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Through vehicle-to-vehicle (V2V) communication, autonomizing a vehicle platoon can significantly
reduce the distance between vehicles, thereby reducing air resistance and improving road traffic effi-
ciency. The gradual maturation of platoon control technology is enabling vehicle platoons to achieve
basic driving functions, thereby permitting large-scale vehicle platoon scheduling and planning, which
is essential for industrialized platoon applications and generates significant economic benefits.
Scheduling and planning are required in many aspects of vehicle platoon operation; here, we outline
the advantages and challenges of a number of the most important applications, including platoon forma-
tion scheduling, lane-change planning, passing traffic light scheduling, and vehicle resource allocation.
This paper’s primary objective is to integrate current independent platoon scheduling and planning tech-
niques into an integrated architecture to meet the demands of large-scale platoon applications. To this
end, we first summarize the general techniques of vehicle platoon scheduling and planning, then list
the primary scenarios for scheduling and planning technique application, and finally discuss current chal-
lenges and future development trends in platoon scheduling and planning. We hope that this paper can
encourage related platoon researchers to conduct more systematic research and integrate multiple pla-
toon scheduling and planning technologies and applications.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A vehicle platooning system uses communication technology to
organize multiple vehicles to drive in a queue in order to improve
traffic efficiency [1]. As depicted in Fig. 1, vehicles in a platoon are
permitted to travel in formation and maintain a very close distance
between each other, while the rear vehicles are capable of autono-
mous driving. Decreasing the distance between vehicles can signif-
icantly reduce air resistance, reduce fuel consumption, and
increase road capacity at the same time [2,3].
Platoon technology has been progressively developed from
cruise control (CC) technology via the adaptive CC (ACC) and coop-
erative ACC (CACC) technologies; accordingly, its degree of driving
automation, as specified in the Society of Automotive Engineers
(SAE)’s standard J3016 [4], is gradually improving. The fundamen-
tal CC function can be regarded as a level 1 (L1) driver assistance
function [4]. Typically, a CC system employs an electronic throttle
to track a fixed speed preset by a driver in a closed loop using
straightforward logic. When there is an obstacle in front, the driver
must take over control of the vehicle, so this function is typically
only used on a highway. In comparison, the upgraded ACC system
can be considered a level 2 (L2) partial autonomous driving func-
tion. The ACC system has enhanced ability to perceive a vehicle
in front, which allows the ego vehicle to maintain a safe distance
behind a preceding vehicle. The further upgraded CACC [5] and
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Fig. 1. Heavy-duty vehicle (HDV) platooning to collectively realize autonomous driving and efficient transportation. (a) The Westwell Q-Truck of Qomolo focuses on
autonomous heavy-duty trucks for modern container logistics. (b) The 5G + level 4 (L4) project from SAIC Motor Corporation Limited (China) focuses on shortening the
distance between trucks running in a queue on a bridge to improve transportation efficiency. (c) The Tongji University Guided Autonomous Logistics Vehicle Platoon (GALVP)
project focuses on realizing the automatic driving of rear trucks at a low cost when the first truck is driven by a human.
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platoon [6] technologies, which are at level 3 (L3; conditional driv-
ing automation) and level 4 (L4; high driving automation), are
highly automatic driving technologies, due to their ability to liber-
ate the driver from control over the accelerator, brake, and steering
wheel. In a CACC system, the front or leader vehicle is not only pas-
sively perceived by the rear or follower car but actively communi-
cates with the rear car and sends its own speed, steering wheel
angle, and accelerator and brake signals. In this way, the following
vehicles can make more reasonable decisions. In comparison with
a CACC system, a platoon system can further reduce the distance
between vehicles to 0.4 m, which greatly reduces air resistance
and improves road traffic efficiency [7]. This collaborative driving
technology can share perception and decision-making information,
significantly enhancing the perception ability of the autonomous
driving system. However, platoon technology is limited to specific
scenarios of vehicle formations, so it is not expected to be devel-
oped into a level 5 (L5; full driving automation) technique.

Longitudinal spacing control and communication technologies
are the foundation for platoon driving [8–10], making them the
primary focus of early research in this area. In recent years, how-
ever, techniques for platoon scheduling and planning that can
improve platoon operation efficiency have been extensively stud-
ied. The first technique to be studied in scheduling and planning
was longitudinal velocity planning, which evolved from longitudi-
nal spacing control [11]. Unlike single-vehicle velocity planning
[12], vehicle platoon velocity planning must also account for vehi-
cle spacing and string stability. Next, the velocity planning of pla-
toon grouping and separation was further expanded [13]. The
velocity planning of a vehicle platoon passing a traffic light is a
similar research field but is restricted to passing through green
lights [14]. Longitudinal velocity planning was further extended
to the field of lateral trajectory planning. Due to the long total
length of a vehicle platoon, it is a challenge to plan the lateral tra-
jectory of the platoon for lane changing. According to research,
establishing dedicated lanes for vehicle platoons is a feasible solu-
tion [15]. Lastly, the related research expanded from the field of
microscale vehicle dynamics control to the field of macroscale
freight dispatching and vehicle platoon formation scheduling [16].

In general, the platoon control technique focuses on the relative
positional relationship between the vehicles within the platoon;
that is, it focuses on a small-scale vehicle platoon system. In com-
parison, the platoon planning technique pays more attention to the
overall future state of the platoon within its environment and
makes predictions and adjustments to it. The platoon scheduling
technique, on the other hand, pays greater attention to the status
of all platoon-related systems in a specific region and makes
arrangements so that a large-scale platoon system can operate effi-
ciently as a whole. The overall structure of a platoon scheduling
and planning system is summarized in Fig. 2, with vehicle
platoons, roadside controllers, and cloud servers communicating
various types of information to achieve efficient scheduling. Longi-
27
tudinal control of the vehicles in the platoon is usually coordinated
by the vehicles, which transmit their respective positions and
speed control commands to each other. When the platoon passes
through certain road structures, the platoon leader communicates
with the roadside controller to obtain the recommended passing
speed planned by the controller. The platoon formation function
is realized by cloud services. Each individual vehicle sends its
own driving task to the server to obtain the driving route in order
to join the platoon. In addition, the roadside controller can commu-
nicate with the cloud server to achieve precise control of traffic
equipment such as traffic lights.

Existing reviews in this field primarily concentrate on the longi-
tudinal spacing control and communication system of the platoon,
although some provide summaries that focus on safety or projects.
At present, platoon technology has developed to a critical point and
is about to enter large-scale commercial use. Many platoon
scheduling and planning techniques have been studied in order
to realize the exceptional value of platoon technology for commer-
cial freight. However, these scheduling and planning techniques
have not been adequately summed up, and it is challenging to inte-
grate them into a system that maximizes the commercial value of
platoon technology. Therefore, it is both urgent and necessary to
conduct a macro-level review of scheduling and planning tech-
niques for large-scale vehicle platoons. One of the contributions
of this paper is to summarize existing platoon-related scheduling
and planning techniques to form a comprehensive scheduling
and planning system. This paper not only summarizes the methods
of scheduling and planning algorithms but also sorts out project
applications. This paper is dedicated to answering the following
questions:

(1) What methods can be used for scheduling and planning a
vehicle platoon?

(2) What are the practical applications of vehicle platoon
scheduling and planning?

(3) What shortcomings exist in applications of vehicle platoon
scheduling and planning, and how can platoon technology be fur-
ther implemented?

The scope of this work includes concepts, techniques, applied
projects, and future developments related to platoon macro
scheduling and planning. The sections of the paper are organized
as depicted in Fig. 3. Section 2 provides a summary of the related
reviews and practical application platoon projects. In Section 3,
the fundamental algorithm techniques that can be used for vehicle
platoon scheduling and planning are introduced, answering the
first research question posed above. Section 4 presents the applica-
tions of vehicle platoon scheduling and planning. It describes in
depth the related technologies of platoon formation, passing traffic
lights, changing lanes, and resource allocation, and responds to
the second research question. Next, Section 5 introduces the
simulation platforms and datasets that can be used for vehicle
platoon scheduling and planning. In Sections 6 and 7, we



Fig. 2. General system structure of a platoon scheduling system. Vehicle-to-everything (V2X) communication is carried out among cloud servers, roadside controllers, and the
vehicles in platoons. Various pieces of information regarding the vehicle are continuously transmitted between the devices and modules. V2N: vehicle-to-network;
V2I: vehicle-to-infrastructure; V2V: vehicle-to-vehicle.

Fig. 3. Scope and sections of this paper. The scope of this survey includes concepts, techniques, applied projects, and future developments related to platoon macro
scheduling and planning. GCDC: grand cooperative driving challenge; EnergyITS: energy intelligent transport system; PATH: partners for advanced transportation
tecHnology.
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summarize the shortcomings and challenges of vehicle platoon
scheduling and planning techniques, and put forward the future
development direction as the answer to the third research question.
2. A brief history of vehicle platoon research

Vehicle platoon technology has gone through long-term
development and is becoming increasingly mature [17]. Fig. 4
summarizes the research direction of platoon technology. In the
beginning, research mainly focused on the analysis and calculation
of the convergence of the platoon control algorithm [18]; next,
research was extended to platoon simulations in complex
scenarios [15]. At present, many real-world platoon projects have
already begun test runs [19]. This section summarizes recent
28
reviews related to platoons and practical projects related to
platoon scheduling and planning.

In the past few years, with the improvement of communication
and autonomous driving technologies, platoon technology has
developed rapidly, based on the connected and automated vehicles
(CAVs) technique [11,20–22]. Several comprehensive reviews have
been conducted on platoon technology, including network com-
munications, lateral and longitudinal control, human factors, and
application projects. The biggest difference between the platoon
technique and single-car automatic driving is that a platoon must
realize mutual communication and signal transmission between its
vehicles. Several reviews have summarized communication tech-
niques in a platoon [9,23,24], some with a focus on the network
security technique [25–27]. Jia et al. [23] investigated a platoon-
based vehicle cyber–physical system, including basic knowledge



Fig. 4. Research direction and mainstream methods in platoon technology. We divide the various techniques into four major categories: communication, control, planning,
and scheduling; it can be seen that the methods used for scheduling and planning are similar. With the improvement and development of these methods in recent years,
attention has also been paid to relevant application research.
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of a dynamic traffic and vehicle network system, basic control
problems, simulation tools, and open issues. In addition, Ros
et al. [24] investigated vehicle network simulation and modeling.
Simulation software includes communication simulation software
such as Network Simulator 2 (NS-2), Network Simulator 3 (NS-3)
[28], and Objective Modular Network Testbed in C++ (OMNet++),
and traffic-simulation software such as Simulation of Urban Mobil-
ity (SUMO) [29], Corridor Simulation (CORSIM) [30], and Visual
Simulator (VISSIM) [31].

It is worth noting that a platoon is a very suitable scenario for
visible light communication (VLC), because the trucks in a platoon
usually drive within each other’s field of view. Shaaban and
Faruque [26] investigated the techniques and application of VLC
in a platoon system and discussed the network security of
vehicle-mounted VLC. Sun et al. [25] examined communication
network security issues in CAV and summarized a variety of
network attacks and defense methods.

