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Smart manufacturing is critical in improving the quality of the process industry. In smart manufacturing,
there is a trend to incorporate different kinds of new-generation information technologies into process-
safety analysis. At present, green manufacturing is facing major obstacles related to safety management,
due to the usage of large amounts of hazardous chemicals, resulting in spatial inhomogeneity of chemical
industrial processes and increasingly stringent safety and environmental regulations. Emerging informa-
tion technologies such as artificial intelligence (AI) are quite promising as a means of overcoming these
difficulties. Based on state-of-the-art AI methods and the complex safety relations in the process industry,
we identify and discuss several technical challenges associated with process safety: ① knowledge
acquisition with scarce labels for process safety; ② knowledge-based reasoning for process safety;
③ accurate fusion of heterogeneous data from various sources; and ④ effective learning for dynamic risk
assessment and aided decision-making. Current and future works are also discussed in this context.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The process industry, which is a subclass of the raw material
industry, is important for national economies. After decades of
development, the process industry has made significant progress
in China, making China one of the largest manufacturing countries
[1,2]. However, compared with developed countries, China’s pro-
cess industry now urgently requires intelligent management and
marketing technologies to increase the utilization rate of raw
materials, while establishing more functional environmental and
safety management systems. This issue has drawn strong academic
attention, and much progress has been made in related research
fields.

Recently, the dramatic growth of new-generation information
technologies has prompted several countries to seek new strate-
gies for industrial revolution [3] (Fig. 1). The United States has
launched Smart Process Manufacturing [4], which aims at indus-
trial upgrades and transformation. Germany has proposed the
strategic concept of Industry 4.0 [3], which focuses on the integra-
tion of information technology into manufacturing. The United
Kingdom (UK), France, and Japan have respectively announced
the UK 2050 strategy, the New Industrial France program, and
the Society 5.0 strategy. In this context, China’s government has
put forward New Generation of Artificial Intelligence Development
Plan for the realization of the ‘‘new industrial revolution” [5]. The
New Generation of Artificial Intelligence Development Plan con-
centrates on ‘‘innovative, coordinative, green, open, and shared
development,” which is capable of promoting intelligent
manufacturing.

In the context of the national strategies addressing the new
industrial revolution, smart manufacturing is the current trend in
the process industry, with green manufacturing as one of its indis-
pensable components [1,6–8]. Green manufacturing focuses on
high-level efficiency and safety, which reflects the need for stricter
environmental policies and better accident prevention. Green
manufacturing can be realized with three main objectives in mind:
① the reduction of energy consumption and pollutant emissions;
② life-cycle process-safety monitoring and risk control; and
③ environmental footprint monitoring and evaluation. Thus far,
there is no well-understood way to achieve these objectives.

Artificial intelligence (AI) [9], which is a comprehensive frontier
technology, has attracted extensive attention worldwide for its
extraordinary performance in AlphaGo [10]. Today, AI is regarded
as one of the world’s three most advanced technologies and has
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Fig. 1. Governmental programs proposed by several countries to address the new industrial revolution.
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remarkably affected several fields, including computer vision, nat-
ural language processing, and robotics. Moreover, it is widely
believed that AI is critical for smart manufacturing.

In this paper, the challenges associated with green manufactur-
ing in the process industry are discussed in detail. AI plays an
important role in improving process-safety management and
increasing efficiency through the intelligent utilization of materials
and energy consumption. The remainder of this paper introduces
the existing technical challenges of integrating AI into the process
industry [11]. The main contributions of this paper are as follows:

(1) The current status of process safety in China’s petrochemical
industry is summarized and major problems for achieving green
manufacturing in the process industry are identified; these provide
significant guidelines for green manufacturing.

(2) In view of the current status and major problems of China’s
petrochemical industry, our perspective is offered: AI is the core
technology for realizing green manufacturing. Several techniques
are available to address these major problems in order to achieve
green manufacturing, including knowledge graphs, Bayesian net-
works, and deep learning.

(3) Considering the complex safety relationship between the
process industry and the characteristics of the process industry,
several technical challenges are put forward regarding the applica-
tion of knowledge graphs in the process industry. These challenges
may attract the interest of future researchers.

