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As indispensable parts of greenhouses and plant factories, agricultural covering films play a prominent
role in regulating microclimate environments. Polyethylene covering films directly transmit the full solar
spectrum. However, this high level of sunlight transmission may be inappropriate or even harmful for
crops with specific photothermal requirements. Modern greenhouses are integrated with agricultural
covering materials, heating, ventilation, and air conditioning (HVAC) systems, and smart irrigation and
communication technologies to maximize planting efficiency. This review provides insight into the pho-
tothermal requirements of crops and ways to meet these requirements, including newmaterials based on
passive radiative cooling and light scattering, simulations to evaluate the energy consumption and envi-
ronmental conditions in a greenhouse, and data mining to identify key biological growth factors and
thereby improve new covering films. Finally, future challenges and directions for photothermal-
management agricultural films are elaborated on to bridge the gap between lab-scale research and
large-scale practical applications.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent research has estimated that global food production must
be increased by approximately 70% [1] to sustain a global popula-
tion of 9 billion by 2050. Controlled-environment agriculture (CEA)
has been recognized as a reliable strategy to enhance global food
production [2]. Greenhouses and plant factories are the major com-
ponents of CEA systems. In these systems, the microclimate (i.e.,
light and temperature) can be regulated by means of heating, ven-
tilation, and air conditioning (HVAC) systems [3], as shown in Fig. 1
(a) [4]. Moreover, smart irrigation technologies can be integrated
to maximize irrigation efficiency and reduce water waste, as
shown in Fig. 1(b) [5]. Communication technologies can also be
employed to optimize crop-management information in HVAC sys-
tems, as shown in Fig. 1(c) [6]. However, HVAC systems require
enormous energy consumption, which can account for 70%–85%
of the total operating costs of a greenhouse [7]. The light intensity
in a greenhouse is not only lower but also spatially inhomogeneous
compared with external conditions, especially for lower-lying
leaves, which are exposed to rather dim light conditions. ‘‘Vertical
agriculture” refers to the practice of planting crops in vertically
stacked layers. It typically includes CEA to optimize plant growth,
as well as soilless farming techniques such as hydroponic and aer-
ial cultivation. Although vertical agriculture, as shown in Fig. 1(d)
[8]) maximizes the utilization of light, approximately 30% of the
operating costs are spent on electricity for supplemental lighting
[9].

The history of the greenhouse dates back to 14–37 Anno Domini
(AD) [10], as shown in Fig. 2(a). Early greenhouse cladding materi-
als were mainly glass, which is characterized by its strength and
high light transmission. However, the installation cost of glass is
relatively high, and its high thermal conductivity results in poor
thermal insulation efficiency at night. Subsequently, polyethylene
was developed as a covering material for greenhouses. There are
three main types of greenhouses in China: solar greenhouses,
multi-span greenhouses, and plastic shed greenhouses as shown
in Fig. 2(b)�(d) [11–13]). The regional distribution and growing
trend of greenhouses in China are shown in Fig. 2(e)[14]. Most
greenhouses are constructed with polyethylene film as a covering
material, as it is corrosion resistant, durable, soft, and lightweight.
Nevertheless, the single C–C and C–H bonds in polyethylene mole-
cules result in high sunlight transmission, causing excessively high
temperatures inside the greenhouses [15].
d Chal-
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Fig. 1. Intelligent management of modern agriculture. (a) An intelligent irrigation system (reproduced from Ref. [4] with permission). (b) A microclimate-management
system (reproduced from Ref. [5] with permission). (c) Images of vertical farming (reproduced from Ref. [6] with permission). (d) An Internet of Things (IoT)-based data
acquisition and monitoring system for greenhouse environment (reproduced from Ref. [8] with permission). SDK: software development kit; API: application programming
interface; WSN: wireless sensor networks; LAN: local area network.
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Passive radiative cooling materials have attracted tremendous
interest for thermal management in buildings, because they are
effective at regulating indoor heat by reflecting sunlight and heat
to a colder external space through the infrared transmission win-
dow of the atmosphere. In fact, greenhouses are living buildings
for crops and, when these novel materials are applied in green-
houses, they can provide a favorable choice for appropriate tem-
perature control [16]. Furthermore, the use of a light-scattering
film is a viable option to expand the illuminated area for plants
in greenhouses during periods of insufficient sunlight. Direct sun-
light can be scattered so that the sun-irradiated area of leaves in
different positions is expanded [17].