In terms of software, some reviews have summarized works on
multi-agent coordinated longitudinal and lateral control for main-
taining a platoon formation [8–11,18,32,33]. Guanetti et al. [11]
investigated control and planning techniques, with a focus on
methods to improve energy efficiency. From the perspective of net-
work control, a four-element analysis framework of a platoon sys-
tem has been proposed, including node dynamics, information
flow topology, formation geometry, and distributed controllers
[9]. Poor control strategy will cause a small disturbance in a vehi-
29
cle’s position to gradually oscillate and enlarge in the platoon,
finally causing the platoon to lose its stability. ‘‘String stability”
refers to whether a control strategy will gradually amplify a posi-
tion disturbance, which is a very important concept in platoon con-
trol. Feng et al. [18] focused on the string stability problem in
vehicle platoon control, strictly analyzed the relationship between
different string stability definitions, and compared various analysis
methods. Specific longitudinal and lateral platoon maneuver con-
trol techniques such as proportional–integral–derivative (PID) con-
trol, model predictive control (MPC), sliding mode control, neural
network control, and consensus control have been summarized
by Badnava et al. [34].

Other scholars have conducted reviews from the perspective of
human influence and acceptance of the platoon technique
[33,35,36]. Axelsson [36] investigated the research characteristics,
analysis methods, risks, and solutions in the current literature from
the perspective of safety. Bevly et al. [33] summarized the human
factor issue of connected autonomous vehicles and introduced the
lateral control issue based on lane-changing and merging maneu-
vers. The cost analysis and business model of the platoon tech-
nique are important factors that determine whether the
technique can be accepted by people and the market. For the first
time, Chen et al. [37] systematically summarized the business
model of a vehicle platoon.

Reviews on practical application projects have also been
published [6,19]. Tsugawa et al. [19] took the energy intelligent
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transport system (EnergyITS) [38], KONVOI [39], PATH [40], and
other projects as examples and analyzed the projects’ applied
technologies, impacts, and shortcomings. Sawade and Radusch
[6] introduced practical application projects on cooperative auton-
omous driving according to functions such as longitudinal control,
lateral control, and intersection collision avoidance.

To highlight the main contributions of different existing
reviews, we compare various reviews in Table 1 [6,9,11,18,19,22–
24,26,33,36,41]. We have noticed that most of the existing research
investigates control, communication, and human factors at a rela-
tively micro level. Since more macro-level scheduling and planning
can highlight the value of platoon techniques, we attempt to sum-
marize platoon techniques from the aspects of scheduling and
planning. It can be seen from Fig. 5 that the number of papers on
platoon scheduling and planning techniques has grown steadily
in the past decade. More specifically, we summarize platoon
scheduling and planning applications such as the platoon map-
level formation, velocity planning formation, signalized intersec-
tion scheduling, and resource allocation. In all, platoon technology
has made considerable progress, which can support platoon
scheduling and planning research. However, there is as yet no
review that summarizes vehicle platoon scheduling and planning
techniques. In the next section, we introduce the general tech-
niques used for scheduling and planning, as a basis for specific pla-
toon scheduling and planning.
3. General techniques for scheduling and planning

In this section, we summarize general techniques used in vehi-
cle platoon scheduling and planning, including rule-based meth-
ods, model-based methods, optimization methods, learning-
based methods, and multi-agent methods. The brief principles of
these methods and their applications in a platoon will be intro-
duced. Initially, scholars devised rules for completing simple
scheduling tasks, with heuristic methods and finite state machines
(FSMs) serving as the standard approaches. As an increasing num-
ber of vehicle and platoon models are built, high-accuracy models
are being added to rule-based methods to allow for precise estima-
tions of future states. With the gradual refinement of various eval-
uation criteria, the problem of optimizing task scheduling has been
studied, with integer linear programming (ILP) and dynamic pro-
Table 1
Reviews related to platoons and the CACC system.

Category Perspective Brief summary

Overall Communication, driver, and
control

Respectively summarizes the techno
characteristics, and control in genera

Scheduling Intersections and merging at
highway on-ramps

Summarizes scheduling at intersectio
communication of connected autono

Project Energy saving Takes EnergyITS, KONVOI, PATH, and
applied technologies, impacts, and sh

Cooperative automated
driver assistance

Introduces application projects of pla
control, lateral control, and intersect

Human factor Safety Investigates the research characterist
research from the perspective of safe

Lane changing and merging Summarizes the human factor issue o
based on lane-changing and merging

Control String stability Focuses on the string stability proble
analysis methods

Network control From the perspective of network con
the platoon system

Control and planning Focuses on investigating control and
energy efficiency

Communication VLC Investigates the techniques and appl
the network security of vehicle-mou

Vehicular cyber–physical
systems

Investigates the platoon-based vehic
problems, simulation tools, and open

Simulation Focuses on the investigation of vehic
communication simulation and traffi
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gramming (DP) being among the most prevalent techniques.
Nonetheless, the increasingly complex environments and sensing
devices generate a large amount of observational data, making it
increasingly difficult to manually set up rules one at a time to pro-
cess the massive amount of data. Consequently, learning-based
methods have gained in popularity. With the increase of intelligent
decision-making traffic participants, it is necessary to use the
multi-agent method based on game theory to coordinate and bal-
ance the interests of each agent. It is worth noting that, since each
method has its own advantages and disadvantages, some schedul-
ing planning methods will be used in combination to obtain good
comprehensive scheduling performance, rather than keeping the
methods completely mutually exclusive.

3.1. Rule-based methods

Rule-based methods are usually extracted from the experi-
ence of human experts. Due to their obvious logic, rule-based
methods usually have good interpretability, and the algorithm
is usually relatively simple and has good real-time performance.
However, because it is impossible to set an infinite number of
rules to cover all complex real situations, the effect of this
method is often poor in complex and rare situations, which lim-
its the further development of this kind of method. To solve a
problem in vehicle platoon scheduling and planning easily and
quickly, many rule-based methods such as heuristic algorithms
and FSMs are adopted.

3.1.1. Heuristic methods
Heuristic methods usually use the knowledge summarized by

human experts to build a heuristic function. At each step, the
option of a high heuristic function is greedily selected for
decision-making, so as to obtain the global suboptimal solution.
Compared with other strict optimization algorithms, heuristic
algorithms can generally only obtain suboptimal solutions, and
the gap between suboptimal and optimal solutions is difficult to
predict. However, heuristic methods usually have relatively good
real-time performance and can efficiently and conveniently deploy
algorithms on real-world vehicles.

In general, vehicle scheduling problems can be solved by design-
ing heuristic methods based on human experience [42–48]. For
Year Ref.

logies of CACC system communication, driver
l

2016 Dey et al. [41]

ns and merging at highway on-ramps based on the
mous vehicles

2017 Riostorres and
Malikopoulos [22]

other projects as examples and analyzes their
ortcomings

2016 Tsugawa et al. [19]

tooning according to functions such as longitudinal
ion collision avoidance

2015 Sawade and
Radusch [6]

ics, analysis methods, risks, and solutions of current
ty

2017 Axelsson [36]

f platooning and introduces the lateral control issue
maneuvers

2016 Bevly et al. [33]

m in vehicle platoon control and compares various 2019 Feng et al. [18]

trol, proposes a four-element analysis framework of 2018 Li et al. [9]

planning techniques, especially methods to improve 2018 Guanetti et al. [11]

ications of VLC in the platoon system, and discusses
nted VLC

2020 Shaaban and
Faruque [26]

le cyber–physical system, including basic control
issues

2016 Jia et al. [23]

le network simulation and modeling, including
c simulation

2014 Ros et al. [24]



Fig. 5. The number of platoon scheduling and planning papers in the past decade, which is steadily increasing. (a) Papers published in Science Citation Index (SCI) journals.
We classify these papers based on several directions, such as formation, intersection, and lane-change. (b) Papers based on real-world projects, including EnergyITS, Safe Road
Trains for the Environment (SARTRE), and GCDC 2016.
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example, heuristic algorithms can be used to find an approximate
optimal solution for vehicle platoon formation scheduling in a
large-scale scenario [42]. A heuristic algorithm can greatly save
computing time on the premise that the result is close to the opti-
mal solution. Heinovski and Dressler [46] used heuristics to con-
sider a formation of platoons on a highway. One of their
contributionswas to compare the use of distributed heuristicmeth-
ods and centralized heuristic methods. Their results showed that
the performance of the distributed heuristic algorithm was slightly
worse than that of the centralized method, resulting in more vehi-
cle speed adjustments. Heuristic formulas can also be used to deter-
mine the vehicle speed at each stage of an intersection, thereby
reducing the time needed for vehicles to pass through the intersec-
tion [47]. Although the heuristic method is convenient, efficient,
and has good real-time performance, it is usually only used as a
backup method to ensure real-time performance in large-scale sit-
uations, or used for problems with little optimization space.
3.1.2. Finite state machine
The FSM method, as the name implies, is composed of the

finite states of different functional modes. The system can only
be in one state at a time, so it switches between states based
on the various events triggered. The function of the FSM is
mainly to describe the state sequence experienced by the agent
in its life cycle and the response to various external events. The
vehicle merging process can be divided into four FSM processes:
pace making, simultaneous pair-up, sequential pair-up, and safe-
to-merge [49]. These processes are switched according to the
positional relationship of each vehicle. However, Wang et al.
[47] focused on specific velocity planning during the merging
process. They divided the velocity guidance into four stages:
the free driving stage, the first velocity regulation stage, the
cruise stage, and the second velocity regulation stage.
Amoozadeh et al. [50] not only designed an FSM for the
platoon-merging process but also designed an FSM for the pla-
toon split and lane-changing operations. For example, the split
process includes the split request, split response, and split exe-
cution status. However, the disadvantage of the FSM lies in its
finiteness. When encountering increasingly complex environ-
ments, new states must be constantly added. It is difficult for
an FSM to deal with a complex environment containing an infi-
nite number of different situations. In an FSM, adding a new
state may conflict with the original states, and too many states
will cause the jump logic to be very complicated. Therefore,
for complex environments in platoon decision-making, the FSM
31
currently tends to be replaced by the reinforcement learning
(RL) method [51–54].
3.1.3. Artificial potential field (APF)
The APF method is a simple multi-objective path planning

method whose potential field function is usually designed
according to safety, fuel conservation, speed, and so on. The basic
principle of the APF method is to simulate a variety of evaluation
functions on the spatial scale as a potential field, thereby
simulating the motion of the agent in the space by force. In this
way, the motion trajectory of the agent in space is a relatively opti-
mal trajectory that meets multiple evaluation criteria at the same
time.

Semsar-Kazerooni et al. [55] were the first to use a one-
dimensional (1D) Morse-like potential field function to control
the longitudinal spacing of vehicles in a platoon. With this poten-
tial field function, the algorithm calculates a virtual repulsion force
for backward motion when the vehicle gets too close, thus requir-
ing the vehicle actuators to slow down and back to avoid a colli-
sion. On the other hand, when the spacing is too far, high air
resistance also produces high potential energy, which drives the
vehicle to accelerate to close the gap. Simulations showed that
these researchers’ control methods were more stable and secure
than proportional differential (PD) control. Furthermore, Semsar-
Kazerooni et al. [56] decomposed the potential functions into the
repulsive and attractive potential functions, and replaced the
Morse-like function with a polynomial function in the repulsive
potential function for design flexibility.

