum analysis,
and theoretical analysis confirmed that the van der Waals forces, electrostatic attraction, and hydrogen
bonding influenced the adsorption process. Electron paramagnetic resonance analysis, masking experi-
ments, and electrochemical tests conducted during the oxidative degradation process confirmed that
the degradation mechanism of RhB included both radical and non-free radical pathways, and that the sur-
face hydroxyl group was the key active site. The degradation of the adsorbed substrates enabled the
regeneration of the active sites. The material regenerated using a simple method exhibited good effi-
ciency for the removal of organic compounds in four-cycle tests. Moreover, this material can effectively
remove a variety of organic pollutants, and can be easily recovered owing to its magnetic properties. The
results demonstrated that the use of heterogeneous catalytic materials with good adsorption capacity
could be an economical and beneficial strategy.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The progress of human society depends on the development of
industry, and the latter has increasingly resulted in the production
of several harmful and poisonous pollutants that are difficult to
degrade in sewage. In recent years, pharmaceuticals, personal care
products [1,2], and endocrine disruptors [3] that adversely affect
human health and ecological environment have attracted
increased research attention. Therefore, efficient methods for
wastewater treatment are necessary to achieve the goal of clean
production and promote the sustainable development of human
society.

Several organic pollutants are difficult to remove effectively
using conventional water treatment technologies [4–6], and the
average removal of many organic pollutants, including atrazine,
in sewage treatment plants is less than 50% [7]. To resolve this
problem, advanced oxidation technologies are emerging with the
rapid development of wastewater treatment technologies.
Advanced oxidation processes are powerful and efficient methods
to degrade the pollutants in water. Among these methods, sulphate
radical-based advanced oxidation processes have attracted consid-
erable research interest owing to their high redox potential and
selectivity for oxidation [8,9]. The activation of peroxymonosulfate
(PMS) can be accomplished using techniques, such as thermal acti-
vation, photoactivation [10], ultrasonic irradiation, electrochemical
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methods, homogeneous metal-ion catalysis, and heterogeneous
catalysis [11,12]. In recent years, heterogeneous catalysis has been
widely studied owing to its high efficiency and less secondary pol-
lution [8]. Currently, semiconductors, transition metals, and metal-
free materials are widely used to activate PMS [13,14]. In addition,
the development of magnetic heterogeneous catalytic materials
resolves the problem of material separation in aqueous solutions
and improves the possibility of practical use [15–17].

The development of heterogeneous catalytic oxidation materi-
als encounters several problems: The use of precious metals makes
the materials expensive, the catalysts are difficult to separate from
the aqueous environment [18], and the recycling effect is limited
[19]. In general, the development of materials is a trade-off
between their cost and efficiency. Although the adsorption process
is simple and economical, it does not resolve the fundamental
problem of pollution in wastewater treatment. In contrast, the
advanced oxidation technologies combined with the adsorption
process could be more economical and efficient techniques that
further promote clean and sustainable development. Several stud-
ies have investigated the application aspects of the adsorption–cat-
alytic oxidation process. For example, Wang et al. [20] observed
that the adsorption–degradation cycle was conducive to the
removal of the bisphenols. Peng et al. [21] demonstrated that the
synergistic effect of the adsorption and catalysis on Fe/Fe3C@NG
achieved an efficient removal of norfloxacin (Nor).

Metal–organic frameworks (MOFs) were selected as the poten-
tial adsorbents and heterogeneous catalytic materials owing to
their large specific surface area and variable reaction sites
[22,23]. MOFs are three-dimensional ordered porous materials
formed by metal ions and organic ligands [24]. MOFs are also
called porous coordination polymers (PCPs), and are widely used
in gas storage [25], catalysis [26], adsorption [27], chemical sensing
[28], drug transport [29], semiconductors [30], and biomedical
imaging [31]. Moreover, many researchers have used MOFs as tem-
plates or precursors to synthesize carbonaceous materials or metal
composites [32–35] to investigate their applications. MOFs-based
carbon composites that are a combination of metal composites
and carbon, exhibit superior potential in adsorption and heteroge-
neous catalysis [36,37].

However, stability is an important factor for all heterogeneous
catalysts. Therefore, the practical applications of MOFs are con-
trolled by their recycling performance and stability. Among all the
reported MOFs, MOF-5 is one of the most typically used materials
that exhibits open-skeleton structure, large pore surface area, and
good thermal stability [38]. However, MOFs comprising divalent
metal centers and multi-carboxylate ligands, such as MOF-5, are
sensitive to water and can collapse in aqueous environment [39],
making them less competitive in wastewater treatment. Consider-
ing that the ligands bind to nickel ions in amore stablemanner than
to zinc ions, the doping of MOF-5 with nickel ions can improve its
stability in aqueous environment. Thus, the nickel-doped MOF-5
can be used in wastewater treatment [40]. Moreover, the addition
of nickel to MOF-5 and its subsequent calcination yields a magnetic
composite that facilitates the solid–liquid separation and its subse-
quent regeneration, as well as resolves some of the problems
encountered in the development of heterogeneous materials.