In the following sections, a brief introduction is first provided to
the photothermal requirements of crops, followed by an overview
of passive radiative cooling and light-scattering films employed in
agriculture. Then, a simulation is proposed to evaluate the energy
consumption and environmental conditions in a greenhouse.
Finally, challenges and opportunities are presented for the future
use of photothermal-management films.
2. Photothermal requirements of crops

Crops are influenced by light both directly and indirectly [18].
Direct influence refers to the fact that light is a signal during
plant photomorphogenesis, such as seed germination, tissue
growth, and cellular differentiation [19], while indirect influence
refers to crops’ use of light as an energy source in photosynthe-
sis [20]. Three key parameters of light—namely, intensity, unifor-
mity, and quality—should be taken into consideration in crop
growth [21].

Light quality refers to the color or wavelength of light. As shown
in Fig. 3(a) [22], sunlight is composed of 6%–7% ultraviolet (UV)
light (<380 nm), approximately 42% visible light (380–780 nm),
and 51% near-infrared (NIR) light (780–2500 nm) [22]. NIR light
2

provides heat for crop growth and development. The 400–
700 nm range is known as photosynthetically active radiation
(PAR). Blue (430–500 nm) and red (630–770 nm) light are the most
effectively utilized during the photosynthesis of green leaf crops,
due to the primary absorption of chlorophyll [23].

Crops can be categorized as having high, medium, or low light
requirements based on their lighting needs for normal growth
and development [25]. Typically, increases in the net photosynthe-
sis rate are positively correlated with light intensity [26]. Sun-
loving crops exposed to insufficient light will experience decreased
photosynthesis and decreased growth and glucose production,
causing their foliage to appear weak [27].

The uniformity of light encompasses both temporal and spatial
distributions. Sunlight commonly reaches greenhouses as parallel
light and is therefore easily blocked by obstacles or plant canopies
[28,29]. In contrast, scattering improves the distribution of light
from different angles into the inner plant canopy, where it is
absorbed and utilized for photosynthesis [30].

Temperature is another dominant environmental factor that
regulates crop growth. There are three cardinal temperature points
in plant growth: the minimum, optimum, and maximum tempera-
ture [31]. Various physiological processes, including photosynthe-
sis, respiration, water transport, hormone secretion, and
supersession, are influenced by temperature [32]. Crops can be
damaged at temperatures that are too high or too low, and growth
and development are optimal only at the optimum temperature
[33]. As shown in Fig. 3(b) [24] illustrates the energy-transfer
mechanism between a greenhouse and its surroundings, and opti-
cal photos of the interior of a greenhouse are shown in Fig. 3(c) [24].

For example, the strawberry is a typical temperature-sensitive
fruit, with the soluble solid content (SSC) serving as the primary
parameter for assessing its internal quality [34]. Research has
found that the average air temperature during strawberry ripening
negatively correlates with the strawberry’s firmness and SSC,
although the extent of reactivity varies by cultivar [35]. After three



Fig. 2. History, types, and development trends of greenhouses. (a) A brief history of greenhouses. (b) Solar greenhouse (reproduced from Ref. [14] with permission). (c) Multi-
span greenhouse (reproduced from Ref. [15] with permission). (d) Plastic shed greenhouse (reproduced from Ref. [16] with permission). (e) Trends in the three types of
greenhouses in China (data obtained from Ref. [17]). PE: polyethylene.
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weeks of flowering, strawberries grown at 15 �C have a higher SSC
than those grown at 22 �C [36]. Furthermore, strawberries grown
in high carbon dioxide concentrations and higher temperatures
tend to contain higher levels of polyphenols and antioxidants [37].