In addition, Gao et al. [57] expanded the 1D potential field of the
vehicle spacing to a two-dimensional (2D) potential field in the top
view, although they still only performed longitudinal vehicle spac-
ing control, and the vehicle lateral lane-changing control was com-
pleted by other modules. McCrone et al. [58] performed CACC
vehicle lateral and longitudinal control in a 2D top-view potential
field. In addition to the car potential of avoiding the collision and
closing the gap, the road potential and speed potential are also
considered, keeping the vehicle in the correct lane and coordinated
velocity. Huang et al. [59] also perform lateral and longitudinal
vehicle control on the top view, but their contribution is to use
the potential filed method to plan a complete platoon driving path
instead of the greedy algorithm [60] that moves according to the
direction of the potential field at each step. In addition, they also
consider the potential field of the driving direction, adding a third
dimension to the potential field. However, the defect of the APF
method is that the agent greedily receives force in the field and
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may fall into a local optimum situation. Therefore, the APF method
usually needs to be combined with other optimization search tech-
niques to obtain a trajectory with good global performance [59,61].
In general, the APF method is simple and elegant, and considers
more environmental information than other rule-based methods,
so it can deal with a large number of obstacles in the environment
with low computational cost.

3.2. Model-based methods

The model-based method analyzes the dynamic model of the
controlled object to implement control, such as inverse dynamic
control or MPC. In the fields of platoon-related vehicles and trans-
portation, the system model is usually relatively large and com-
plex. Due to the development of vehicle and traffic theory,
increasingly complex vehicle and traffic models have been estab-
lished, based on which better algorithmic control can be carried
out.

3.2.1. Vehicle system dynamics
The vehicle system dynamics model can provide theoretical

support, such as convergence, for various control algorithms. In
the process of vehicle macro scheduling, longitudinal dynamics is
often used to estimate vehicle travel time. For example, the vehicle
longitudinal system dynamics can be used to search for opportuni-
ties for vehicle pairing to form a platoon [62]. However, due to the
uncertainty of the model, Zhang et al. [13] estimated the uncer-
tainty of the travel time to ensure that the freight task could be
completed within the time window. In addition, a vehicle platoon
passing throughmultiple signal light intersections is a more micro-
scale application scenario that requires a higher precision vehicle
dynamics model. Therefore, Ye et al. [63] and Liu et al. [64] used
complex longitudinal dynamics to plan the velocity trajectory of
a vehicle platoon passing through intersections.

3.2.2. Model predictive control
When the model of a controlled object is known, the use of MPC

can usually achieve precise and good performance control effects
[65–69], although the calculation time of MPC is relatively long.
An and Talebpour [66] used a basic MPC method to plan the
lane-changing trajectory of the leading vehicle in a platoon. They
continuously planned multiple lane-changing trajectories and
selected the one with the lowest cost function for tracking, defeat-
ing the Swaroop controller in terms of comfort. Huang et al. [65]
not only planned the lateral lane-changing trajectory but also
planned the combined lateral and longitudinal trajectory based
on a vehicle kinematics model in the APF to obtain the approxi-
mate optimal trajectory of the overall vehicle platoon. The MPC
method can also be used for platoon macro route planning. Baskar
et al. [67] applied several methods to model an automatic highway
system (AHS) in order to obtain higher model accuracy, so that the
MPC method could achieve better performance in obtaining global
routes. MPC performance depends on the accuracy of the provided
model; however, a sophisticated model will make it difficult to
ensure the real-time performance of the algorithm, so it is neces-
sary to balance accuracy and speed in a practical application
process.

3.3. Optimization methods

Most scheduling and planning problems can be formulated as
optimization problems. After modeling such a problem as a stan-
dard optimization problem, it can be solved using one of many
existing classic optimization solvers [70–74]. For example, the
vehicle platoon group problem can be modeled as an optimization
problem that adjusts the desired speed of each vehicle to optimize
32
fuel consumption [71]. Such a multi-constrained multi-variable
nonlinear function optimization problem can be solved using
Matlab’s ‘‘fmincon” function.

3.3.1. Integer linear programming
Linear programming problems are optimization problems in

which the objective function and constraints are linear. The ILP
problem adds the constraint that variables must be integers (on
top of the constraints of linear programming), which further
increases the difficulty of the problem. For example, the mixed-
ILP (MILP) method can be adopted to solve the optimal route plan-
ning problem of an AHS, and an approximate method has been pro-
posed to improve real-time performance in large-scale scenarios
[67]. Larsson et al. [42] formulated the vehicle platoon formation
problem as an ILP problem and used an existing ILP solver to solve
it. However, due to the complexity of the problem, it is still neces-
sary to use heuristic methods to solve this problem quickly in
large-scale scenarios. The branch and bound method can be
adopted to solve the mixed-integer programming problem,
thereby setting the traffic light delay and offset to make the vehicle
platoon pass the main road faster [75].

3.3.2. Dynamic programming
The DP method solves complex problems by decomposing the

original problem into relatively simple sub-problems; it can only
be applied to problems with optimal substructures. The DP method
can be used to solve the optimal path planning problem of vehicles
entering platoons [76]. Using the DP method allows fewer comput-
ing resources to be used, while ensuring optimality. Johansson
et al. [77] extended the DP method to plan the optimal speed tra-
jectory of a vehicle platoon during deceleration, thereby reducing
fuel consumption by about 80%. Data-driven adaptive DP (ADP)
can also be adopted to carry out CC of a vehicle platoon, so as to
continuously approach the optimal control through learning and
shorten the travel time [78].

3.4. Data-driven learning methods

As deep neural networks have brought powerful representation
capabilities, an increasing number of learning-based methods have
been applied to vehicle platoon scheduling and planning technolo-
gies in recent years. For example, Chen and Sun [79] used unsuper-
vised learning to classify human driving behavior data at traffic
intersections, thereby obtaining several interpretable patterns;
they then selected the optimal vehicle platoon separation strategy.

3.4.1. Supervised learning
Data-driven supervised learning methods have been widely

used for the lateral and longitudinal control of vehicles in platoons
[80–85]. Thus far, data-driven supervised learning methods have
also begun to be used in the planning and scheduling processes
of platoons. For example, based on platoon road traffic data, an
urban traffic flow model can be learned to study the impact of pla-
toons on urban traffic flow [86]. In addition, traffic light data can
make it easier for a platoon to pass through traffic conditions
[87]. A wind resistance model learned based on the data can make
the fuel economy consideration more accurate when a platoon is
grouped [88].

3.4.2. Reinforcement learning
Scheduling and planning are a kind of decision-making process,

and many vehicle and traffic-simulation environments have been
established; thus, scheduling and planning technologies are suit-
able for the RL method, which eliminates the trouble of manually
recording and labeling datasets. In terms of platoon path planning,
Chen et al. [16] used Q-learning RL to plan a high-level route for a
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vehicle platoon, while reducing the travel time and fuel consump-
tion of each vehicle. Buechel and Knoll [89] improved the deep
deterministic policy gradient (DDPG) RL algorithm and applied it
to a platoon’s longitudinal control. The agent determines its
acceleration by observing the vehicles’ spacing and speed. Exces-
sive acceleration will lead to penalties, to avoid poor comfort and
high fuel consumption. In addition, the DDPG RL algorithm has
been used to plan the longitudinal speed trajectory of a following
car in a platoon such that the distance between the vehicles in
the platoon remains reasonable, which not only reduces air resis-
tance but also ensures safety [90]. Based on the fact that comput-
ing resources can be shared between leader and follower vehicles
in a platoon, Fan et al. [91] developed an interesting computing
task pricing strategy using RL. In this strategy, the leader vehicle
agent observes its own task volume and the followers’ bids and
determines the pricing strategy based on Q-learning, allowing it
to complete computing tasks at a lower cost in comparison with
using iterative algorithms.

One of the shortcomings of RL is that it requires a considerable
amount of computing resources and time for trial-and-error train-
ing; therefore, the development of more efficient RL algorithms to
save training time is a mainstream research direction. In addition,
the effect of RL depends on the accuracy of the simulation training
environment, so it is necessary to build a training environment
that is as realistic as possible. Otherwise, the RL agent is prone to
overfitting to the unreal simulation environment.
3.5. The multi-agent system

A platoon consists of multiple vehicles, which means that most
platoon scheduling and planning systems are multi-agent systems.
Some studies solve the vehicle platoon problem using typical
methods used for multi-agent systems, such as game theory, con-
sensus algorithms, and multi-agent RL [92–94].
3.5.1. Game theory
Game theory studies the winning probability of multiple play-

ers in a game, their respective strategies, and the final equilibrium.
It can be widely used in platoon formation matching, velocity plan-
ning, and resource scheduling [95–99]. In general, games can be
divided into cooperative games and non-cooperative games, both
of which exist in platoon scheduling applications.

The vehicle platoon matching problem can be modeled as a
non-cooperative game problem [95]. Different vehicles have differ-
ent destinations and freight times, but the route and departure
time can be adjusted to form a vehicle platoon to reduce air resis-
tance. It has been demonstrated that this game has a Nash equilib-
rium, and the cooperative solution can save more fuel than the
non-cooperative solution. Liu et al. [96] directly modeled the prob-
lem of spacing allocation in a platoon as a cooperative game prob-
lem. Each vehicle adjusts the desired distance between itself and
the preceding vehicle according to the dynamic speed and acceler-
ation during driving, thereby ensuring the overall safety, energy
saving, and coordination of the vehicle platoon. Another advantage
of a vehicle platoon is that computing resources can be shared
among vehicles. When a vehicle needs time-consuming calcula-
tions such as image processing, it can issue the task for other cen-
tral processing unit (CPU)-idle vehicles to complete. Researchers
have developed a price mechanism that allows computing tasks
to be allocated more efficiently. They model the problem of com-
puting task allocation as a multi-leader-multi-follower Stackelberg
game. By fixing the follower strategy, the leader’s pricing decision
is transformed into a problem that can be solved using single-agent
RL [97].
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3.5.2. Consensus algorithms
The consensus algorithm is an iterative and distributed algo-

rithm, whose purpose is to obtain the values of the consensus
parameters agreed upon by all agents. In each iteration, each agent
obtains the state of itself and its neighbors, thereby updating its
consensus parameters. At present, the consensus algorithm has
been widely used in the field of vehicle platoon longitudinal and
lateral control [100–102]. For example, Saeednia and Menendez
[100] used the consensus algorithm to make each vehicle agent
in a vehicle platoon reach a speed consensus, so that the platoon
can be formed quickly and smoothly. Wu et al. [103] extended
the longitude and lateral consensus control of vehicles to the for-
mation of a platoon. The order and trajectory of each vehicle enter-
ing the platoon are decided by the consensus algorithm. In
addition, through stability analysis, it was found that control dis-
turbances can be added to avoid local minima in the consensus
process. When vehicle platoons pass through signal intersections,
they usually regroup to form new platoons. The consensus algo-
rithm can also be applied to the reorganization process, and simu-
lation experiments show that a vehicle platoon formed by the
consensus algorithm can achieve a uniform speed and time inter-
val [104].
3.5.3. Multi-agent RL (MARL)
The MARL algorithm is another technique that is often used in

multi-agent coordinated scheduling and planning, as there are
usually numerous traffic participants in the traffic environment.
Since observations and network weights between multiple agents
cannot be directly shared, MARL is usually more difficult to train
than single-agent RL. However, Ma et al. [97] used RL to solve
the pricing problem of edge computing tasks in a vehicle platoon.
They converted the MARL problem into a single-agent RL problem
by fixing the vehicle platoon follower strategy, and then used
Q-learning to solve it. Khamis and Gomaa [105] made the traffic
light agents transfer the Q-value table parameters to each other,
so that they could cooperate effectively in the RL process to solve
the problem of large-scale urban traffic light control. Moreover,
Sharma and Singh [106] improved traditional Q-learning into
cooperative RL by sharing the Q-value table, thereby reducing
interference in vehicle-to-vehicle (V2V) communication resource
allocation.