The remainder of this paper is organized as follows. The current
status and problems of green manufacturing in the process indus-
try are described in Section 2. Potential AI techniques with rele-
vance to green manufacturing are described in Section 3. Several
technical challenges related to AI in green manufacturing are
Fig. 2. Four industr
presented in Section 4. Recent progress and future perspectives
are discussed in Section 5, followed by conclusions and an outlook
in the last section.
2. Current status and problems of green manufacturing

2.1. Green manufacturing

It is widely acknowledged that the manufacturing industry has
experienced three industrial revolutions and is now undergoing a
fourth (Fig. 2). Each of the first three revolutions tremendously
contributed to productivity and economic development [12]. Thus,
it is widely believed that the fourth revolution, termed ‘‘smart
manufacturing,” will also make such contributions.

Petroleum and chemicals are significant components of the pro-
cess industry. According to the National Bureau of Statistics of the
People’s Republic of China, the petrochemical industry has become
one of the pillar industries of China’s national economy, contribut-
ing 12% of the total industrial output in 2017. Along with tremen-
dous contributions to the development of China’s national
economy, the petrochemical industry has brought about negative
effects on both public health and environmental safety, due to
long-term pollution effects and frequent accidents [13]. In the
information era, industrial accidents are reported and spread
worldwide through various news channels and social media, mak-
ing the public well-informed and concerned. This motivates the
government to establish stricter standards and regulations for
the corresponding industry, which increases the demand for green
manufacturing. Recent major accidents such as the Xiangshui
ial revolutions.



S. Mao et al. / Engineering 5 (2019) 995–1002 997
‘‘3�21” chemical plant explosion accident, the Tianjin Port ‘‘8�12”
fire and explosion accident [14], and the Qingdao ‘‘11�22” crude
oil leaking and explosion accident [15] not only caused serious
casualties, tremendous economic losses, and severe environmental
impacts, but also had a negative effect on the development of the
petroleum and chemical industry. The government of Jiangsu
Province plans to close more than half of the existing chemical
enterprises by 2022.

In addition to process safety [16], the environmental impact of
the petrochemical industry—both the short-term impact and the
long-term influence—is of concern. In comparison with discrete
manufacturing, the process industry in China is characterized by
lowmaterial and energy efficiency, and serious pollution problems.
Given the scale of the process industry in China’s national econ-
omy, there is an urgent need to reduce energy consumption and
process emissions under the increasingly restrictive requirements
of environmental protection.

Green manufacturing [17,18] is regarded as a solution that can
achieve process safety, energy consumption, and emission reduc-
tion. It aims to track safety-related aspects throughout the process
life-cycle by integrating smart monitoring, intelligent early warn-
ing, intelligent decision-making, and optimization-based pollution
reduction techniques. Green manufacturing can significantly
improve the safety and efficiency of the process industries, and is
likely to become a necessary requirement for high-level economic
development.

2.2. Current status and major problems

The current status of the process safety and environmental pro-
tection capability of China’s petrochemical industries can be
described by accounting for the following three aspects (Fig. 3).

(1) Mass production. Statistical reports issued by the National
Registration Center of Chemicals show that in 2017, more than
70 000 types of common chemicals were produced and consumed
in the mainland of China, 3962 of which were hazardous chemicals.
A hazardous chemical is a chemical that can potentially be harmful
to the health of a human or animal, the environment, or property.
Within decades of development, China has become one of the
largest producers and consumers of chemicals. The State Adminis-
tration of Work Safety reports that the number of hazardous
chemical-related enterprises in China exceeds 300000, with over
10 million employees. The length of the pipelines exceeds 120000
km. The great economic value of these chemicals—especially
hazardous chemicals—has not only resulted in the rapid develop-
ment of the gross domestic product, but also led to increasingly
Fig. 3. Three aspects of the current status of the process safety and envi
serious situations related to environmental protection and public
safety.

(2) Non-uniform distribution of chemical industries. In view
of the population distribution and economic mismatch in the west-
to-east direction of the mainland of China, the petroleum and
chemical-related enterprises are mostly located in the eastern
coastal areas (Fig. 4). However, for a specific chemical, the life-
cycle processes of production, storage, transportation, usage, and
waste usually occur in different plants, counties, cities, or even pro-
vinces. As a result, process safety and environmental protection
should be considered on a larger spatial and temporal scale; how-
ever, this is not an easy task due to the complexities associated
with the different stages, including material treatment and infor-
mation flows. To solve these issues, more effort is needed in infor-
mation integration and data analysis, which can be achieved using
AI and cloud computing.