We prepared a magnetic heterogeneous catalyst, denoted as
ZN-CS, via a previously reported hydrothermal synthesis method
[41]. The removal of rhodamine B (RhB) was selected as the model
process to investigate the proposed mechanism and the coupling
effects. Furthermore, the removal of different target pollutants
(acid orange 7 (AO7), methylene blue (MB), tetracycline hydrochlo-
ride (TC), and Nor), and the factors affecting the degradation of RhB
were studied. Finally, the analysis results of scanning electron
microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, pow-
der X-ray diffraction (XRD), Fourier transform infrared spec-
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troscopy (FT-IR), and electron paramagnetic resonance (EPR)
analysis and the quenching experiments demonstrated that the
degradation of the absorbed pollutants enabled the regeneration
of the active sites, contributing to a high recycling performance.
Compared with the systems used in some previous studies, this
system did not use any precious metals. Moreover, this system
employed the adsorption–degradation process to achieve a balance
between the economic and treatment effect. Additionally, the syn-
thesized catalyst exhibits magnetic properties, recyclability, stable
structure, and good removal efficiency for a variety of organic mat-
ter. The adsorption–interpretation coupling process provides a
new approach for the development of catalytic materials with ade-
quate adsorption performance.
2. Experiment

2.1. Materials and chemicals

Ethylene glycol, zinc nitrate hexahydrate (Zn(NO3)2�6H2O), N,N-
dimethylformamide (DMF), methanol, tert-butanol (TBA), ethanol,
nickel nitrate hexahydrate (Ni(NO3)2�6H2O), RhB, anhydrous
sodium sulphate, and potassium hydrogen phosphate (K2HPO4)
were obtained from Chengdu Kelong Chemical Reagent Co., Ltd.
(China). p-Phthalic acid (H2BDC), acid orange 7 (AO7), Oxone
(PMS), and TC were obtained from Aladdin Chemistry Co., Ltd.
(China). Nor and MB trihydrate were obtained from TCI (Shanghai)
Development Co., Ltd. and Sinopharm Chemical Reagent Co., Ltd.
(China), respectively. Ultrapure water was used to prepare all the
aqueous solutions. All chemicals used in the experiments were of
analytical grade.
2.2. Preparation of samples

The core–shell ZN-CS nanocomposite was prepared using a pre-
viously reported method [41] with some modifications. First,
0.75 g each of Zn(NO3)2�6H2O and Ni(NO3)2�6H2O were added to
the solvent mixture (75 mL ethylene glycol and 120 mL DMF).
The resulting sample was stirred under magnetic stirring till the
solids dissolved completely. Subsequently, 0.45 g of H2BDC was
dissolved in the prepared solution. The solution was placed in a
Teflon-lined stainless-steel autoclave at 150 �C for 6 h. The con-
tents were collected through centrifugation, purified with ethanol
and DMF, and subsequently dried in a blast drying oven at 100 �C
overnight. The sample thus obtained was calcined at 450 �C in a
tube furnace under a nitrogen atmosphere for 20 min, washed with
deionized water. and finally dried to obtain ZnO@Ni3ZnC0.7. The
high structural stability of the synthesized catalyst (denoted as
ZN-CS) was confirmed using XRD and XPS analysis.
2.3. Characterization of the ZN-CS

The RhB concentration was analyzed using a spectrophotometer
(MAPADA UV-1800PC, China) with maximum absorption wave-
length of 554 nm. The N2 adsorption/desorption isotherms were
obtained using a QuadraSorb Station 2 at �196 �C. The zeta poten-
tial of the ZN-CS surface was determined using a zeta potential
analyzer (Nicomp Z3000, USA). The surface morphologies and
atomic composition of the newly prepared and used catalysts were
analyzed using a JSM-5900LV scanning electron microscope (JEOL
Ltd., Japan) equipped with an energy-dispersive X-ray spec-
troscopy (EDS) detector. The XRD patterns were obtained using
an X’Pert Pro MPD DY129 X-ray diffractometer. Infrared spectra
were obtained using FT-IR (Nicolet 6700, Thermo Scientific, USA).