In all, thanks to the continuous development of the abovemen-
tioned algorithms, a vehicle platoon can perform unprecedentedly
effective, far-sighted, and real-time scheduling and planning. Most
of these methods can be used in combination to complement each
other, so it is difficult to say which method is best. For simple envi-
ronments and specific tasks, simple rule-based methods can
achieve stable results; for complex and uncertain tasks, deep learn-
ing methods can achieve astounding control effects. In general,
however, the popular approach has gradually shifted from the sim-
ple, rule-based approach to the more-considered neural network
and machine learning-based approach. There is no doubt that the
study of operations research and artificial intelligence (AI) algo-
rithms will promote the application of platoon scheduling plan-
ning. Next, we will introduce the specific applications of these
methods in vehicle platoons and the technological development
of each application scenario.
4. Platoon scheduling and planning applications

The main areas of platoon scheduling and planning applications
include platoon formation, platoon intersection scheduling, pla-
toon lane changing, and platoon resource allocation. This section
summarizes the research background, progress, and future devel-
opment directions of these fields.
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4.1. Map-level platoon formation scheduling

As shown in Fig. 6, the process of vehicle platoon formation
includes macroscopic map-level formation [42,107] and micro-
scopic speed planning formation [108]. The first step of platoon
scheduling is to find vehicles suitable for platoon formation and
plan their routes on the map level [107,109–111], as shown in
Fig. 6(a). Since the formation of a vehicle platoon can effectively
reduce air resistance, some vehicles may detour or wait at the orig-
inal starting point to form a vehicle platoon under the premise of
meeting the delivery time constraints to reduce fuel consumption.

For example, a DP method has been used to solve the problem
of vehicle platoon merging in a 2D map, given the location of the
merging point and the merging path [76]. The considered applica-
tion scenario is that vehicles join a platoon driving along a highway
around a city. The planned route must be short while enabling
vehicles to meet and join the vehicle platoon within a short period
of time. Using DP algorithms can ensure the optimality of the
search path with relatively few computing resources. Baskar
et al. [67] suggested that vehicle platoon merging can reduce fuel
consumption when the global path of each vehicle is planned,
and proposed two methods based on MILP and a macro-traffic flow
Fig. 6. Formation process of a platoon in the space and time dimensions. (a) Based on
performed. Platoons start from suppliers and travel through nodes to customers. (b, c) An
three trucks with different starting and ending points. The heuristic algorithm makes th
shows the three main phases of the formation, maintenance, and separation of the vehic
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model. They first established a simplified and fast traffic-
simulation model; however, planning a global path in a dynamic
environment is a nonlinear non-convex integer optimization prob-
lem that is difficult to solve. Therefore, they approximated the
problem using a mixed-integer linearity problem. The researchers
also proposed a macroscopic traffic flow model for human drivers.
Both methods achieved a good balance between path optimality
and computational efficiency.

Larsson et al. [42] considered a large-scale traffic model with-
out a delivery deadline, using the ILP and heuristic methods to
save fuel consumption, as shown in Fig. 6(b). They found that
the more vehicles there are in the network, the easier it is to
form vehicle platoons and save more fuel. Sokolov et al. [70]
coordinated the route planning of numerous vehicles by means
of combination optimization and adjusted the departure time
to form a vehicle platoon. A simulation on Polaris showed that
their method increases road capacity and reduces fuel consump-
tion [112]. Considering the formation of platoon vehicles, Chen
et al. [16] applied RL to the route planning problem. Due to
the large amount of calculation required by RL, they adopted
edge computing on a road network based on a vehicular ad-
hoc network (VANET) [113] to speed up the planning process.
the road network topology map, map-level vehicle formation scheduling can be
example run of the heuristic platoon pair method on the topological map. There are
e trucks drive in a platoon form as much as possible. (d) The time–space diagram
le platooning.



Table 2
A summary of existing studies on map-level platoon formation.

Controlled variable Evaluation index Method Compared method Platform Ref.

Merging route
planning

Distance and time The DP method Standard A* search Self-developed Valdés et al. [76]

Route planning Total time consumption MILP and macroscopic
traffic flow model

Human-controlled method Self-developed Baskar et al. [67]

Fuel saving The ILP and heuristic method Solution for a German highway German road network
data

Larsson et al. [42]

Route planning,
departure time

Fuel saving Optimization considering platoon
coordination and vehicle
routing

Uncoordinated temporary
formation of platoons

Polaris Sokolov et al. [70]

Next destination Platoon formation,
time, and distance

RL and Q-table Dijkstra and k-shortest algorithm Self-developed in Python Chen et al. [16]
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A summary of related work on map-level platoon formation is
shown in Table 2 [16,42,67,70,76].

Since there is as yet no large number of vehicles with platoon or
CACC functions in the real world, the abovementioned studies have
only been tested in a simulation environment; moreover, only
small-scale experiments are usually performed in a simulation. In
the future real environment, scheduling and planning thousands
of vehicles moving in real time will present the problem of dimen-
sional explosion. Thus, future research will focus on information
sharing and network routing structure issues involving numerous
vehicles. At the same time, learning-based methods are being
researched for smarter and faster planning.

4.2. Platoon formation velocity planning

Next, when the vehicles have been paired and approached at
the macro map level, microscopic velocity planning, as shown in
Fig. 6(c) [42], is required to gradually reduce the distance among
the vehicles and complete the vehicle platoon formation operation
[71,100,114–119]. Faster platoon grouping enables the vehicles to
travel longer distances with low air resistance, but it also causes
greater changes in the speeds of the front and rear vehicles, which
may result in higher fuel consumption.

Amoozadeh et al. [50] focus on a logical protocol design based
on the FSM of the vehicle platoon, including the formation of the
vehicle platoon. The specific process is divided into three parts:
the merging request, merging response, and merging execution.
In addition, they have developed a simulation platform, Vehicular
Network Open Simulator (VENTOS), to validate the logic protocol.
The simulation platform consists of two parts: SUMO for traffic
simulation and OMNET++ [120] for communication simulation.

Through mathematical analysis of the vehicle longitudinal
dynamics, Zhang et al. [13] calculate the distance threshold to form
a vehicle platoon that can reduce the fuel consumption, travel
time, and freight default of each cargo vehicle. They also study
the scheduling of vehicle platoons in a road network, including
diverging routes and convergence routes, and the scalability of
the algorithm when scheduling numerous vehicles. Researchers
have also conducted a coordinated optimization based on vehicle
dynamics and fuel consumption models [71]. The speed of each
vehicle can be adjusted to form a truck platoon and reduce overall
fuel consumption. At the same time, the delivery deadline con-
straint can be considered in the optimization problem. This
research further expands the problem of vehicle platoon formation
and designs a complete integrated system that can reduce the
number of empty vehicles, find opportunities for platoon forma-
tion, and reduce fuel consumption [62].

Saeednia and Menendez [108] adopt methods based on deceler-
ating the preceding vehicle and accelerating the following vehicle
to construct an optimization problem for vehicle formation. In
the optimization objective, they consider both the fuel consump-
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tion and time consumption of the formation process. They also
propose a consensus-based distributed algorithm and compare it
with the previous centralized optimization algorithm [121]. The
new distributed algorithm is easier to deploy in practice, and it is
more flexible in the platoon formation process. Even when there
is an acceleration limit, part of the platoon can be formed first.
Table 3 [13,50,62,71,108,121] summarizes related work on the
velocity planning of platoon formation.

Although real-world small-scale vehicle experiments have been
conducted on vehicle velocity planning to form a platoon, many
details have not yet been considered, such as traffic jams, ramps,
and other road conditions. In addition, in some countries, manda-
tory rest requirements for drivers must be complied with. In the
future, larger scale and heterogeneous vehicle experiments will
need to be carried out. At the same time, since the following car
can save more fuel than the leading car, there is interest and value
in developing a business model for profit distribution.

The platoon formation applications described above can be cat-
egorized by means of task release dynamics. In most platoon for-
mation scheduling programs, task details are known beforehand
and then scheduled. A study has demonstrated that proper
scheduling and planning in advance can result in substantial fuel
savings and other advantages [122]. Nevertheless, to ensure accu-
rate and appropriate planning in advance, it is vital to verify that
the input data for each activity is exact and definitive. In a few
cases, however, task conditions will alter in real time, requiring
immediate scheduling adjustments. A natural solution to this prob-
lem would be to retrigger scheduling optimizations based on
events [123,124]. On this basis, improved scheduling effects will
be realized if past data is used to predict future information in
order to cope with real-time planning [125]. Due to the unpre-
dictability of traffic circumstances, uncertainty and randomness
must also be factored into the real-time scheduling considerations
of various inputs [13]. In general, real-time scheduling methods
strive to achieve a balance between real-time and scheduling per-
formance. In the future, however, when the vast majority of cars on
the road have the platoon function, it will be practical and effective
to directly construct an opportunistic platoon by means of a simple
scheduling technique, given the ongoing development of platoon
technology [126].

4.3. Platoon scheduling at signalized intersections

When a vehicle platoon arrives at a signalized intersection, a
scheduling algorithm is required for vehicle velocity planning
and signal light timing scheduling, as shown in Fig. 7 [79,90].
Two methods are used for vehicle platoon scheduling at intersec-
tions with traffic lights: manipulating vehicles [127–133] and
manipulating traffic lights [47,75,105,134]. At present, the most
widely studied method is to design a speed trajectory curve
according to the state of the vehicle platoon. Just like a single vehi-



Table 3
A summary of existing studies on the velocity planning of platoon formation.

Controlled variable Evaluation index Method Compared method Platform Ref.

Vehicle operation General applicability FSM logical protocol None VENTOS,
SUMO, and OMNET++

Amoozadeh et al. [50]

Vehicle speed Fuel saving Optimization
coordination

Advanced models used
by Scania

Real driving data in
Sweden

Liang et al. [71]

Efficiency of the
transportation system

Vehicle longitudinal
dynamics

None Real driving data in
Sweden

Liang et al. [62]

Time required for platoon
formation

Hybrid platoon strategy Catch-up strategy and
deceleration strategy

Empirical data collected
in Basel, Switzerland

Saeednia and Menendez [108]

Formation/modification
of platoon

Versatility in complex
situations such as large
intervals

Consensus-based
distributed algorithm

Centralized
optimization
algorithm

Empirical data collected
in Basel, Switzerland

Saeednia and Menendez [121]

Vehicle departure time Travel time, delay fines, and
fuel costs

Vehicle system dynamics
considering uncertainty

None Self-developed Zhang et al. [13]

Fig. 7. Scenario illustration of a platoon operating in the vicinity of an intersection. (a) Platoons can use V2X communication with the traffic light equipment to convey
information about the spatial dimension to quickly pass the intersection. (b) The planned velocity trajectories of platoons at intersections with signals in the temporal
dimension. The thick red dashed line represents the red time window of the traffic light, while the thin green dashed line represents the green time window of the traffic light.
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cle driving through a traffic light, a vehicle platoon must plan its
speed to pass through the intersection during the green light per-
iod. However, because a vehicle platoon composed of multiple
trucks is usually very long, it is sometimes difficult for it to pass
the intersection as a whole, and a reasonable separation strategy
is required.