(3) Higher safety and environmental requirements. Economic
development is improving the general living standard in China,
making environmental deterioration less acceptable for residents
who are pursuing a higher quality of life. Environment-related
issues are attracting increasing attention from both government
and society. A change of public consciousness is driving the gov-
ernment to drop the crude mode of economic development and
pursue sustainable development instead. In addition, the 13th
Five-Year Plan requires a 20% reduction in the number of major
accidents in 2020 and a 20% reduction in the number of related
deaths, thereby increasing the demand for smart process
monitoring and risk management systems in the petrochemical
industry.

The current statuses of process industries other than the petro-
chemical industry are quite similar to what has been discussed
above. Major problems that preclude green manufacturing in the
process industry are listed here.

(1) Information isolation among multiple fields. In the pro-
cess industry, the stages of production, storage, transportation,
usage, and waste are interrelated. However, each stage focuses
on its specific fields and has its own information and database sys-
tems. In reality, the processes in the life-cycle are physically con-
nected; however, they are usually isolated from the perspective
of information processing. Inappropriate information exchange
among different processes hinders the comprehensive analysis of
process life-cycle data. For example, if information about materials
and the real-time location of hazardous chemical transportation
can be considered in the dynamic risk assessment process, the like-
lihood of potential accidents can be estimated and risk can be bet-
ter managed, with dynamic routines and emergency preparedness.
ronmental protection capability of China’s petrochemical industries.



Fig. 4. Distribution of chemical enterprises in the mainland of China.
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The possibility of accidents can then be reduced to an acceptable
level and major accidents can be avoided. Therefore, integrating
abundant information and establishing knowledge bases are chal-
lenging tasks that should be addressed first in the implementation
of green manufacturing in the process industry.

(2) Diverse information types and different kinds of data.
From the life-cycle perspective, the different stages of, for example,
manufacturing, storage, and road transportation have their own
specialties and particular knowledge. These differences occur in
both the spatial and temporal dimensions. For example, the values
of the temperature, pressure, level, and so forth are important
because of embedded information regarding abnormal situations
and other quality-related issues. When it comes to transportation,
the routes, enterprises, real-time locations, vehicle status, and dri-
vers’ statuses are key aspects in transport safety. However, this
information belongs to different systems that are difficult to com-
municate or integrate, not to mention differences in the data sam-
pling rate, data formats, and data collection methods. These issues
pose difficulties to the integration of safety-related information
into the process life-cycle. Moreover, there are various disciplines
behind the data collected during different life-cycle processes,
and the integration of both factual data and knowledge into a con-
sistent system is another challenging task.

(3) Lack of a process-safety-oriented decision-making sys-
tem. For large-scale production in the process industry—especially
in the petrochemical industry—geometric magnification is the best
way to reduce costs and gain the benefits of scale. A large-scale
production then results in complex supply chains and marking sys-
tems. The industry spreads out of one city, one province, and finally
forms a huge network across the nation. In industrial chains, the
production and demand in different spatial and temporal regions
requires national transportation and storage networks, covering
densely populated areas and various natural environments. The
bulk storage of hazardous chemicals could pose a major risk to
local communities. When it comes to production, the scale-up of
the process requires a fully functional control system, correct
human operation, and high level of mechanical integrity. If not
handled correctly in time, any small mistakes or failures might
trigger a serious accident. In other words, in terms of risk, too
many factors are correlated and their interactions are usually not
intuitive. Risk management is taken into account during the design
of modern petrochemical plants, by integrating multiple practical
hazardous identification and management techniques such as haz-
ard and operability analysis (HAZOP), layer of protection analysis
(LOPA), and system integrity level (SIL). Yet these analyses are
somewhat static and the relevant documentation is beyond the
reach of onsite operators, who need to be fully aware of the
situation and of the potential consequences of their actions. The
behavior of operators is highly dependent on training and manage-
ment. Accidents recently occurred at the German chemical com-
pany BASF [19,20], resulting in casualties and economic losses.
The cause of the accidents was closely related to operation errors
on the part of the staff. This case reflects the necessity of having
a decision-making system, which is significant for operation safety.
Thus, there is a demand for an intelligent system that can take
advantage of the static knowledge embedded in existing
documents such as HAZOP, LOPA, and SIL, in order to dynamically
analyze the situation and provide safety-related suggestions. Such
a system might improve safety management by taking more
safety-related factors into consideration than a human worker in
a time-demanding situation. Another key aspect of safety practice
is inherently safer design—a concept that permanently reduces or
eliminates the hazards associated with materials and operations
used in the process—which is widely applied through the very
early stages of process design, normal operation, and change, until
the end-of-life of a facility. Chemical processes have structural
similarities from a safety perspective. The application of an
inherently safer design in one chemical process facility would set
a precedent for other facilities. In order to support safety-
oriented decision-making in a broader view, the basic rule and con-
cept of inherently safer design must be extracted and integrated
into intelligent systems, along with the experiences gained from
several successful cases. Finally, the general challenge of establish-
ing a decision-making system for process safety lies in how human
experience and knowledge written in natural language can be
understood and used by machines.