Fig. 1. Effect of the initial PMS concentration on RhB adsorption and degradation by
the ZN-CS/PMS system, and RhB removal efficiency in the PMS system. Reaction
conditions: [ZN-CS] = 100.00 mg�L�1, [RhB]00 = 7.60 mg�L�1. C0: initial RhB
concentration; C: RhB concentration.
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2.4. Experimental operations

The adsorption performance of the ZN-CS towards RhB was
studied by an extra batch-adsorption experiment in a glass beaker
at 20 �C. The catalysts were withdrawn at the pre-determined
intervals and immediately separated by Whatman GF/F glass-
fiber membranes to measure the residual RhB concentration. To
evaluate the activation ability of the ZN-CS towards PMS, catalytic
experiments were conducted with the pristine ZN-CS in a 500 mL
glass beaker at room temperature. Because ZnO has been widely
studied as a semiconductor photocatalyst [42], we conducted a
control experiment under dark conditions to eliminate the effect
of light. The results thus obtained exhibited no significant differ-
ence (Appendix A Fig. S1). Therefore, the subsequent experiments
were conducted under indoor light conditions. Before the addition
of PMS, different dosages of the catalysts were dispersed in a
200 mL RhB solution, which was stirred for approximately
15 min to achieve the adsorption equilibrium. The degradation
reaction was triggered by adding the desired amount of PMS. The
samples were withdrawn, and filtered at certain time intervals to
determine the residual pollutant concentration. The blank test
without the catalyst was conducted under the same conditions.
PMS was the principal source of hydroxyl and sulphate radicals
that are essential for the degradation process. Therefore, to inves-
tigate the effect of the initial PMS concentration, experiments were
carried out using PMS concentrations in the range 100–400 mg�L�1.
The experimental results indicated a noticeable increase in the RhB
removal with 200 mg�L�1 PMS. Therefore, the subsequent experi-
ments were performed using the PMS concentration of 200 mg�L�1.
The effect of the catalyst dosage was evaluated at 25, 50, 100, and
150 mg�L�1. Additionally, the effect of the initial RhB concentration
was investigated.

To study the contribution of the reactive species, methanol and
TBA were used as the radical scavengers. To observe the effect of
the reactive sites, dipotassium phosphate was used to mask them.
The used catalysts were washed with ultrapure water and dried at
100 �C overnight. The recycling experiments were carried out at
[RhB]0 = 3.40 mg�L�1, which was equal to the concentration of
RhB after adsorption by the pristine ZN-CS at [RhB]00 = 7.60 mg�L�1;
all other steps remained the same. All the experiments were car-
ried out twice or thrice, and the average data with their standard
deviations were presented.
3. Results and discussion

3.1. Adsorption and catalytic oxidation performance

The ZN-CS exhibited a strong adsorption affinity for RhB before
the addition of PMS, with over 50% removal of RhB in 15 min
(Fig. 1). The pH change of the solution during the removal process
and all the kinetic results are shown in Appendix A Fig. S2, Text S1,
and Table S1 separately. Additionally, the adsorption rate of RhB
increased gradually, probably owing to both the decreasing RhB
concentration in the aqueous phase and the gradual exhaustion
of the adsorption sites. PMS was added to the solution to initiate
the reaction when the adsorption equilibrium was reached. After
30 min, approximately 90% RhB was eliminated in the ZN-CS/
PMS system, while only 8% RhB was removed in the PMS system.
Moreover, the ZN-CS exhibited the best removal efficiency among
the precursor and the catalyst with single metal (Appendix A
Fig. S3). Additionally, the PMS concentration decreased rapidly in
the beginning, and the decrease became gradual with time
(Appendix A Fig. S4). The rapid consumption of PMS at the begin-
ning was probably owing to the adsorption or some binding effects
with the catalyst. Subsequently, the activation of PMS became
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gradual because of the saturation and depletion of the active sites.
Thus, the material can adsorb RhB, and activate PMS for further
degradation of the substrate. The coupling effect of adsorption–
degradation presents certain practical application potential
(Appendix A Fig. S5). In the following analysis, the elimination pro-
cess of RhB could be separated into two stages, adsorption and
degradation. The possible mechanisms of both the stages were
proposed.
3.2. Preliminary analysis of the catalyst composition

To confirm the crystallographic structure, phase purity, and
structural stability of the ZN-CS, XRD patterns of the pristine and
used samples were recorded (Fig. 2(a)). The results demonstrated
that the catalyst comprised ZnO (Joint Committee on Powder
Diffraction File (JCPDF) #89-0510) and Ni3ZnC0.7 (JCPDF #28-
0713). The distributions of ZnO and Ni3ZnC0.7 in the shell and core
were approximately uniform (Appendix A Fig. S6 and Table S2).
This indicated that the sample was of high purity, and no other
crystalline impurities were detected. Additionally, the phase of
the used sample was confirmed by XRD analysis. The phase of
the obtained catalyst remained unchanged during the process. As
can be confirmed from the wide X-ray photoelectron spectroscopy
(XPS) spectrum (Fig. 2(b)), the ZN-CS comprised four elements—Zn,
Ni, C, and O. This result was consistent with those obtained from
XRD analysis. The high-resolution Zn 2p spectrum (Fig. 2(c))
revealed two components: ZnO with binding energies of 1024.3
and 1047.6 eV, as well as Zn–Ni with two peaks positioned at
1021.7 and 1043.5 eV. The high-resolution Ni 2p spectrum
(Fig. 2(d)) revealed two components: Ni(0) at 852.3 and
869.5 eV, and Ni2+ at 854.8 and 872.2 eV. Two shake-up satellite
peaks at 859.6 and 879.1 eV were also observed. In general, the
two forms of metals corresponded to the two main compo-
nents—ZnO and Ni3ZnC0.7—in the XRD analysis. The formation of
Ni2+ occurred possibly because of the surface oxidation of Ni. In
addition, the relative content of ZnO slightly increased from 20%
to 30% after the degradation process, indicating that Zn was par-
tially oxidised and thus acted as an electron donor. There was no
remarkable change in the valence ratio of Ni. This indicated that
the contribution of metal gain and loss electrons to degradation
was not significant.