4.3.1. Methods that manipulate vehicles
Adjusting the speed of a vehicle platoon and allowing it to pass

through an intersection within an existing green light window is a
relatively simple and widely studied method [119,135,136]. Feng
et al. [90] proposed a vehicle platoon velocity trajectory planning
strategy, as shown in Fig. 7(b) [90], which improves the throughput
of traffic signal intersections compared with predictive CC (PCC). It
includes three components: platoon leader trajectory planning
based on a green light optimal speed advisory (GLOSA), platoon fol-
lower spacing control based on the DDPG method, and a vehicle
platoon length decision algorithm. The DDPG-based RL follower
36
spacing controller observes the position and speed of the sur-
rounding vehicles, outputs acceleration as the action, and rewards
the distance between vehicles and safety.

A vehicle platoon guidance strategy (VPGS) system can be
adopted to separately formulate the trajectory of the leader vehicle
and the followingvehicle,while considering fuel consumptionbased
on the vehicle specific power (VSP) [63]. The research scenario can
also be expanded from a single signalized intersection to multiple
signalized intersections based on CAV, by changing the vehicle pla-
toon acceleration to obtain better safety and fuel consumption, less
travel delay, increased comfort, and better intersection throughput
[64]. By optimizing the speed of each car, Timmerman and Boon
[72]were able tomake the vehicles in a platoon cross an intersection
in a shorter time. The researchers also considered the issue of fair-
ness, because the strategy of lower overall delay at an intersection
may sometimes be unfair to individual vehicles. Chen and Sun [79]
considered the separation of a platoon at signalized intersections,
so that the platoon can use multiple lanes to quickly pass through
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intersections. At the same time, the driving style of other manned
vehicles can be predicted,whichmakes the vehicle separation strat-
egy safer and more efficient [137].
4.3.2. Methods that manipulate traffic lights
Another traffic scheduling method for dealing with signalized

intersections is to adjust the offset between arterial intersections.
A layered method combining a branch and bound algorithm with
a relaxation coefficient can be used to optimize the dual goals of
reducing delay and decreasing emissions [75]. Khamis and Gomaa
[105] applied MARL to traffic light control. They adopted a new col-
laboration method between traffic light agent controllers, which is
based on spreading learned knowledge from a highly educated
agent to a neighboring agent with less knowledge. Simulation
experiments on the green light district (GLD) platform showed that
their method reduced the number of stopping times, saved on tra-
vel time, improved safety, and reduced energy consumption. Since
the traffic light is used as the RL agent, the observation space is the
location of the surrounding vehicles, the action space is the display
of red or green lights, and the reward is the traffic flow and vehicle
waiting time. A joint control model was established to simultane-
ously adjust the vehicle platoon speed and traffic signal light tim-
ing in order to maximize the traffic capacity at an intersection [47].
Research related to platoon scheduling at signalized intersections
is summarized in Table 4 [47,63,64,72,75,79,90,105,138].

At present, most traffic intersection scheduling work is still at
the simulation level and lacks practical verification; thus, more
consideration must be given to situations involving crossing inter-
sections along with non-autonomous vehicles. In the future, it will
be necessary to extend research on a single intersection or a series
of intersections to include large-scale intersection networks and to
further combine vehicle platoon velocity planning with signal light
duration control. In combination with this work, the influence of
Fig. 8. Double lane changing of a platoon to overtake obstacle vehicles in front. The blue
achieve overtaking through a planned double lane-changing trajectory. hostCar: the host
car that prevents the platoon from changing lanes; V: the initial velocity of the platoon

Table 4
A summary of existing studies on platoon scheduling at signalized intersections.

Controlled variable Evaluation index Method

Traffic signal decision Trip stop times and trip time Enhanced multi-
objective RL

Acceleration of the lead car
and the following car

Throughput, vehicle stopping,
and emissions

GLOSA DDPG

Planning speed Fuel consumption VPGS based on vehicl
longitudinal dynamics

Speed and signal light Stop time and delay Joint control model
Platoon acceleration Throughput, comfort, travel

delay, fuel consumption, and
safety

CAV traffic control

Offset between main road
intersections

Delays and emissions of main
roads

Branch and bound
method

Speed profile Throughput, travel delay, and
fairness

Optimization-based
method

Vehicle separation
strategy

Communication efficiency,
safety, and energy consumption

Predicts the driving
style of manned
vehicles

VR: virtual reality.
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signal intersections on the string stability of the vehicle platoon
can be studied.

4.4. Platoon lane-changing planning

During the driving of an autonomously driven platoon, it is dif-
ficult to perform lane-changing maneuvers due to the long overall
length. Many studies have used V2V communication, as shown in
Fig. 8, to cooperate among the vehicles in the platoon in order to
complete platoon lane changing [139–141].

Amoozadeh et al. [50] took lane-changing into consideration
when formulating a vehicle platoon management agreement and
adopted SUMO’s default lane-changingmodel LC2013as the specific
maneuver strategy. Dos Santos et al. [49] expanded the grand coop-
erative driving challenge (GCDC) 2016 protocol, focusing on the two
steps of sequential pair-up and safe-to-merge. Compared with the
original protocol and SUMO’s default lane-changing strategy, the
new protocol significantly improves the total lane-merging time.
Dos Santos andWolf [92] further adopted a multi-agent distributed
probability collectives method for vehicle lane-changing planning;
its performance is close to that of centralized planning.

An and Talebpour [66] used the MPC method to plan the lane-
changing trajectory of an autonomous vehicle platoon. The lane-
changing trajectory they used was a sixth-order polynomial curve,
and the optimization goal was to reduce the lane-changing acceler-
ation so as to obtain a smooth lane-changing trajectory. The
researchers combined and optimized the lateral and longitudinal
movement of the vehicles during the lane changing, reduced the
distance shock wave caused by the lane changing, and ensured
the string stability of the platoon. Huang et al. [65] performed
MPC based on the APF model and the vehicle kinematics model
to obtain the approximate optimal path of a vehicle platoon. We
summarize the related work on the lane-changing maneuvers of
platoons in Table 5 [49,50,66,92,142].
dotted line represents the lane-changing trajectory of the platoon. The platoon can
car in platoon that needs to perform a lane-changing maneuver; obCar: the obstacle
; V1, V2, V3: the initial speed of the three obstacle cars.

Compared methods Platform Ref.

Single-objective
controller

GLD Khamis and Gomaa [105]

Greedy strategy
and PCC

Self-developed
in Python 3.6

Feng et al. [90]

e The strategy only
considers speed

VISSIM Ye et al. [63]

Maxband [138] VISSIM/Matlab Wang et al. [47]
Other smart speed
planning methods

Not mentioned Liu et al. [64]

Existing timing plan VISSIM Ding et al. [75]

SUMO adaptive control SUMO Timmerman and Boon
[72]

Without driving style
prediction

Self-developed VR-based
test platform

Chen and Sun [79]



Table 5
A summary of existing studies on lane-changing maneuvers of platoons.

Controlled variable Evaluation index Method Compared method Platform Ref.

Vehicle operation General applicability SUMO’s default lane-change
model LC2013

None VENTOS, SUMO, and
OMNET++

Amoozadeh et al. [50]

Merging operation Merging time, platoon length, and
platoon speed

Variants of GCDC interactive
protocol

GCDC 2016 and
SUMO’s methods

SUMO Dos Santos et al. [49]

Vehicle lane changing Driving time, platoon length, and
platoon speed

Distributed modeled machine
learning

SUMO’s default
method

SUMO Dos Santos and Wolf [92]

Lateral and
longitudinal
control

Acceleration disturbance and jerk
amplitude

Co-optimized MPC Swaroop’s
controller [142]

Not mentioned An and Talebpour [66]
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Because a practical vehicle platoon lane-changing experiment is
quite dangerous, the existing studies are generally based on simu-
lation platforms, and practical problems such as communication
delay are rarely considered. Most current research assumes that
all vehicles have communication functions. In practice, however,
most vehicles are driven manually, and it is necessary to consider
the platoon lane-changing problem in a scenario with mixed traffic
including both autonomous vehicles and manual vehicles. In a con-
gested environment, it may be difficult for a long platoon to change
lanes, so more flexible methods are needed, such as changing the
vehicle gap and changing lanes in different groups.

4.5. Platoon resource-allocation scheduling

With the widespread application of the Internet of Vehicles
(IoVs) and the growth of freight logistics, the amount of multi-
source information that needs to be processed by a highway sys-
tem is rapidly increasing, and processing this information requires
a great deal of computing and storage resources [143]. In a platoon
system, the ability of a single vehicle or a single platoon to perceive
and process information is limited, and the system must transmit
information between a cloud computing system and the platoons
for joint processing. Therefore, the issue of how to improve the uti-
lization of vehicle cloud computing resources is the key in improv-
ing the information-processing efficiency of vehicle platoon
Fig. 9. Illustration of multi-platoon resource allocation on a highway. Multiple platoons u
resources. When platoons travel out of the communication range of the base station, re
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systems. Existing research has studied the resource-allocation
optimization problem in cloud computing and communication
engineering, as well as resource-allocation scheduling optimiza-
tion schemes for a vehicle platoon system. The specific resources
to be scheduled include communication resources and computing
resources.

4.5.1. Communication resources
As we know, V2V communication is the foundation of platoon

technology. Based on the increasingly rich perception of informa-
tion and the increase in communication content, Xu et al. [144]
proposed a cooperative perception approach among multiple
agents, which optimizes the balance between performance and
communication bandwidth resources. Reasonable communication
resource allocation can achieve lower communication delay and
power consumption, as well as better platoon control performance
[145–150]. Device-to-device (D2D) multicast and enhanced multi-
media broadcast multicast service (E-MBMS) communications can
be used for sub-channel allocation and power control, as shown in
Fig. 9, thereby reducing communication interference, communica-
tion delay, and power consumption [146]. Mei et al. [73] combined
the radio resource-allocation problem with the platoon longitudi-
nal control problem for joint scheduling. They first used the bipar-
tite graph method for wireless resource allocation and then used
heuristic gradient descent to adjust the platoon member vehicle
se the communication station to allocate computing resources and communication
lated settlement operations will be carried out.
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parameters to minimize tracking error. Sharma and Singh [106]
applied cooperative RL (C-RL) to the problem of wireless resource
allocation between vehicles to improve V2V throughput.