Secondary metabolites such as phenylpropane compounds are
ubiquitous in plants and play an important role in plant growth,
especially in response to adversity stress, such as in avoiding dam-
age, resisting diseases, and acting as signal transduction molecules
[38]. For example, the intensity and duration of high temperature
significantly affects thephenylpropane contentof grapes at different
stages of fruit development [39]. In some insightful reviews [40–42],
themechanismsof ambient temperatures on cropshavebeenexten-
sively studied. Nevertheless, further effort must be devoted to com-
prehending the relevant underlying mechanisms, including genes,
molecules, organs, tissues, signals, and other aspects.
3

3. Passive radiative cooling materials for greenhouses

Passive radiative coolingmaterials arecommonlyused inbuildings
to create a comfortable indoor environment and save energy [40,41].
They also exhibit similar benefits when applied in agricultural green-
houses [42,43]. The interactions between light and a material surface
include reflection, transmission, and absorption, where the sum of
these threeparts is equal to100%[44]. The transmittanceof anopaque
material is typically 0% [45]. Furthermore, Kirchhoff’s law of thermal
radiation proposes that the absorptivity of each wavelength amounts
to the emissivity when the object is in a thermal equilibrium state
[46]. A detailed description of the theory of passive radiative cooling
is provided in Bijarniya et al.’s review [47].

The heat balance of radiative cooling materials is described by
Eq. (1), where Pr represents the radiative power emitted by the



Fig. 3. Solar radiation and greenhouses. (a) The solar spectrum in space and on the surface of the earth (reproduced from Ref. [22] with permission). (b) Energy exchange via
radiation in a conventional greenhouse (reproduced from Ref. [24] with permission). (c) Inside view of a vegetable greenhouse (reproduced from Ref. [24] with permission).
(d) A diagram of visible light scattering and NIR light reflected by a greenhouse’s covering.
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matter and Pa is the radiative power absorbed from the incident
atmospheric atmosphere. Psun is the absorbed solar power, and
the power loss caused by conduction and convection is
expressed as Pconv. In general, the absorption rate is reduced by
increasing the reflectivity of solar radiation. Altogether, there
are two main considerations to achieve passive radiative cooling:
One is increasing the emissivity of the atmospheric window, and
the other is enhancing the infrared reflectance [48]. The mecha-
nism of greenhouse covering films with infrared reflection is
shown in Fig. 3(d).

Pnet ¼ Pr � Pa � Psun � Pconv: ð1Þ
Certain ceramic particles that have a large band gap, high

refractive index, and low extinction coefficient are favorable for
backscattering solar light [49]; examples include titanium dioxide
(TiO2) [50], barium sulfate (BaSO4) [51], zirconia (ZrO2) [52], silicon
dioxide (SiO2) [53], zinc sulfide (ZnS) [54], magnesium oxide (MgO)
[55], and zinc sulfide (ZnO) [56]. Perylene, copper(II) phthalocya-
nine, perylene diimide derivatives, and tricyclodecane dimethanol
diacrylate are the main organic additives [57]. The matrix materi-
als are carefully screened for passive radiative cooling, and a poly-
mer without attenuation in the full solar spectrum is preferred,
such as polyethylene (PE) [58], polyvinylidene fluoride (PVDF)
[59], polydimethylsiloxane (PDMS) [60], poly(methyl methacry-
late) (PMMA) [61], or polyester (PET) [62]. Better passive radiative
cooling effects can be achieved by constructing ordered porous
arrays on material surfaces [63]. Other important influences on
radiation cooling include particle size, volume fraction, and film
thickness [64]. When using a material outdoors, it is important
to consider its durability, and creating a hydrophobic surface is
an effective way to enhance its longevity [65].
4