(4) Lack of early warning and risk tracing systems. In the pro-
cess industry, most accidents become severe because of the lack of
an effective warning mechanism [21]. In general, a petrochemical
process runs in multiple configurations, each with its own opera-
tional window and/or restrictions. As the process is controlled by
automation systems, small fluctuations in process parameters
can spread to the downstream processes and affect critical units.
The complex inner correlations of the process parameters usually
make these changes and fluctuations in critical units non-
apparent for operators to recognize. At present, process supervisors
and operators rely on their experience to address this issue. Proper
process functioning requires the ability to recognize abnormal
situations based on sophisticated process-monitoring systems, in
order to identify actual process configurations and trends. The
diagnosis functions should work in real time to evaluate the cur-
rent risk and potential shifts of normal operation configurations
to abnormal cases. An assistant decision-making system is needed
that can provide possible causes for the current situation and
delineate potential consequences if no action is taken. Unfortu-
nately, no such smart system is currently available.
3. Artificial intelligence for green manufacturing

AI [22], usually referred to as machine intelligence, has become
an important branch of computer science and automation. AI com-
bines domain knowledge from computer science, automation,
information engineering, mathematics, psychology, linguistics,
and philosophy. The problems faced by AI have been separated into
several sub-problems based on specific characteristics or capabili-
ties, as shown in Fig. 5.

The four major problems in green manufacturing can be divided
into three categories, according to their characteristics: ① infor-
mation integration, ② dynamic risk assessment and aid in
decision-making, and ③ early warning. Several techniques are
available to address these problems and achieve green manufac-
turing, including knowledge graphs, Bayesian networks, and deep
learning, which will be detailed in the following.



Fig. 5. Several sub-problems in artificial intelligence.
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3.1. Information integration via knowledge graphs

A knowledge graph is a famous and promising technique for
organizing linked data in the field of AI. It is a structured semantic
network that describes concepts and their relationships. Moreover,
knowledge graphs can provide reasoning and inference capabilities
based on rules or deep learning strategies, and these capabilities
empower the implication of relations between ‘‘entities” within
predefined classes. Knowledge graphs are widely used in
Internet-based applications such as encyclopedias, social net-
works, online financial systems, and social security systems
[23,24].

Unlike the general knowledge used in Internet-related applica-
tions, the process industry requires much greater specialization in
chemical engineering, process safety, process control, automation,
and mechanical aspects. The implementation of knowledge graphs
in such a specialized industry requires not only factual informa-
tion, but also the specific knowledge for the field. Knowledge
modeling is usually difficult, and a deep understanding of the
Fig. 6. Technical architecture of a
specific field is essential. Given the general procedure to build a
knowledge graph of an arbitrary domain (Fig. 6) [25], the establish-
ment of knowledge graph for process safety can be roughly divided
into three stages: gathering process-safety-related information,
knowledge fusion, and knowledge processing, as shown below.