Fig. 2. (a) XRD patterns of the pristine catalyst and used catalyst, (b) wide XPS spectrum of the ZN-CS before/after degradation, (c) the high-resolution Zn 2p spectrum of the
ZN-CS before/after degradation, and (d) the high-resolution Ni 2p spectrum of the ZN-CS before/after degradation.
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3.3. Adsorption mechanisms

There are some classical explanations for the adsorption mech-
anism, including physical and chemical adsorption. Physical
adsorption mainly involves the van der Waals forces and electro-
static attraction. In contrast, chemical adsorption involves the for-
mation of chemical bonds, either by transfer or sharing of
electrons, between the adsorbent molecules and the atoms or
molecules on the solid surface of absorbent [43–45]. To determine
the adsorption mechanisms, several experiments and theoretical
calculations were conducted.

3.3.1. Physical adsorption
(1) Physical adsorption capacity. To determine the physical

adsorption capacity of the samples, we examined their surface
morphologies and atomic composition using SEM-EDS, and calcu-
lated their specific surface area and the average pore diameter by
the nitrogen adsorption/desorption experiment. The synthesized
catalyst exhibited a sphere-like morphology with a core–shell
256
structure. Fig. 3(a) presents an image of the pristine catalyst. The
catalyst surface was loose and porous, with the external shape sim-
ilar to that of Hydrangea macrophylla. Fig. 3(b) illustrates the elec-
tron micrograph of the catalyst magnified to 2000 times. The
particle size of the catalyst was uniform, and the shell structures
of few particles were damaged. Agglomeration in the range of
approximately 2–4 lm within the particles was observed. After
the adsorption, the pore channels were filled, with further aggrega-
tion of the particles (Figs. 3(c) and (d)). The catalyst shape did not
change remarkably, and the core–shell structure remained stable
(Figs. 3(e) and (f)) after the degradation. This was consistent with
the results of XRD analysis. Owing to the continuous deposition
of the surface materials, the surface pores were filled, and the par-
ticle surface was gradually passivated. This can be expected to
result in a decrease in the adsorption capacity. with subsequent
release of the active sites in the degradation process. Thus,
the adsorption ability was regenerated for reuse. The bars in
Figs. 3(d) and (f) were considered to be the impurities introduced
in the recycling process. Additionally, the results of EDS analysis



Fig. 3. SEM images of (a, b) the pristine catalyst, (c, d) catalysts after adsorption of RhB, and (e, f) catalysts after degradation of RhB.

Table 1
Changes in the surface element content of C, O, Ni, and Zn per the EDS analysis.

Catalyst C (%) O (%) Ni (%) Zn (%)

Pristine 67.37 11.81 12.22 8.60
Absorbed 69.23 12.34 11.76 6.67
Degraded 72.85 10.41 10.38 6.36
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(Table 1) indicated changes in the oxygen-containing functional
groups, which will be explained in the collaborative analysis of
the FT-IR characterization later.

As illustrated in Fig. 4, the N2 adsorption–desorption isotherms
were identified as type II with a type H3 hysteresis loop [46]. This
was owing to the presence of large pores formed by the accumula-
tion of flaky particles, and was consistent with the morphology of
Fig. 4. N2 adsorption–desorption isotherms and the pore-size distribution curve of
the ZN-CS. STP: standard temperature and pressure; cc: cubic centimeter (cm3); P:
the nitrogen partial pressure; P0: saturated vapor pressure of nitrogen at adsorption
temperature.

257
the precursors. The specific surface area of the sample calculated
using BET analysis was 55.311 m2�g�1. As can be observed from
the pore-size distribution diagram, the average pore diameter of
the ZN-CS was less than 20 nm. The large specific surface area
and narrow pores may also contribute to the enrichment of RhB
and potentially provide enough active sites for the heterogeneous
reaction process.