Another popular matrix material is transparent wood (TW),
which has high optical transmittance. In transparent wood, most
of the lignin has been selectively removed and then replaced with
a suitable polymer such as PMMA [66]. Functional particles,
including antimony-doped tin oxide (ATO) [67], ZnO [68], and
tungsten-doped VO2 [69], are often integrated to improve the effi-
ciency of the radiative cooling. TW is hard and inflexible and thus
unsuitable for greenhouse covering, especially for tunnel-like
greenhouses. Passive radiative cooling materials usually require
high reflectivity and high emissivity in the atmospheric window
region. The higher the refractive index (n) is at the air–material
interface, the stronger the backscatter and the greater the reflec-
tion will be. The extinction coefficient (k) is a physical quantity
that characterizes the ability of a material to absorb light; a higher
k value indicates that the electromagnetic radiation decays rapidly
in the material and is gradually absorbed by the material. In addi-
tion, passive radiative cooling materials should provide a wide
energy band greater than solar photon energy (0.49–4.13 eV) to
avoid absorbing solar radiation [70]. Therefore, when selecting
highly efficient passive radiative cooling materials, it is necessary
to consider the material’s n value, k value, and bandgap width.
Excellent chemical stability, low cost, large surface area, and
high-speed production are also key considerations for screening
materials. The most widespread greenhouse covering material in
the world is low-density polyethylene (LDPE) film; a radiative
cooling polyethylene monolayer film with silica as an additive
increases reflectivity by 7% [71]. Nonetheless, studies of passive
radiative cooling materials manufactured with LDPE have been
applied to textiles for personal thermal management [72] and tem-
perature regulation for buildings or transport [73] more widely
than for agricultural greenhouses at present.



Fig. 4. Simulation of solar radiation and the growth environment. (a) Simulated light distribution on 3D tomato plant models according to film diffuseness and regional solar
radiation ((i) low irradiance, high diffuse radiation fraction (LIHD), haze 10%; (ii) LIHD, haze 90%; (iii) high irradiance, low diffuse radiation fraction (HILD), haze 10%; and (iv)
HILD, haze 90%), PPFD: photosynthetic photon flux densities (reproduced from Ref. [79] with permission). (b) Simulated temperature distribution in a greenhouse
(reproduced from Ref. [98] with permission). (c) PAR radiation isocontours inside a greenhouse (reproduced from Ref. [99] with permission). (d) Air path lines over a
greenhouse and surface heat transfer coefficient over the walls (reproduced from Ref. [100] with permission).
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The use of NIR reflective materials in greenhouses shows
promising application potential in certain cases. Mutwiwa et al.
[74] employed NIR reflective materials for cultivating tomatoes
in greenhouses located in central Thailand. Their research findings
suggested that NIR reflection can effectively decrease the green-
house temperature by 2.8 �C. Furthermore, the growth parame-
ters—including plant height, leaf area index, and dry matter
content of tomatoes—remained largely unaffected. Chen and Shen
[75] reported achieving a 31.4% increase in asparagus average
spear yield by planting asparagus in greenhouses with NIR reflec-
tion diffusion coatings in summer. The researchers found that the
NIR reflective diffusion coating reduced the average temperature
in the greenhouse by 1.8, 1.9, and 0.7 �C in June, August, and
September, respectively, with the highest temperature decreasing
by 6.0, 7.1, and 3.7 �C, respectively [76]. Research also indicates
that, compared with ordinary commercial films, the temperature
is 9 �C lower in greenhouses covered by infrared reflective films,
and cucumber yields are 24.3% higher [77].
4. Light-scattering materials for greenhouses

When light-scattering film is used as a greenhouse cover (as
shown in Fig. 3(d)), it is greatly affected by the local climate, sun-
light conditions, and even the type of crop grown in the green-
house. Therefore, an acceptable approach to assess light-
scattering films under assorted light environments is to use a
ray-tracing simulation with three-dimensional (3D) plant models
[78]. The complex optical interactions between the internal and
external environments of a greenhouse and the microlight envi-
ronment of the canopy can be displayed in a ray-tracing simula-
tion. For example, a higher haze brought more uniform light
distribution and a higher photosynthetic rate for tomatoes, as
shown in Fig. 4(a) [79].
5