(1) Process-safety information extraction. The construction of
a knowledge graph starts with gathering relevant information [26]
about process safety, including chemicals, reactions, process-
related documents, control systems, mechanical information, and
risk-related information. The coverage of this information and data
should be broad and diverse, covering not only structural data but
also diagrams, tables, and texts written in natural language.
Because the key purpose of knowledge graphs is to generate linked
data, the main challenge is to identify individual ‘‘entities” and
their relationships from different data sources. These processes
are usually referred to as entity extraction, relationship extraction,
and attribute extraction [27,28].

� Entity extraction: Entity extraction refers to the automatic
identification of named entities from text datasets. It is the
most basic part of information extraction. It relies on a
well-defined ontology schema to extract specific risk-
related factors in the process industry. The data source usu-
ally includes operation manuals and maintenance sheets,
as well as piping and instrumentation diagrams (P&IDs)
and process flow diagram (PFD).

� Relationship extraction: Given extracted entities, the sec-
ond step is to determine the relationship between entities.
The relationship usually takes the form of semantic infor-
mation or other tables or diagrams. In the petrochemical
industry, information about causal safety aspects is gener-
ally contained in the process-hazard-analysis documents
(e.g., HAZOP, LOPA, and SIL verification documents). Deter-
mining these cause–effect relationship usually requires
deep understandings of risk, or at least knowing the factors
that produce hazard.

� Attribute extraction: Process-related entities, such as pres-
sure relief valves, have various definitions in different
aspects, including materials and designed relief pressure.
These attributes should also be extracted, as they contain
some quantified information that can be compared or
modeled.

(2) Process-safety knowledge fusion. Through safety informa-
tion extraction, a complete description of risk factors and their
typical knowledge graph [25].
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relationships can be carried out. However, these results may con-
tain many redundancies and errors. Moreover, the relationships
between data are flat, lacking hierarchy and logic. Through knowl-
edge fusion [29], the ambiguity of concepts can be recognized and
eliminated either automatically or manually, eliminating redun-
dancies and errors.

(3) Process-safety knowledge processing. After knowledge
fusion, the ambiguity of the entity can be eliminated. Next, a series
of basic factual expressions can be expressed. In process-safety
practice, the analysis of safety-related factors is of great
importance. Potential hazards and incident likelihoods should be
identified and estimated. To achieve automatic identification of
process hazards, process-safety-related knowledge should be
applied to describe the details of each particular chemical process,
including the process, equipment, operability, and mechanism.
Deviations of certain process parameters should be identified as
an initial event, and causal relationships linking trigger events to
downstream processes should be diagnosed using predefined rules
and embedded knowledge. Knowledge processing should provide
such capabilities for automatic safety analysis. Knowledge process-
ing mainly includes three aspects: safety ontology reconstruction,
reasoning, and quality assessment.

� Safety ontology reconstruction: Ontology refers to a norm
that models and describes concepts in the objective world.
An ontology clearly defines the concepts of knowledge in cer-
tain domains and their connections in a formal manner.
Process-safety ontology can be constructed initially by brain-
storming via the existing knowledge. Once sufficient linked
data are collected, the corresponding ontology can be recon-
structed from the data common characteristics using
machine learning methods.

� Reasoning of risk relationship: Reasoning refers to discover-
ing the potential relationship between existing entities based
on predefined rules or existing characteristics in data.
Through knowledge reasoning, new process-safety knowl-
edge can be discovered or estimated from existing entity net-
works. Existing hazard identification and analysis methods
have already provided information about risk metrics and
cause–effect relationships between various deviations. Theo-
retically, reasoning using the process-safety knowledge
graph is supplemental to the identification of unrecognized
risk-related factors that would improve operational safety
or functional safety. Reasoning methods can be divided into
two categories: logic-based reasoning [30] and graph-based
reasoning [31].

� Quality assessment: This is also important for building a
process-safety knowledge graph. With the state-of-art
knowledge extraction techniques, the facts and knowledge
obtained from data may still have errors and noises. The
quality of safety-related knowledge cannot be guaranteed
through automatic knowledge extraction and reasoning.
Before merging the newly extracted data with the domain
knowledge graph, a quality assessment is necessary in order
to evaluate the precision, recall, and F1-score (weighted aver-
age of precision and recall) criteria of the newly acquired
data.

To summarize, knowledge graphs provide an effective method
to integrate process-industry-related information. The existing
problems of information gaps, data divergence, and the expression
of complicated relationships implied in data can all be addressed
using knowledge graphs.