(2) Electrostatic attraction. The electrostatic factor may also
play an important role in the adsorption process [47] as discussed
here. We measured the zeta potential of the catalyst to determine
its charge properties at different pH levels. The pH value at the
point of zero charge (pHPZC) of the catalyst in the reaction system
measured by zeta potential analyzer was approximately 7.5
(Appendix A Fig. S7). This result could be discussed from the fol-
lowing two aspects. First, the catalyst surface was negatively
charged, and the negative charge increased with the pH value at
pH > 7.5 for the ZN-CS. Moreover, when the pH was less than
7.5, the surface became positively charged, and the positive charge
increased as the pH value decreased. The pKa of RhB is 3.0 and its
KOW is 190 [48]. For pH > 7.5, 90% of the carboxylic acid molecules
on RhB dissociated, and the number of the amphoteric ions (those
containing the carboxylate ion and quaternary ammonium cation)
of RhB increased with the pH value. For pH < 7.5, the carboxylic
acid dissociation of RhB decreased with decrease in the pH value.

Thus, an increase in the pH value was conducive to the
improvement in the electrostatic attraction between the catalyst
and quaternary ammonium cation of RhB. In addition, the electro-
static repulsion between the catalyst and carboxylate ion on RhB
increased with the increase in the pH value. As can be observed
from Appendix A Fig. S8, an improved adsorption ability was
obtained with the pH value of 3.02 or 8.96, both at severe condi-
tions. The possible reason is that the greater charge on the catalyst
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led to stronger electrostatic attractions under the abovementioned
conditions.
3.3.2. The surface complexation between RhB and the ZN-CS
In addition to the physical adsorption between RhB and the ZN-

CS, the surface complexation that involved chemical bonding and
contributed to the adsorption process is also discussed here. As
the functional groups played a vital role in the chemical bonding
between the absorbent and adsorbate, FT-IR analysis of the catalyst
was conducted to determine the main functional groups involved
in the adsorption process. The samples were dried at 100 �C over-
night to decrease the interference of the bound water with the
absorption peak. The band at 750 cm�1 was assigned to the bend-
ing vibration of O–H (c O–H) (Fig. 5). The broad band observed at
approximately 3425 cm�1 was attributed to the stretching mode of
O–H (m O–H) owing to the presence of hydroxyl [18], and the
decline in the band intensity might be attributed to the consump-
tion and regeneration of the surface hydroxyl groups. Furthermore,
when the catalyst was used to adsorb RhB, the abovementioned
peak underwent a blue-shift of 5 cm�1 (from 3425 to
3430 cm�1), which indicated that RhB bonded with the catalyst
by replacing the O–H groups on the surface of the oxide [49,50].
Additionally, because of the vibration of the aromatic rings
[51,52], a new peak at 1178 cm�1 was observed for the RhB-
adsorbed sample. These results indicated that the adsorption
mechanism involved the surface complexation between RhB and
the ZN-CS. To substantiate the role of chemical adsorption, we used
phosphate to mask the hydroxyl groups on the surface of the ZN-
CS, as phosphate exhibits stronger affinity for this adsorption site
[53]. The results revealed that the adsorption capacity decreased
by approximately 10% in presence of the masking agent (Appendix
A Fig. S9). This indicated that the hydroxyl groups were involved in
the chemisorption.
3.3.3. Kinetic analysis
The study of adsorption kinetics is essential to elucidate the

adsorption mechanism. Therefore, we calculated the kinetic data
of the adsorption process using pseudo-first-order [54] and
pseudo-second-order [55,56] simulations (Appendix A Text S2).
The calculated kinetic data (Table 2) revealed that the adsorption
process was better described with the second-order kinetics, indi-
cating that the chemisorption was the rate-determining step [56].
Fig. 5. FT-IR spectra of the (a) pristine catalyst, (b) catalyst after the adsorption, and
(c) catalyst after the degradation.
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In addition, the fitting results of different adsorption models
demonstrated that the adsorption process can be best described
with the Freundlich model and the sorption of RhB on the ZN-CS
surface was essentially chemical (Appendix A Text S3 and
Table S3). The values of thermodynamic parameters (DG, DS, and
DH) revealed that the adsorption of RhB on the ZN-CS surface
was spontaneous, feasible, and exothermic (Appendix A Fig. S10,
Text S4 and Table S4). In conclusion, the adsorption process was
mainly determined by the van der Waals forces, electrostatic
attraction, and the surface complexation of the hydroxyl groups,
with chemisorption being the rate-determining step.
3.4. The degradation mechanism

3.4.1. Identification of the active species and active sites
To determine the reactive species involved, different quenchers

were used, and their contribution to the RhB degradation was
investigated (Fig. 6(a)). Methanol and TBA were used to quench
the SO4

�� and HO� radicals [57–59]. However, stronger inhibition
effect was observed after the addition of TBA (Fig. 6(a)), which
was contrary to what was expected. This might have resulted from
the high viscosity of TBA [60]. Therefore, additional experiments
were required to be conducted to identify the active species.