In the process of communication resource scheduling, network
security and network attacks are an important aspect to be consid-
ered. In terms of network attack resistance, a distributed filtering
method has been proposed to resist the spoofing attacks and
service-denying attacks [151]. A neural network-based adaptive
event-triggering method can also be used to control communica-
tion scheduling in order to defend against network attacks [152].
With the continuous development of security control and attack-
detection technology in industrial cyber–physical systems
[153,154], communication control based on dynamic event trigger-
ing has been successfully applied in the field of vehicle platoon
scheduling [155]. Under the condition of limited communication
resources, the use of dynamic event-triggered scheduling and pla-
toon control co-design can effectively save the communication
bandwidth to ensure a beneficial tradeoff between robust platoon
control performance and communication efficiency [156].

4.5.2. Computing resources
Despite its advantages, vehicle intelligence involves many time-

consuming computing tasks. The vehicles in a platoon can transmit
computing tasks through the communication network to utilize
idle computing resources. Ma et al. [97] developed a price strategy
for edge computing in a vehicle platoon, which uses an RL method.
The researchers combined game theory with RL algorithms to iden-
tify a reasonable task flow offloading and recovery scheme among
platoon members. The RL method takes the pricing strategy as the
action and can complete computing tasks at a lower price than an
iterative algorithm. Table 6 [73,97,106,146] provides a summary of
related work on platoon resource allocation.

However, current platoon resource scheduling still has the
problem of insufficient versatility, and there is a lack of unified
standards and test cases for computing, communication, informa-
tion, and other resources. In the process of resource scheduling,
more factors need to be considered, such as lane width, train driv-
ing direction, the long-term impact of scheduling decisions, errors
and delays in perception information, and the overall cost of equip-
ment, communication, and computing. Moreover, with the devel-
opment of 5G and multi-platform communication technologies,
resource-scheduling technology can be extended to drones and
other collaborative compensation fields, thereby improving the
efficiency of all participants in the entire transportation system.

4.6. Platoon projects with a scheduling technique

In recent years, with the maturity of autonomous driving tech-
nology, an increasing number of autonomous vehicle platoon pro-
jects have begun practical tests, including EnergyITS [38], Safe
Road Trains for the Environment (SARTRE) [157], the GALVP, and
the West Well and SAIC MOTOR projects [7], as shown in Fig. 3.
Table 6
A summary of existing studies on platoon resource allocation.

Controlled variable Evaluation index Method

Sub-channel allocation scheme
and power control mechanism

Communication delay, interference,
and transmission power

Cellular netw
E-MBMS-bas

Wireless resource-allocation
scheme

Tracking error and stability Bipartite gra
and heuristic

Communication resource
allocation

Message transmission time
and V2V throughput

C-RL and Q-t

Pricing strategy and computing
resource allocation

Immediate utility RL and game

3GPP: third generation partnership project.
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Moreover, some simulation projects have been specifically
designed for autonomous vehicle platoons [158–160].

The GALVP project is an autonomous driving platoon project
launched in 2020 by Tongji University (China) and Tsinghua
University (China). In this project, the leader vehicle in the platoon
is manned, and the following vehicles realize low-cost unmanned
driving. This project will be applied to mine truck operations in
the future, and it will be necessary to schedule mine muck trans-
portation. The GCDC competition [161–163] focuses on testing
the communication and collaboration capabilities between pla-
toons. It includes two scheduling and planning scenarios, such as
a platoon-merging scenario and an intersections-passing scenario.
Companion [164] is another practical application project focusing
on vehicle platoon scheduling and planning techniques. The pla-
toon system of autonomous vehicles is divided into three layers:
the strategic layer, tactical layer, and operational layer. The strate-
gic level is the top level of strategic planning, including transporta-
tion planning and route optimization. It assigns cargo
transportation tasks to trucks and assigns them routes that can
form vehicle platoons. After the strategic layer outputs a rough
speed profile for each vehicle, the tactical layer is responsible for
detailed velocity planning while considering the dynamics of each
vehicle. The operating layer includes the control of the platoon and
the control of the vehicle itself. The platoon controller is a dis-
tributed one that is responsible for maintaining the correct dis-
tance between vehicles, performing merging actions, and
ensuring platoon stability. The vehicle controller is an internal con-
trol loop for operation control. It controls the speed of the vehicle
according to the platoon controller, other advanced driver-
assistance systems (ADASs), and the driver’s input.

Most of the project application scenarios mentioned above are
freeway or arterial scenarios; however, container terminals are
another promising application scenario for platoon scheduling
technology. A new concept has been proposed of an automated
container transportation system between an inland port and ter-
minals (ACTIPOT), which uses automated trucks to transfer con-
tainers between inland ports and container terminals [165].
Microscopic simulation models have been built to demonstrate
the overall performance of the ACTIPOT system. In the port of
Rotterdam, the Netherlands, the formation of platoons allows
vehicles to directly meet the demand points of the inland dry port
[166]. The experimental results show that the use of vehicle
platoons in the port of Rotterdam does indeed hold great potential
to reduce costs, dwell time, and emissions. At present, automated
trucks are being used to solve the problem of container transship-
ment scheduling between the two seaport terminals in the port of
Singapore [167]. Autonomous trucks can be transported in
platoons with short inter-vehicle distances, and the following
vehicles in the platoon can save on fuel consumption due to
reduced air resistance. In this problem, a mixed-integer second-
order cone programming (MISOCP) model is built to minimize
the total running cost.
Compared method Platform Ref.

ork and
ed method

Resource allocation scheme
based on D2D unicast

Not
mentioned

Peng et al. [146]

ph matching
gradient descent

Platoon string stability control
ignoring radio resources

3GPP Mei et al. [73]

able Distributed resource selection
scheme

Matlab Sharma and
Singh [106]

theory Interation algorithm Not
mentioned

Ma et al. [97]
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Although the main research and application field of platoon
technology focuses on heavy-duty truck transportation, related
research on platoon technology for passenger vehicles has also
been carried out [168]. At present, passenger vehicle platooning
mainly involves bus platooning or modular rail transit systems.
As an early prototype of a bus platooning system, the problem of
multi-model bus fleet scheduling has been widely studied. In bus
fleet scheduling tasks, the usual goal is to generate optimal bus
vehicle schedules across multiple vehicle types, thereby reducing
passenger waiting time and lowering operating costs [169]. Exist-
ing studies have used the transportation network method to carry
out the multi-objective optimization of passenger waiting time and
vehicle occupancy level [170]. The least-cost network traffic model
can take advantage of Pareto efficient schedules, thereby reducing
overall fleet size and operating cost [171]. In addition, it is possible
to switch a bus fleet’s flexible routes or fixed routes to reduce costs
by building a market entry and exit real option model with an
average return demand density [172]. By directly establishing an
integer nonlinear programming model and using DP to solve it, it
is possible to balance operating costs and customer waiting time
by scheduling different types of buses [173].

Later, when the concept of modular transportation emerged,
actual bus platooning began to take shape. Joint design of the dis-
patch interval and vehicle capacity of a modular bus platooning
system was carried out under overloaded traffic conditions [174].
Similar to the fleet size design, a bus platooning system can be
modeled as a MILP model and solved with DP [175]. In addition,
bus platooning scheduling problems modeled as MILP models
can be solved using advanced commercial solvers such as Gurobi
[176]. The flexible route design problem also exists in a modular
transportation bus platooning system, and can be solved by means
of a two-stage solution using DP and heuristics [177]. With the
gradual deepening of the research on modular transportation bus
platooning, the concept of a transportation corridor based on mod-
ular autonomous vehicles was proposed [178]. Inbound and out-
bound strategies for modular autonomous vehicles were studied,
and the theoretical properties of a passenger boarding sequence
and a minimum dispatch interval were given.

However, most current bus platooning system experiments
are carried out through small-scale data simulations. In the
future, large-scale tests in real environments will be able to ver-
ify the generalization performance of the scheduling algorithm
and its sensitivity to environmental parameters. In order to con-
duct large-scale experiments in a real-world environment, more
complex factors in real-world tasks must be considered, such as
the randomness of driving speed due to traffic conditions, capac-
ity requirements for emergency situations, changes in demand
on different workdays, and dynamic connectivity strategies for
modular vehicles. Moreover, in the real world, a wider range
of joint scheduling can be carried out, such as the joint schedul-
ing of multiple bus lines in multiple regions, the joint scheduling
of bus vehicles and drivers, and fleet size management schedul-
ing. The scheduling algorithm proposed for a bus platooning sys-
tem can also be applied to other train-based transportation
systems, such as subways, high-speed rail, and other forms of
modular autonomous driving. In terms of algorithms, paralleliza-
tion or approximation can be considered to improve the compu-
tational efficiency of DP; or, a more efficient method can be used
to jointly design algorithms to replace DP.

Compared with a truck platoon, a passenger vehicle platoon has
higher requirements for comfort, safety, and efficiency. Passenger
comfort considerations include both lateral comfort and longitudi-
nal comfort. In the lateral dispatching process of a passenger vehi-
cle platoon, the influence of lateral acceleration on passenger
comfort must be considered in situations such as the entry of vehi-
cles at the gate [179], the lateral merging of the platoon [69], and
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lane changes by the platoon [180]. Passenger safety has been eval-
uated during the emergency braking of a passenger vehicle platoon
[181]. Moreover, when a passenger vehicle platoon is passing
through a traffic intersection, traffic signal control can optimize
safety for private cars and public transport vehilcles [182]. Finally,
reducing the waiting time of passengers in order to improve the
efficiency of public transportation is another key point in the
development of passenger vehicle platoon technology. In addition
to adjusting the timing of traffic lights to allow a passenger vehicle
platoon to pass through a traffic intersection quickly [182],
dynamic optimization of bus platoon scheduling can reduce the
waiting time of passengers at the stations [183].

In short, it can be seen that the performance of scheduling and
planning algorithms is gradually improving in various scenarios.
Application research on platoon scheduling and planning has grad-
ually shifted in focus from single agents to multiple agents, from a
static environment to dynamic environments, and from a single
goal to multiple goals. In the process of algorithm evaluation, var-
ious platoon-related simulation platforms and datasets are used,
which are summarized in the next section.
5. Simulation platforms and datasets

Since platoon technology is not yet fully mature, there are risks
in conducting experiments directly on real roads; thus, there are
relatively few related experiments. Instead, many experiments rely
on simulation environments and datasets for testing. The use of
simulation environments and datasets are currently the two main
verification methods. In a simulation environment, the interactions
between the agent and the environment may be more accurate,
whereas a dataset has better authenticity.

5.1. Simulation platforms

A simulation platform not only provides a test environment for
various algorithms but also provides predictive models for model-
based methods and a training environment for RL methods. There-
fore, a realistic and efficient simulation platform is of great impor-
tance. Although some reviews have included content on simulation
platforms [23,24,33], this paper provides a more comprehensive
and concise summary of research on simulation platforms for pla-
toon scheduling and planning, including works with a focus on
traffic, vehicles, networks, and integrated simulation platforms,
as shown in Fig. 10. The application of each simulation platform
in the field of platoon scheduling and planning is also summarized.