Light scattering occurs when light passes through particles,
generating an oscillating charge, and is then reradiated in various
directions. The extent and deflection of the scattering depends on
the frequency of the light and the size of the particles. The relation-
ship between particle size and incident wavelength can be
expressed by the size parameter (x), as shown in Eq. (2):
x ¼ 2
Q

r
k

ð2Þ

where r is the particulate radius and k is the wavelength [80].
When x is far less than 1 or when the particle size is less than
1/10 of the incident light wavelength, a kind of elastic scattering
called Rayleigh scattering will occur. When x is close to 1 or the
particle size is greater than k/10, then Rayleigh scattering transi-
tions into anisotropic inelastic scattering, called Mie scattering
[81].

Light-scattering materials can generally be divided into two
types: surface-relief and volumetric materials [82]. Surface-relief
scattering materials rely on their microstructures, such as abun-
dant uneven structures and rough textures [83]. The incident light
deviates from its direction when light passes through the surface
with the microstructure. Surface-relief scattering films usually
possess high transmittance. The fabrication of surface-relief scat-
tering films frequently involves electrospraying, etching, and
embossing processes, which are complicated and expensive [84].
Volumetric materials can scatter light by means of particles dis-
persed inside a matrix; the manufacturing process for volumetric
materials is simpler and more efficient than that for surface-
relief materials [85].

Many light-scattering coatings, blocks, or film materials have
been prepared based on the theory of scattering. Volumetric-type
scattering materials are prepared by dispersing particles into
matrices with different refractive indices. The particles in the
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matrices usually consist of microparticles such as SiO2 [86], CaCO3

[87], BaSO4 [88], polystyrene (PS) [89], PMMA [90], or ZnO [91],
while the polymers used for the matrices include PE [92], PET
[93], or PC [94]. According to the American Society for Testing
and Materials (ASTM) D1003 standards [95], haze is generally used
to assess the degree of light scattering. Haze is expressed as the
percentage of incident light scattered more than 2.5� by a light-
scattering material [96]. Light-scattering materials have been
widely used in electronic displays, lighting engineering, projection
imaging [97], and other technical fields to improve the uniformity
of light intensity and eliminate glare. Simulation of solar radiation
and the growth environment was shown in Fig. 4 [98�100].

The diffusion ratio within greenhouses is crucial for modeling
studies, particularly when evaluating the impact of scattering film
on crop growth. Understanding the behavior of diffused light in
greenhouses is crucial for improving the accuracy and reliability
of predictions regarding radiation absorption by the canopy and
photosynthesis. A five-year record of a large amount of solar and
diffuse radiation data from October 1999 to December 2004 sug-
gested that the transmittance of diffusing light is less susceptible
to the diurnal evolution of the angle of incident light than the
transmission of direct light [101].

The yield of spinach under diffused film (57% haze) was found
to be 22.3% higher than that under fully transparent film when
light-scattering film was used to grow vegetables in real green-
houses [8]. Other experimental research has indicated that the pro-
duction of different crops (e.g., tomato, cucumber, and roses)
improved by 10% under diffuse light conditions [102]. In winter,
light diffusion was found to enhance amino acid contents in lettuce
leaves by up to 1.15 times [103]. Zheng et al. [104] conducted a
study on the application of scattering films with varying haze
levels (20% and 29%) as coverings for solar greenhouses. Their find-
ings revealed that leaves exposed to higher haze levels showed a
significant increase in net photosynthesis compared with those
exposed to lower haze levels (19.0% and 27.2%, respectively).
Moreover, the 29% haze area resulted in a 5.5% increase in yield
for high stem-density tomatoes and a 12.9% increase for low
stem-density tomatoes when compared with the 20% haze area.
Di Mola et al. [17] conducted a greenhouse study in Portici, Naples,
Italy, and made a significant discovery: The utilization of light-
scattering film can increase spinach yield by 22% and improve
the soil plant analysis development index by 4.6%, all while leaving
the leaf chlorophyll content unaffected.
5. Simulation of energy consumption and environmental
conditions