EPR analysis was carried out to determine the responsible rad-
ical species using dimethyl pyridine N-oxide (DMPO) and 2,2,6,6-
tetramethylpiperidine (TEMP) as the spin-trap agent. The charac-
teristic peaks corresponding to the DMPO-OH adducts and feeble
signals corresponding to the DMPO-SO4 adducts were observed in
the PMS/ZN-CS system (Fig. 6(b)). As the capture of the trace sul-
phate radical in the actual detection was difficult, the signal cor-
responding to the DMPO-SO4 adducts was weak, and had the
same height as that of the noise signal. Moreover, no signal cor-
responding to O ��

2 was detected. These results were consistent
with some previous observations [61–63]. Considering the pro-
duction of the singlet oxygen during the self-decomposition of
PMS [64], we conducted a controlled experiment using TEMP as
the capture agent to determine if the catalyst could promote
the production of the singlet oxygen. Consequently, the signal
strength of the PMS system was similar to that of the PMS/ZN-
CS system within the error range. This indicated that the produc-
tion of the singlet oxygen cannot be facilitated in the PMS/ZN-CS
system. Moreover, the self-decomposition of SO5

�� radicals can
readily proceed owing to its high reaction rate (� 2 � 108

(mol�L�1)�1�s�1) and low activation energy (Ea = (7.4 ± 2.4) kcal�
mol�1), resulting in the fast generation of 1O2 (Appendix A Text
S5, and Eqs. (S14) and (S15)) [65–68]. Thus, it can be concluded
that radicals (mainly HO�) were generated in the ZN-CS/PMS sys-
tem and that these radicals played an important role in the
degradation of RhB. In the radical pathway, Zn and Ni were
involved in the direct redox process of PMS; the possible reaction
is given in Appendix A Text S6, and Eqs. (S16)–(S19) [69–71].
However, the effect on the degradation rate was small, owing to
the masking of the SO4

�� and HO� radicals by methanol. This
suggests a more dominant mechanism of degradation.

Ding et al. [72] summarized the methods for the estimation of
the contribution rates of the radical and non-radical processes
(Appendix A Text S7, and Eqs. (S20)–(S22)). The results revealed
that the contribution rate of the radical process was approximately
34.1%, and that of the non-radical process was approximately
65.9%. This indicates that the non-radical process played an impor-
tant role in this system.

In recent years, the mechanism of the indirect oxidation of pol-
lutants by oxidants has been proposed. Increased attention has
been paid to the direct electron transfer between the pollutants
and high-potential intermediates formed by the carbon materials



Fig. 6. (a) Effect of the quenching agents. TBA:PMS = 1000:1, methanol:PMS = 1000:1, phosphate:PMS = 5:1 (molar ratios). Reaction conditions: catalyst dose = 100.00 mg�L�1,
PMS dose = 200.00 mg�L�1, [RhB]00 = 7.60 mg�L�1, room temperature, and pH0 6.3, (b) Dimethyl pyridine N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP) spin-
trapping EPR spectra of different systems; (c) the chronopotentiometry curves on the ZN-CS electrodes in different systems ([NS] = 0.5 mmol�L�1, [PMS] = 200.00 mg�L�1); and
(d) the chronopotentiometry curves on the ZN-CS electrodes in the degradation system with gradual addition of PMS ([NS] = 0.5 mmol�L�1, [RhB] = 7.60 mg�L�1). NS: sodium
sulphate.

Table 2
Comparison between the adsorption rate constants, qe, and the estimated and correlation coefficients (R2) associated with the pseudo-first-order and pseudo-second-order rate
equations.

Initial RhB concentration (mg�L�1) Pseudo-first-order rate equation Pseudo-second-order rate equation

k1 (min�1) qe (mg�g�1) R2 k2 (g�(mg�min)�1) qe (mg�g�1) R2

3.8 0.218 4.143 0.9924 0.0098 34.602 0.9922
7.6 0.236 4.374 0.9934 0.0134 45.662 0.9984

11.4 0.183 4.756 0.9778 0.0090 52.632 0.9851
15.2 0.262 4.393 0.9895 0.0187 55.556 0.9972