3.2. Risk assessment and decision-making using Bayesian networks

Bayesian networks [32,33] are probabilistic graphical models
that use directed acyclic graphs to capture probabilistic relation-
ships between variables, and to capture the variables’ conditional
dependencies. In the process industry, risk factors can be
associated with different types of abnormalities and anomalies
using probabilistic relationships. For example, assuming there is
a likelihood of a runaway reaction in a coking furnace, a reactor
for delayed coking process, five primary process parameters should
be analyzed considering the reaction hazard. These parameters
are: ① and ② the temperature and flow rate of hot materials,
③ and ④ the temperature and flow rate of heated materials, and
⑤ the coking degree in the furnace tube. All these parameters have
different probabilities of deviation. A Bayesian network is able to
describe the complex probabilistic relationships between the
above five factors and a runaway reaction. This method can also
be applied to other potential accidents and associated risk factors.
By considering accuracy, parameters in a Bayesian network should
be tuned carefully to achieve good performance. Thus, parameters
that are based on available prior knowledge can be optimized fol-
lowing the principle of maximal entropy, and estimation can be
performed using the maximal likelihood approach. A Bayesian net-
work can then accurately trace risk factors. As described above, by
comprehensively analyzing data, a Bayesian network is able to find
an abnormal source to estimate whether there will be a runaway
reaction in a coking furnace. Furthermore, using the linked data
provided by a knowledge graph for process safety, a Bayesian net-
work can provide emergency solutions corresponding to different
abnormalities.

3.3. Incident early warning based on deep learning

Deep learning [34], also known as deep structured learning, is a
subclass of machine learning. It imitates the function of the human
brain to interpret data using multi-layered neural networks. In the
process industry, the possibility of a potential accident is usually
implied in the fluctuation of process-monitoring data. For example,
a composition change in a feed to an exothermic reaction might
result in a more significant heat generation in the reactors, thereby
narrowing the applicable operational window. As a consequence,
fluctuations in the process parameters might exceed the safety
limit and lead to runaway reactions, manifested by a rapid
temperature increase. If the relationships between the
temperature/pressure rise in the upstream unit and potential
explosion consequences in the downstream unit are determined
prior to the effects, a specific early warning function could be
designed. Unfortunately, in reality, the number of process-
monitoring parameters is too great, and the implied relationships
between parameter changes and potential risks are too compli-
cated for humans to grasp. In this situation, deep learning can be
used to recognize the patterns of potential accidents and the asso-
ciated parameter changes. In addition, if detailed information
about labeled process-monitoring data, process equipment, and
human operations is available, the probability of potential acci-
dents can be estimated from measured data. Labeled big data
[35] constitutes the basis for deep learning and related techniques
in risk identification and evaluation. However, in practical situa-
tions, big data collected from processes usually feature missing
data and outliers, and lack validated labels. Therefore, available
data are typically far from adequate, and incident early warnings
in current industrial applications rely mainly on expert experi-
ences and alarm systems.

4. Technical challenges

Although knowledge graphs have been applied in several spe-
cialized industries, they are still a new technique for the manufac-
turing industry. Considering the complex safety relations in the
process industry, the implementation of knowledge graphs in the
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process industry still faces several technical challenges, as
described below.

(1) Knowledge acquisition with scarce labels for process
safety. Knowledge acquisition in a sparse sampling environment
is a common step in the establishment of a knowledge graph.
When applied in the process industry, it may face some difficulties
due to the complexity of chemical processes. A process-safety
application is a life-cycle procedure that requires the process
design, equipment, automation, and human action to be perfectly
functional. If any of these malfunction, incidents may occur. Then,
to build a knowledge graph that describes the process-safety-
related information, abundant relevant data should be provided.
However, for the life-cycle of chemical processes, these relevant
data are usually in different domains, and acquiring such interdis-
ciplinary data is difficult. Furthermore, for the process-safety anal-
ysis, the most valuable data are the real-time variation of process
monitoring with labels on abnormal situations and failures. How-
ever, these labels are generally unavailable in applications of
process-safety analysis.