5.1.1. Traffic-simulation platforms
Types of traffic-simulation platforms include macroscopic traf-

fic simulation, mesoscopic traffic simulation, and microscopic
traffic-simulation. In the scheduling and planning of vehicle pla-
toons, it is necessary to consider the complex interaction between
vehicles; therefore, microscopic or mesoscopic simulation plat-
forms are usually used, such as SUMO, VISSIM, and CORSIM.
� SUMO [29] is an open-source, microscale, multi-model traffic-

simulation software. The SUMO simulation platform finely
simulates the travel route of each vehicle from a microscopic
perspective and gathers the vehicles into a traffic flow for traf-
fic demand analysis. Since SUMO is an open-source software
and supports the Linux system, it is convenient for secondary
development. In addition, users can set parameters such as
random route selection, random follow-up mode, and random
departure time to improve the randomness of the simulation.
Currently, SUMO is mainly used to conduct microscopic traffic
simulations in order to verify platoon formation and lane-
changing techniques [49,50,72,92,184].



Fig. 10. Traffic, network, and integrated simulation platforms. The traffic simulation environment is responsible for generating the traffic movement of vehicles and
pedestrians, while the network simulation environment is responsible for the communication topology and information transmission. An integrated simulation platform is
composed of a traffic simulation platform and a network simulation platform. TSIS: traffic software integrated system.

J. Hou, G. Chen, J. Huang et al. Engineering 28 (2023) 26–48
� VISSIM [31] is microscopic traffic-simulation software like
SUMO, but it has a more intuitive graphical user interface
(GUI), which is convenient for users to configure roads, cars,
and buses. Therefore, VISSIM software is widely used to evalu-
ate urban traffic planning and engineering design. VISSIM has
abundant research materials for learning, calibration, and
application, and it is convenient in application. VISSIM simula-
tion results are accurate, but there are obvious shortcomings in
terms of extended applications. The disadvantage of VISSIM is
that the road network generation process is cumbersome. VIS-
SIM is also suitable for controlling traffic lights at intersections
for vehicle platoon microscopic traffic simulation [47,63,72].

� Traffic software integrated system (TSIS)/CORSIM [30] can
simulate complex geometric conditions, different traffic phe-
nomena, different types of traffic control, and management
and operations; it can also explain the interaction between
different components of a road network and has an interface
with external control logic and programs. TSIS/CORSIM has
relatively few functions, but it is a completely open-source
software, which helps scientific researchers and developers
to carry out bottom-level learning and research work.

� Parallel microscopic simulation (Paramics) [185] has features
such as detailed road network modeling, flexible signal and
vehicle control, perfect path guidance, a rich programming
interface, and detailed data analysis. Paramics can simulate
traffic signals, ramp control, detectors, variable information
boards, in-car information display devices, in-car information
consultants, route guidance, and more. Paramics is more
prominent in application, and provides a wealth of application
programming interface (API) for external applications. It can
be used to simulate the collaborative control between platoon
vehicles [186].

� The Polaris [112] framework is designed to solve the problem
of the lack of interoperable models in the field of transporta-
tion simulation. It is used to implement prototype integration
requirements, network supply, and operational feature mod-
els. In addition, it is a function-based full-featured agent-
based simulation model, including travel requirements, traffic
simulation, and basic intelligent transportation system (ITS)
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operations. It can be extended into a tool suitable for planning
purposes, which has been achieved through continuous model
development and extensive calibration and verification work;
thus, this framework is widely used to simulate platoon for-
mation at the map level [70].

� Synchro plus SimTraffic [187] is a powerful urban traffic-
modeling and drawing tool. SimTraffic can improve a city’s
transportation network and measure the derivation, road dis-
tribution, and scientificity of each road to help city builders
develop a scientific and effective transportation road network.
It has an interface with traditional popular traffic-simulation
software, which is easy to understand and has high practical
value for engineering.

� TransModeler [188] is a traffic-simulation model based on a
geographic information system, which provides the most
effective solution for many traffic-planning and simulation-
modeling tasks. It uses advanced driving behavior models to
simulate the traffic flow phenomenon on a road network
and achieves a unique breakthrough in reproducing complex
traffic fluids in a state of increasing traffic through simulation.

5.1.2. Network simulation platforms
A network simulator can simulate the information interaction

and communication process between platoon vehicles. Commonly
used softwares include NS-2, NS-3, and OMNET++.
� NS-3 [28] is a discrete-event network simulator for Internet

systems. It provides a model of packet data network and
execution, and provides users with a simulation engine for
simulation experiments. As an open-source software, NS-3
has good scalability, and users can develop it in C++ or
Python. It can be used for platoon V2V communication sim-
ulation [184,189].

� OMNET++ [120] is another free and open-source multi-
protocol network simulation software that is of great signifi-
cance in the field of network simulation [190]. It is simple
and intuitive when used to create network topologies, due to
its integrated development environment (IDE) and GUI. The
source code of OMNET++ is based on C++, and developers
can use its defined network description (NED) language to
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build and simulate network modules. OMNET++ network com-
munication simulation has been used for the formation and
lane-changing process of vehicle platoons [50,191].

5.1.3. Integrated simulation platforms
With the continuous deepening of platoon research, integrated

simulation platforms have begun to appear in order to carry out
professional platoon traffic simulation and communication simula-
tion at the same time.
� iTETRIS [192] integrates the wireless communication platform

NS-3 and the road traffic-simulation platform SUMO in an
environment that is easily tailored to specific situations, so
that a performance analysis of collaborative ITS can be per-
formed at the city level. iTETRIS uses the accuracy and scale
of the simulation to clearly reveal the impact of traffic engi-
neering on urban road traffic efficiency, operational strategies,
and communication interoperability.

� Veins [193] includes a comprehensive set of models that can
simultaneously ensure simulation accuracy and real-time
computing. The Veins framework is composed of OMNET++
and SUMO—both of which have a good GUI and IDE for easy
development—and has been applied to vehicle platoon micro-
scopic traffic simulation [194].
Table 7
Platoon-related dataset reviews.

Dataset name Country/city Main content Details

NGSIM United States Vehicle trajectory data Equipment:
Data frequen
Data size: 1

Houston platoon
scattered
dataset

Houston, USA Vehicle platoon scattered process
data

Data accura
Road width:
Road length
Road conges
Statistical re
two links ar

German road
network data

Germany Highway network graphics Data size: 6

Berlin traffic flow
dataset

Berlin,
Germany

Traffic density demand Does not spe
the travel se

Swiss highway
truck speed
dataset

Basel,
Switzerland

Truck speed Time: two d
Equipment:
Statistics: av

Swedish vehicle
platoon-
merging
dataset

Southwest of
Stockholm,
Sweden

� Data related to the merging pro-
cess of two trucks under chang-
ing traffic conditions

� Vehicles passing in a 1 min inter-
val and the harmonic average
speed of each lane

Time: Novem
Road: 11 km
Equipment:
doppler rada
Maximum fl
Average spe

Swedish vehicle
platoon
simulation
dataset

Sweden Data from two Scania HDV
simulation models

Vehicle: HD
engine with
Model: Scan
Road: 280 k
Statistical re
reduced by

Beijing ANPR
dataset

Beijing, China ANPR vehicle information data Time: Decem
Acquisition
Data size: 5
4 669 229
vehicles

New Delhi
platoon
scattered
dataset

New Delhi,
India

Vehicle platoon scattered process
data

Road length
Road width:
Signal light
Collection a
marked at d
from the pa
Equipment:
and vehicle

NGSIM: next-generation simulation; ANPR: automatic number plate recognition; GPS: G
each lane per hour.
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� VENTOS [50] is an open-source integrated VANET C++ and
SUMO simulator used to study vehicle traffic, cooperative driv-
ing, and vehicle-infrastructure interaction by enabling the
wireless communication capabilities of dedicated short-range
communications (DSRC). VENTOS can help researchers in the
fields of transportation engineering, control theory, and vehicle
networks, and VENTOS-based simulation can simulate vehicle
platoon formation and lane-changing behavior [50].

5.2. Datasets

Although there are numerous simulation platforms that can
simulate the traffic, vehicle, and network conditions of a platoon,
real-world datasets are still indispensable to verify the perfor-
mance of an algorithm in the real environment. However, since
the platoon technique has not yet been widely popularized, pure
platoon datasets are scarce, and most platoon-related research
uses other traffic datasets as an alternative. Numerous researchers
have constructed and utilized platoon-related datasets to carry out
a great deal of significant research; we introduce these studies
from the United States, Europe, and Asia, according to the regions
where the datasets were recorded. Platoon-related datasets are
summarized in Table 7 [42,62,71,100,108,195–199].
Usage

digital camera
cy: 10 Hz

1.8 million, 25 columns

Generating NGSIM supersaturated
highway traffic flow model [195]

cy: 15 points per road
six lanes
: 320 and 560 m
tion: relatively heavy
sults: average link travel times of the
e 23.66 and 40.50 s

Verifying the vehicle emission
dispersion process [196]

47 nodes and 1390 edges Generating random driving tasks [42]

cifically target each edge, but is based on
t of neighboring areas

Verifying platoon formation algorithm
effectiveness under complex traffic
flow density [197]

ays, off-peak period
two radars
erage speed is about 70 km�h�1

Comparing the performance of
platoon formation algorithms
[100,108]

ber 2015
, three lanes, slope
radars, cameras, and GPS devices;
r installed on the expressway
ow: 2100 veh�h�1�lane�1

ed: 95 km�h�1

Verifying whether a vehicle platoon
can be formed under different traffic
flow densities [62]

V with a 6� 2 configuration and a 480 hp
a 12 speed gearbox
ia’s validated simulation model
m, moderate slope
sults: average air resistance of platoon is
8.4%

Comparing the fuel consumption
saving performance of the platoon
formation algorithm [71]

ber, 2012
equipment: 1040 cameras
4 316 820 ANPR data records and

Used to discover companion patterns
[198]

: 1.6 and 0.7 km
four independent lanes
situation: a period length of 200 s
ccuracy: five data collection points are
istances of 100, 200, 350, 400, and 450 m
rking line
video camera, record traffic activities
speed

Verifying the vehicle emission
dispersion process [199]

lobal Positioning System; veh�h�1�lane�1: the number of vehicles passing through
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5.2.1. The United States
The United States is one of the first countries to carry out

research on platooning technology, so some of the early, well-
known datasets were recorded in the United States. The well-
known dataset in the transportation field, next-generation simula-
tion (NGSIM) [200], was recorded in California and Georgia, USA,
and is now used to study the impact of the platoon technique on
traffic flow [195]. In addition, Yu [196] collected vehicle trajectory
data near a traffic intersection to calibrate the proposed platoon
dispersion models.
5.2.2. Europe
Europe followed the United States in platooning studies, with

Germany, Sweden, and Switzerland as representatives. The Europe
Flagship Program helps numerous universities and businesses con-
duct extensive research. A dataset of randomly generated driving
tasks using German highway network graphics was produced to
verify the fuel-saving performance of a vehicle platoon formation
algorithm [42]. It was found that the more vehicles there are in a
network, the easier it is to form a vehicle platoon to save fuel. By
collecting the speed of trucks on real highways, Saeednia and
Menendez [100,108] constructed an optimization problem of vehi-
cle platoon formation. Two real vehicles have also been used to
perform platoon merging on a highway, forming a dataset for test-
ing the impact of different traffic flow densities on platoon forma-
tion [62]. Sebe and Müller [197] used real urban road network data
and background traffic density models to simulate the platoon for-
mation process in order to verify the performance of their algo-
rithm. Based on Scania’s simulation model, Liang et al. [71]
simulated platoon driving 280 km on a Swedish highway to obtain
simulation data and verify that the average air resistance is
reduced by 8.4% when vehicles drive in a platoon.
5.2.3. Asia
In the past two years, countries in Asia have also attempted to

launch datasets for their own road conditions. Compared with
Europe and the United States, which have accumulated decades of
technical reserves, Asian countries started their development later.
However, the technical solutions obtained by different nations are
surprisingly similar, as all rely on expensive active-sensing sensors.
Automatic number plate recognition (ANPR) data recorded in
Beijing has been used to discover companion patterns [198], and
Saha et al. [199] used a dataset recorded in New Delhi, India, to val-
idate their proposed vehicle platoon dispersion prediction model.