k1 (min�1) and k2 (g�(mg�min)�1) are the adsorption rate constants of the pseudo-first-order and the pseudo-second-order models, respectively.
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and oxidants. Ren et al. [73] suggested that peroxydisulfate (PDS)
can be catalyzed by carbon nanotubes (CNTs) to form a high-
redox potential composite to degrade organic compounds directly.
Based on his research, we used the catalyst as electrodes to confirm
the formation of the high-potential intermediates (Appendix A
Text S8), and monitored the open-circuit potential by chronopo-
tentiometry analysis. The open-circuit potential increased remark-
ably after the addition of PMS (Fig. 6(c)), indicating that the
catalyst and PMS combined to form the high-potential intermedi-
ate (denoted as ZN-CS*PMS). The gradual decrease in the potential
can be attributed to the consumption of highly potential-active
substances. Subsequent supplementation with PMS can aid in the
recovery of the potential (Fig. 6(d)). This indicates the potential
for the direct oxidation ability of ZN-CS*PMS.
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Additionally, it is essential to determine the active sites on the
catalysts to elucidate the mechanism. To determine the active sites
that activate PMS, changes in the functional groups of the catalysts
after degradation were analysed. Fig. 5 illustrates the FT-IR spectra
of the ZN-CS in the range 400–4000 cm�1. Six distinct adsorption
bands were identified at approximately 460, 750, 1137, 1383,
1570, and 3425 cm�1. As mentioned earlier, owing to the presence
of the hydroxyl [18], the increased intensity of the broad band at
approximately 3425 cm�1 indicated the regeneration of the O–H
in the degradation process. The red shift of this band after the addi-
tion of PMS indicated that the complexation between RhB and the
ZN-CS was destroyed, and that the RhB adsorbed on the catalyst
surface was partially degraded. After the reaction, the decrease in
the absorption band at approximately 460 cm�1 (corresponding
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to the stretching of Zn–O bond) [74–77], indicated that ZnO was
either consumed or leached. Finally, the remaining three spectral
lines were almost the same, confirming the stability of the ZN-
CS. To confirm the role of the surface hydroxyl groups, a masking
experiment was conducted using a phosphate with stronger affin-
ity [53]. The RhB degradation exhibited a remarkable inhibition
(Fig. 6(a)), confirming the role of the surface hydroxyl groups in
the PMS activation. ZnO is a semiconductor that contains numer-
ous mobile electrons and exhibits good capacitance characteristics
[78]. It can transfer and store electrons, and is conducive to the
electron transfer and conduction between the ZN-CS*PMS interme-
diates and pollutants. In addition, Ni3ZnC0.7 exhibits good electrical
conductivity [79] and electron-transfer ability. Thus, it can be
assumed that Zn and Ni play an important role in the electron
transfer between the ZN-CS*PMS and organic contaminants in
the non-radical pathway. Therefore, Zn and Ni may act as electron
donors and carriers in the free radical process, whereas in the non-
radical process, both of them mainly contribute to the electron
conduction. Thus, a possible degradation mechanism with the
effect of organic moieties of the ZN-CS can be expressed in terms
of the following equations (Eqs. (1)–(7)).

e� þ HSO �
5 ! SO 2�

4 þHO� ð1Þ

e� þHSO �
5 ! OH� þ SO ��

4 ð2Þ

e� þHSO �
5 ! SO ��

5 þ Hþ ð3Þ

OH� þ SO ��
4 ! SO 2�

4 þHO� ð4Þ

SO 2�
4 þHO� ! SO ��

4 þ OH� ð5Þ

ZN� CS� OH þ PMS ! ZN� CS�PMS ð6Þ

ZN� CS�PMS þ Pollutants ! CO2 þ H2O ð7Þ
3.4.2. Regeneration performance
In the recycling experiments, the removal of RhB was divided

into two stages. To simplify the regeneration and reuse, we exclu-
sively used deionized water to clean and dry the catalyst without
taking special measures for the catalyst desorption. In the recycling
experiments, the catalyst maintained the removal rate of over 90%
Fig. 7. The regeneration performance and reusability of the ZN-CS. Reaction
conditions: [RhB]00= 7.60 mg�L�1, [RhB]0 = 3.40 mg�L�1, [ZN-CS] = 100.00 mg�L�1, and
[PMS] = 200.00 mg�L�1.
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as shown in Fig. 7. The regenerated catalyst exhibited better degra-
dation effect on RhB. The reasons for the better recycling perfor-
mance of the catalyst are as follows. First, the recycled samples
exhibited a certain adsorption capacity towards RhB in the recy-
cling experiments even without desorption. This was because
some of the originally adsorbed RhB had been degraded in the
batch experiments, and the recycled samples could recover a cer-
tain adsorption capacity. The second factor is that the generated
free radicals or the ZN-CS*PMS mainly attacked the adsorbed dyes
on the surface. The free RhB molecules in the solution were rarely
attacked, resulting in a low decolorization rate in the solution dur-
ing the degradation stage. In contrast, the pre-adsorption step was
omitted in the recycling experiments, and the free radicals gener-
ated in the ZN-CS/PMS system attacked many free RhB molecules
in the solution, thereby improving the removal efficiency. The third
factor is that the main active sites in the adsorption and degrada-
tion stages were all surface hydroxyl groups. In the recycling
experiments, only a fraction of the surface hydroxyl groups was
occupied by the dye molecules, thereby leading to more available
active sites and improved removal efficiency. This result indicated
that the adsorption and degradation processes exhibited a coupling
effect, and the ZN-CS maintained adequate performance in such a
continuous process. The recyclability of the catalyst is conducive
to promoting cleaner production techniques.