(2) Knowledge-based reasoning about process safety. Due to
the urgent need of risk reduction and safer operation in the process
industry, process monitoring, abnormal condition tracing, and con-
sequence assessment should be timely and reliable. Knowledge
reasoning may uncover some cause-and-effect relationships that
are not apparent to humans, thus providing supplementary infor-
mation for the process-safety analysis. Nowadays, state-of-the-
art reasoning methods in knowledge graphs achieve an accuracy
of about 80% [36]; however, this level is insufficient for practical
use in process-safety analysis. Current techniques related to
knowledge reasoning should be improved or new techniques
should be proposed to satisfy the safety requirements of the pro-
cess industry.

(3) Accurate fusion of heterogeneous data from multiple
sources. In the process industry, data related to process safety
come in two forms: the static form and dynamic form. Static data
comprise process information and related hazard analysis docu-
Fig. 7. Framework of curre
ments that are not changing frequently, while dynamic data
mainly describe the process state that changes all the time. How-
ever, in practice, the data obtained usually contain ambiguities that
will increase the difficulty of knowledge acquisition. There are two
possible solutions. The first focuses on data preprocessing, while
the second emphasizes domain-based knowledge acquisition and
performs knowledge fusion on acquired data.

(4) Effective learning strategies for dynamic risk assessment
and aided decision-making. Knowledge graphs provide an effi-
cient means of integrating static knowledge and facts related to
petrochemical process safety. Ideally, cause-and-effect relation-
ships in a chemical process are retained in the relationship
between different entities and corresponding rules or axioms.
Although knowledge graphs enable cause-and-effect analysis from
specific deviations, the appropriate deviation itself is usually diffi-
cult to identify. Real-time data from the process-monitoring sys-
tem is necessary to identify possible deviations from the normal
state. With a knowledge graph, appropriate machine learning
methods are needed for abnormal situation classification. Then,
with a reasoning engine, dynamic propagation of certain devia-
tions from the initial state can be evaluated, and several event
chains can be identified for different consequences. Finally, with
dynamic risk assessment performed on each event chain, a final
decision can be made. To achieve this end, abundant information
is required on process reliability, equipment failure modes and cor-
responding effects, operational procedures, and other fields. Unfor-
tunately, in practice, high-quality data are far from sufficient to
ensure algorithmic learning. The challenge lies in dealing with
small sample sizes of data.
5. Current and future works

To realize green manufacturing via AI, we have already started
studies on process-safety knowledge integration for the delayed
coking process. The current result is shown in Fig. 7. As shown in
nt and future works.
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the figure, an integrated ontology was proposed, covering the
equipment, chemical process, and chemical substance in the
delayed coking process. In the knowledge graph, every single ele-
ment related to process safety is considered, including the upper
and lower bounds on process parameters, the upstream and down-
stream relationships, and the composition of the deviation of pro-
cess parameters. We also concentrated on visualization, question
answering, and achieved corresponding results, also depicted in
Fig. 7. The purpose of realizing visualization and question answer-
ing is to enhance the capacity of human–machine interaction,
which is a significant part of the realization of smartmanufacturing.

In the future, we will focus on the cause-and-effect relation-
ships between arbitrary deviations and their influence on the
downstream process parameters. The initial deviation propagates
downstream to form an event tree, which is subsequently analyzed
to support decision-making. The goal is to identify abnormal situ-
ations by using proper process-monitoring techniques, and to
enable rapid logical analysis by following the ordinary fault tree
and event tree in an automatic manner. Moreover, with an increase
in the depth and breadth of the data integrated in the knowledge
graph, realization of incident early warnings, risk tracing, and
aided decision-making will be achieved in our future work via deep
learning and Bayesian networks.
6. Conclusions

This paper has discussed in detail the importance, current sta-
tus, and major problems faced by green manufacturing in the pro-
cess industry. We have reviewed several attractive technologies in
the field of AI, including knowledge graphs, Bayesian networks,
and deep learning. These techniques provide methods for solving
major problems in green manufacturing. Based on sufficient
analysis and discussion, specific technical challenges for process
safety were discussed. These challenges include knowledge acqui-
sition and reasoning about scarce error data, accurate fusion of
heterogeneous data, and early warning and aided decision-
making. Possible ways of addressing these challenges were
proposed and related achievements were discussed.
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