In general, the various kinds of traffic-simulation platforms
available today are sufficient, allowing adequate simulations of
platoon scheduling and planning techniques. There is no doubt
that a more realistic and detailed simulation platform will be more
conducive to the efficient evaluation and training of scheduling
and planning algorithms. If a dedicated traffic-simulation platform
for platoons appears in the future, it will make the experimental
environment configuration more convenient. Nevertheless, at pre-
sent, the available datasets are still relatively inadequate—espe-
cially datasets dedicated to platoons. We believe that this
problem can be alleviated as more and more practical platoon pro-
jects are launched.
6. Challenges and discussions

Although the scheduling and planning techniques of vehicle
platoons have been greatly developed in recent years, there is still
a long way to go before platoon scheduling and planning tech-
niques mature to large-scale applications. Major challenges and
future development directions are elaborated in this section.
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6.1. Lack of real-vehicle verification on a large scale

Although some autonomous vehicle platoon projects have
begun testing on real-world roads in recent years, they are still
far from large-scale practical commercial operations. Due to the
lack of large-scale practical operations, existing algorithms do not
respond well to real and complex environmental uncertainties,
such as traffic jams, accidents, ramps, communication delays,
forced driver rests, and uncooperative human drivers. At the same
time, the lack of a large-scale vehicle platoon operation environ-
ment makes it impossible for cargo scheduling and vehicle platoon
formation algorithms to be actually verified. Large-scale application
scenarios challenge the algorithm’s computational real-time and
communication capabilities. At present, there is a lack of a unified
evaluation system for platoon scheduling. Large-scale real-vehicle
verification is helpful to the formation of the evaluation system.

The lack of practical vehicle platoon datasets is another current
problem. As a result, many vehicle platoon scheduling algorithms
can only be verified using general road datasets, which may devi-
ate from actual platoon situations. With the launch of an increasing
number of platoon projects and the continuous development of
ITS, the lack of large-scale real-vehicle verification of platoon tech-
nology is expected to be resolved.
6.2. Communication challenges in practical scheduling

At present, most of the existing platoon scheduling studies do
not take practical communication problems into account; rather,
they assume that all vehicles can achieve perfect communication
without delay, error, and bandwidth limit, so as to carry out cen-
tralized scheduling. In practice, however, due to communication
delays, vehicles cannot execute scheduling instructions immedi-
ately and may reject the scheduling instruction. Moreover, due to
the lack of communication capacity, it is necessary to consider sit-
uations involving mixed driving between network-connected vehi-
cles and conventional vehicles. Security and privacy issues must
also be considered when developing practical communication pro-
cesses, and future platoon scheduling research needs to take the
various issues that may affect communication processes into
account. One possible way to deal with communication delays is
to adopt distributed control, in which vehicles make decisions that
are in both their own interest and the overall interest.

Furthermore, it is challenging to handle highly dynamic com-
munication channels and network topology while providing
diverse services with stringent quality-of-service (QoS) require-
ments in real time. Therefore, AI-based engineering solutions are
needed to achieve efficient network slicing, mobility management,
and cooperative content caching and delivery.
6.3. Human–machine interaction patterns in platoons

As more and more practical platoon project experiments are
being carried out, human–machine interaction problems in pla-
toon systems are beginning to appear. Unlike self-driving vehicles,
in which the driver can take over alone at any time, a human driver
cannot take over a platoon system at any time, because it is diffi-
cult for a human to maintain a very close distance at high speeds,
as is done in a platoon system. Manual driving is not as accurate as
automatic driving in terms of distance control, so a bad manual
takeover of driving power can easily lead to accidents. Thus, under
such circumstances, the driver feels highly stressed. At present,
few studies have researched human–machine interactions in pla-
toon driving mode [201]. In the future, emphasis must be put on
human–machine interactions in platoon formation, driving, and
emergency separation scenarios [202,203].
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6.4. Application of learning-based methods

In recent years, learning-based algorithms based on deep neural
networks and bio-inspired learning networks have attracted wide-
spread attention and research [204]. Since vehicle platoon schedul-
ing and planning are decision-making processes that are easy to
model, the RL algorithm is easy to apply and has been widely
adopted. However, the RL algorithm still has some bottlenecks
regarding its training efficiency and transferring applications. RL
is inefficient when sampling experience in complex observation
and motion spaces, so its training time is long. In addition to the
problem of the algorithm itself, a simulation environment for
interacting with other drivers lacks authenticity, resulting in RL
agents exhibiting poor performance when transferred to the real
world. Meanwhile, algorithms based on deep neural networks are
difficult to explain, and it is difficult to trace responsibility in the
case of an accident.

In order to improve RL training speed, the experience replay
strategy of RL must be improved so that the driving experience
generated by time-consuming simulations can be better utilized.
Combining residual RL and multi-expert RL methods with a tradi-
tional rule controller makes it possible to avoid training overfitting
and improves the transfer robustness of the agent. More platoon-
specific datasets can also be provided for imitation learning, which
can significantly improve the training speed compared with a stan-
dard RL. Finally, significant graphs and other methods can be used
to provide a preliminary explanation of the vehicle decision-
making behavior in a platoon.

6.5. Efficient computing resource scheduling

With the gradually increasing complexity of scheduling algo-
rithms and a gradual increase in the scale of the vehicle platoon,
the amount of calculation required for a vehicle platoon will also
gradually increase, causing on-board computing resources to
become increasingly constrained. Existing computing resource-
scheduling methods based on IoV communication must become
more efficient in order to meet the real-time requirements of vehi-
cle platoon scheduling and planning. Cabin computing is an emerg-
ing method for scheduling computing resources [205]. It is a
network-accessible integrated computing environment for cross-
domain resource configuration and collaboration throughout the
entire life cycle of information technology (IT) tasks. Compared
with existing computing modes and technologies, cabin computing
possesses the following characteristics: ① It is constructed flexibly
in response to the requirements of IT tasks, is scaled and managed
in response to the execution of IT tasks, and dies dynamically in
response to the conclusion of IT tasks. ② In the vertical dimension
of the full life cycle of IT tasks, it performs the four functions of
identifying requirements, allocating resources, executing tasks,
and concluding tasks. ③ In the horizontal dimension of the
resources required by IT tasks, cabin computing realizes the overall
configuration and coordinated operation of data resources and
physical resources. Compared with grid computing, virtual organi-
zation, cloud computing, and edge computing, cabin computing
unifies mobility and customization and optimizes and coordinates
cross-domain resources, thereby enabling complex vehicle platoon
scheduling and planning algorithms to be calculated efficiently and
in real time.

6.6. Distribution of economic benefits

With the development of vehicle platoon technology, the dis-
tribution of economic benefits related to vehicle platoons has
become increasingly important, yet has not been the subject of
extensive research [148]. It is necessary to distribute economic
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benefits in a vehicle platoon for a few different reasons. First,
the vehicle at the rear of the platoon can save more fuel than
the vehicle at the front [206]. Second, in order to form a platoon
to save fuel, some vehicles may need to slow down or stop to
wait for vehicles behind them to catch up, which results in a
loss of their time. Third, the platoon technique reduces the dis-
tance between cars, thereby improving road capacity, so road
managers should consider reducing tolls for platoons. In the
future, game theory should be used to design a set of rules so
that the overall solution can be close to the optimum even when
all drivers and managers are selfish. It is only in the case of a
reasonable distribution of benefits that all stakeholders will be
motivated to carry out platoon formation. Furthermore, an
increase in the number of schedulable vehicles creates more
space for scheduling, thus resulting in more revenue. Combining
various freight companies to form a unified freight scheduling
system can bring greater economic benefits.

6.7. The intelligent platoon transportation system

Although platoon technology is currently mainly used in the
field of truck freight, with the continuous development of the pla-
toon scheduling technique, platoons are expected to be applied to
urban passenger transportation systems and to compete with
buses and subways. In city centers, due to road traffic jams and
the close distance between stations, buses and subways start and
stop repeatedly, resulting in lower average speeds and lower pas-
senger transport efficiency. The core idea of the intelligent platoon
transportation system is to realize the point-to-point transporta-
tion of passengers, so it is necessary to split ‘‘trains” into ‘‘pla-
toons.” Passengers with the same boarding and alighting stations
can take the same vehicle; then, the vehicles can form platoons
when they drive on the road. When a platoon passes the station,
the vehicles that need to stop can separate from the platoon and
park, while the other vehicles continue to travel without slowing
down. In this way, the average speed of transport vehicles can be
increased while improving transport efficiency.

6.8. Future development of real-world platoon projects

As summarized in Section 4.6, a great deal of real-world platoon
application project research has been completed, and good plan-
ning and scheduling results have been achieved. These projects
will continue to progress in the future, with continuous iterations
and updates. For example, the PATH project will focus on improv-
ing the safety of each vehicle during emergency braking in a pla-
toon in the future [40]. The EnergyITS project will further
shorten the distance between vehicles in a platoon, improve equip-
ment reliability, and explore a more mature business operation
model [38]. However, as concluded in the GCDC challenge,
although each team has implemented the scheduling and planning
functions of a platoon system in the real world, there is a lack of a
unified communication protocol and test verification evaluation
standards in all systems [161]. This hinders platoon technology
frommoving toward larger scale practical applications. In addition,
current laws and regulations do not fully support the development
of various platoon application projects. In the future, break-
throughs in relevant laws and regulations will be required to
enable platoon technology to carry out a wider range of technical
verification and application.
7. Conclusions

Since platoon scheduling and planning techniques are the key
to obtaining the economic benefits of platoons, their develop-
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ment is crucial to platoons’ large-scale promotion and imple-
mentation. Scheduling and planning techniques for vehicle pla-
toons have been significantly refined over the past decade.
Rule-based, model-based, optimization planning, learning-based,
and multi-agent platoon scheduling methods have been success-
fully applied to platoon vehicle formation and separation, lateral
and longitudinal planning, and resource allocation. However, due
to the lack of large-scale industrial operation, this technology
still has a number of flaws. We hope that our review will aid
researchers in understanding diverse platoon scheduling and
planning techniques and application scenarios, as well as in
advancing the development of a unified and coordinated platoon
scheduling and planning system.

A primary future development direction for platoons is to con-
duct more practical road test projects. Based on the road testing of
actual vehicles, more platoon-specific datasets can be made avail-
able to researchers. In addition, rapidly evolving neural learning-
based algorithms can use these datasets to learn how to handle
complex traffic situations in the real world. Through the continu-
ous efforts of researchers to improve platoon scheduling tech-
niques, it is hoped that the advantages of platoon technology will
be fully utilized and this technology will be widely adopted,
thereby transforming the transportation industry and vastly
improving transportation efficiency.
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