3.5. Mechanism of the coupling process

Based on the phenomenon and analysis mentioned above, we
can summarize the mechanism of the entire process (Fig. 8). First,
because of the van der Waals forces, electrostatic attraction, and
hydrogen bond complexation, several RhB molecules were
adsorbed on the catalyst surface leading to their partial removal
from the solution. Simultaneously, the RhB molecules were trans-
formed into two forms: the adsorbed form and the free form (free
in the aqueous phase). After the addition of PMS, a radical and a
non-radical pathway of the degradation were observed; these
pathways simultaneously attacked the RhB molecules in both the
forms. Subsequently, the free RhB in the solution was almost com-
pletely removed, and so was the adsorbed RhB. This resulted in the
partial regeneration of the adsorption capacity of the ZN-CS. The
catalyst was now ready for reuse. Furthermore, the surface hydro-
xyl groups were the main active sites for both the adsorption and
degradation processes. Therefore, the degradation of the adsorbed
RhB was conducive to the regeneration of the active sites that pro-
motes the degradation process. This may be a reason for the
improvement in the regeneration performance. Finally, the mag-
netic ZN-CS could be easily separated from the solution that had
been degraded.

3.6. Removal of different organic compounds

To check the wide suitability of the ZN-CS, elimination experi-
ments on different target contaminants (AO7, MB, Nor, and TC)
were carried out using the ZN-CS/PMS system. Fig. 9 and Appendix
A Fig. S11 illustrate the experimental results. The basic information
about the target pollutants and experimental conditions are given
in Table S5. MB is a typical cationic dye, AO7 is a typical anionic
dye, and TC and Nor are representatives of pharmaceuticals and
personal care products (PPCPs), respectively, in water. They exhibit
different sizes and structures, different electronegativities in water,
and different hydrogen bond receptors and donors, leading to their
possibly different removal effects. As illustrated in Fig. 9, the ZN-
CS/PMS system exhibits a removal efficiency of more than 70%
for the AO7 removal, while in the PMS system, the removal effects
could be ignored. The increase in the AO7 concentration in the
solution phase at the fifth minute may be because of the addition



Fig. 8. Possible mechanism of the coupling process. (a) Adsorption mechanism; (b) degradation mechanism; (c) separation.

Fig. 9. Different target contaminants absorbed and degraded by the ZN-CS/PMS system ([ZN-CS] = 100.00 mg�L�1, [PMS] = 200.00 mg�L�1, initial pH (pHin) = pH0): (a) AO7
(reaction condition: [AO7] = 10.00 mg�L�1); (b) MB (reaction condition: [MB] = 4.00 mg�L�1); (c) Nor (reaction condition: [Nor] = 5.00 mg�L�1); and (d) TC (reaction condition:
[TC] = 10.00 mg�L�1).
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of PMS that leads to the desorption of the partially adsorbed AO7.
For MB, the ZN-CS/PMS system demonstrates over 90% removal
efficiency, while the removal efficiency under the PMS system is
less than 20%. For Nor, the system exhibits a removal efficiency
of more than 50%, while the efficiency is approximately 20% in
the PMS system. For TC, the removal efficiency of the system can
reach approximately 80%, while the removal efficiency of the
PMS system is approximately 40%. Appendix A Fig. S9 and Text
S9 illustrate the effect of several vital parameters. Appendix A
Fig. S12 illustrate the elimination of RhB in real water sample. In
brief, the ZN-CS offers good adsorption and degradation efficiency
towards various pollutants that exhibit different electric properties
and sizes. Thus, the ZN-CS system presents a wide range of appli-
cation prospects.

4. Conclusions

In summary, the magnetic composite ZnO/Ni3ZnC0.7 was suc-
cessfully synthesized and developed as an effective adsorbent
and a heterogeneous catalyst for the PMS oxidation to eliminate
a variety of organic compounds. The magnetic properties of this
nanocomposite led to a rapid and easy separation from the solu-
tions. This study proposes a probable mechanism of the adsorption
process that relates to the electrostatic factor and hydrogen bond-
ing. The mechanism of the degradation process indicated that the
organic compounds were mainly oxidized by the high-potential
intermediate, ZN-CS*PMS, and the hydroxyl radicals generated by
PMS, which were primarily activated by the surface hydroxyl
groups. The adsorption capacity of the ZN-CS is regenerated owing
to the maximum degradation of the adsorbed substrate, achieving
the coupling effect. Compared with the systems used in some pre-
vious studies, this system used no precious metals. Moreover, this
system employed the adsorption–degradation process to achieve a
balance between the economic and treatment effect. Furthermore,
the synthesized catalyst exhibits magnetic properties, recyclability,
stable structure, and good removal efficiency for a variety of
organic matter. Our work provides an insight into the development
of highly efficient magnetic MOF-based materials for wastewater
treatment, and has potential application prospects in the treatment
of printing and dyeing wastewater or medical wastewater.
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