The energy consumption and environmental conditions of a
greenhouse are influenced by a complex set of external and inter-
nal factors. The external factors are climate and geographical loca-
tion, while the internal factors include building structures and
materials, heating equipment, evaporative cooling systems, venti-
lation, carbon dioxide supply, and artificial lighting. To save
research and development (R&D) costs and achieve the lowest
energy consumption requirements, it is necessary to simulate the
energy consumption of greenhouses in order to thoroughly inves-
tigate the best cooperation between photothermal management
films and various systems. Rasheed et al. [105] used a Transient
System Simulation (TRNSYS)-18 program to study a multi-span
greenhouse building energy simulation (BES). They found that
cooling energy requirements can be reduced by up to 25% by using
a shading screen in summer. An energy consumption simulation
presents significant advantages in screening greenhouse materials.
Yu et al. [106] used Energy Plus software to simulate phase-change
materials (PCMs) on greenhouse energy conservation, combined
6

with experimental data. They found that the heat load in spring,
autumn, summer, and winter can be reduced by 6.4, 5.8, 3.4, and
2.9 GJ, respectively. The annual total heating load can be reduced
by 18.5 GJ, which is equivalent to 4.7% annual energy savings.
The accumulated energy savings in spring, summer, and autumn
were 9%.

An energy consumption and environmental simulation of a
greenhouse involves several parts, including the establishment of
a greenhouse model, a carbon dioxide supply system, the design
of an HVAC system [107], and computational fluid dynamics
(CFD), which can be performed using software or algorithms for
simulation and result analysis [108]. A CFD simulation can be used
to analyze and solve problems of temperature (As shown in Fig. 4
(b) [98]), PAR distribution (Fig. 4(c) [99]), and air path lines (As
shown in Fig. 4(d) [100]). A greenhouse that faces south can have
its largest wall area exposed to the sun to obtain the most solar
radiation, and the ventilation system can be installed on the east
and west walls. A thickly layered wall can be built with heat-
storing material and insulation material to prevent heat loss [109].

The interior environment of a greenhouse, such as the temper-
ature, air quality and humidity, is controlled by airflow patterns.
CFD is a type of simulation for analyzing the spatiotemporal distri-
bution of flow velocity and temperature, and it can be used to sim-
ulate fluid flow conditions and heat [110], mass, and momentum
transfer with the purpose of optimizing agricultural design.
Exhaustive flow patterns and heat transfer fluxes can be calculated
accurately using CFD. Baxevanou et al. [100] used the finite volume
method and Ansys Fluent CFD code for a two-dimensional (2D)
simulation of transmission phenomena, aerodynamics, and heat
radiation transmission in four wavelength bands (UV, PAR, NIR,
and infrared radiation) in tunnel-type tomato greenhouses with
side openings. In their work, models of greenhouses were covered
with ethylene–vinyl acetate (EVA) resin, three-layer coextruded
polyethylene, and PVC films. Their results showed that the EVA
covering material provided the longest suitable environment for
tomato planting compared with the other three over a period of
one year. Nevertheless, the researchers did not explain this phe-
nomenon in terms of material properties. Kumar et al. [111] devel-
oped a quasi-static steady-state 3D simulation model and
conducted CFD simulations. They found that the use of earth-to-
air heat exchangers (EAHEs) resulted in a decrease of 7–8 �C in
greenhouse temperature during the summer and an average
increase of 4–5 �C in winter. Yu et al. [112] studied the thermal
performance of a 3D tomato model built in SolidWorks using
CFD simulation; they noted that the study of 3D models can pro-
vide guidance for reasonable ventilation and assist in designing a
thermal environment suitable for tomato plant growth. Knowledge
about CFD has been introduced more extensively in reviews [98].
Despite all these studies, more CFD simulations aimed at green-
houses covered with photothermal management films need to be
proposed.
6. Opportunities and challenges

Statistical data show that, in January 2019, the area of green-
house vegetable planting was 4.968 � 105 ha worldwide [113].
In China, the total area of planting facilities, tunnel-like green-
houses, solar greenhouses, and multi-span greenhouses will
exceed 2.0 � 106 ha by 2025. The Ministry of Agriculture and Rural
Affairs of the People’s Republic of China has set the goal of acceler-
ating facility agriculture, which suggests that the regional layout of
planting facilities will be more reasonable, and the structural types
will be optimized [114]. Photothermal management agricultural
films provide valuable opportunities, given the trends of global
food insecurity and the pursuit of carbon neutrality. For sun-



Fig. 5. Research and preparation process for functional agricultural film. (a) Determine the photothermal requirement of crops. (b) Perform data mining to identify the
primary factors that affect biological growth. (c) Design and synthesize the functionalmaterials. (d) Manufacture the photothermal management film. (e) Simulate the energy
consumption and environmental conditions. (f) Apply in greenhouses, collecting environmental data.
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loving crops, a larger exposure area can increase their photosyn-
thetic rate and promote growth rate, so light-scattering film is
more conducive to their growth. For shade-loving crops, a larger
exposure area is not needed. All crops have a most suitable tem-
perature growth range. Once the local temperature exceeds the
maximum growth temperature, infrared reflective film is more
suitable for creating a growth microenvironment than a sunshade
and active ventilation.

Greenhouses are an irreplaceable measure to solve food insecu-
rity in the future. With the rapid development of automatic irriga-
tion, soilless culture, information management, and mechanical
automation [115], remarkable progress has been made in the pho-
tothermal and microclimate management of greenhouses. Green-
house planting has become more efficient, modernized,
standardized, and intelligent. However, some areas remain to be
further explored. The architectural design concept of human com-
fort should be integrated into greenhouses, and all intelligent and
mechanized designs of greenhouses should be based on physiolog-
ical knowledge of crops. Therefore, a deeper understanding of how
crops respond to the environment will help in the evaluation,
design, and control of greenhouse materials.

Data mining can be a powerful means of identifying the key fac-
tors that affect biological growth. For example, Mamatha Bai et al.
[116] used data mining technology, including bisecting K-means,
DBSCAN, OPTICS, hierarchical complete linkage, and STING, to ana-
lyze the results on key factors in growth obtained in recent decades
in order to predict the best environmental parameters for the max-
imum yield of ragi, peanuts, and rice in Karnataka. The most pop-
ular forecasting models are the random forest, neural network,
linear regression, and gradient boosting tree models. Multiple
models are usually used in parallel to predict and compare the
results [117].

Much remains to be done in photothermal management cover-
ing films for greenhouse crops. As shown in Fig. 5, it is imperative
to design, manufacture, and demonstrate photothermal manage-
ment films based on better knowledge of the environmental
7

requirements of specific crops. An effective way of increasing the
cooling effect of passive radiation is to improve the infrared reflec-
tance of greenhouse covermaterials. A spectrally selective filmwith
NIR reflection and visible light scattering is deemed more suitable
than other available options for creating a microenvironment con-
ducive to crop growth, given current knowledge of the photother-
mal requirements of crops. It is believed that the critical process
in increasing greenhouse crop yields is the design of materials
involving micro- and macroscale features. The refractive index
and particle size have the greatest influence on the infrared reflec-
tion and visible light scattering. Here, the key issue is how to pre-
pare particles with an anticipatory refractive index and an
appropriate size. A significant factor in deciding the properties of
amaterial is the interface between the organicmatrix and inorganic
particles, and modifying this interface involves modification of the
particle surface and optimization of the processing technology.
Eventually, the comprehensive performance of photothermal man-
agement filmmust be verified through demonstration applications;
then, environmental data in greenhouses and the quality and yield
of the crop must be collected, to establish the relationships and
interactions among covering films, the environment, and crops.
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