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External short circuit (ESC) of lithium-ion batteries is one of the common and severe electrical failures in
electric vehicles. In this study, a novel thermal model is developed to capture the temperature behavior of
batteries under ESC conditions. Experiments were systematically performed under different battery ini-
tial state of charge and ambient temperatures. Based on the experimental results, we employed an
extreme learning machine (ELM)-based thermal (ELMT) model to depict battery temperature behavior
under ESC, where a lumped-state thermal model was used to replace the activation function of conven-
tional ELMs. To demonstrate the effectiveness of the proposed model, we compared the ELMT model with
a multi-lumped-state thermal (MLT) model parameterized by the genetic algorithm using the experimen-
tal data from various sets of battery cells. It is shown that the ELMT model can achieve higher computa-
tional efficiency than the MLT model and better fitting and prediction accuracy, where the average root
mean squared error (RMSE) of the fitting is 0.65 �C for the ELMTmodel and 3.95 �C for the MLT model, and
the RMES of the prediction under new data set is 3.97 �C for the ELMT model and 6.11 �C for the MLT
model.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The popularization of electric vehicles (EVs) is a worldwide
strategy to reduce the dependence on fossil fuels and alleviate
environmental pollution. Rechargeable lithium-ion batteries are
considered as the most viable power sources for EVs [1–4]. With
the wide adoption of EVs, we are beginning to see an increasing
number of safety accidents caused by lithium-ion batteries in
EVs around the world. These accidents tarnish the reputation of
EV and battery manufacturers and harm public confidence in EV
acceptance. Some accidents are caused by one type of electrical
faults in batteries, that is, external short circuit (ESC). ESC faults
can be triggered under any circumstances, for example, deforma-
tion of a battery pack during EV collision and water or oil leakage
in a battery pack. Once an ESC fault occurs, it may cause a dramatic
increase in battery temperature, which would lead to thermal run-
away [5,6]. Therefore, it is necessary to study the thermal behavior
of batteries under ESC faults for battery safety management.
1.1. Literature review and motivations

Many researchers studied exothermic reaction mechanism and
thermal responses as batteries generate tremendous heat under
abusing conditions [7–9]. Ren et al. [10] developed a coupled elec-
trochemical–thermal model to quantify heat generation rates of
each heat source during the process from overcharge to thermal-
runaway. Zhao et al. [11] studied the nail penetration test using
a coupled three-dimensional (3D) multi-scale electrochemical–
thermal model to illustrate the strong coupling relationship
between thermal response and electrochemical behavior. Chen
et al. [12] developed a multi-layer 3D thermal model to simulate
temperature distribution in a battery at the occurrence of an inter-
nal short circuit. Zhu et al. [13] studied overcharge-induced ther-
mal runaway by conducting overcharge experiments and found
that side reactions dominate temperature rise before thermal run-
away. In the abovementioned studies, complicated coupled elec-
trochemical–thermal models were established to depict the
thermal behaviors of batteries under abuse conditions. Generally,
these models are computationally intensive and not suitable for
real-world EV applications.
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Table 1
Specifications of the nickel–cobalt–manganese-based cathode materials battery.

Item Specification
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Many other researchers studied ESCs and mainly focused on
ESC experimental methods, ESC behaviors and hazard analysis,
and modeling and fault diagnosis [14–21]. Rheinfeld et al. [14,15]
employed a quasi-isothermal ESC testing method to study the
influence of material transport properties on transient short-
circuit behavior, and established a homogenized physical–chemi-
cal model to simulate the ESC process. In Refs. [16,17], ESC
experiments were conducted to investigate electrical and thermal
behavior under different ambient temperatures, initial states of
charge (SOCs), and external resistances during the ESC process.
Kupper et al. [18] proposed a physicochemical pseudo-3D multi-
scale model to describe thermodynamics and kinetics of main
and side reactions in a battery cell under ESC conditions. In our
previous research, we developed a fractional-order model to
describe electrical characteristics of battery cells under ESC condi-
tions, proposing a three-step diagnosis framework for an ESC fault
[19] and later we proposed an online ESC detection method for a
battery pack using an improved equivalent circuit model, which
has high accuracy and generalization ability [20]. In Ref. [21], a
neural-network-based method was proposed to estimate the ESC
current of a battery cell using only voltage information.

In the above ESC studies, there is a lack of an effective thermal
model to depict temperature rise in batteries under ESC conditions.
A desirable model needs to be developed to achieve a balance
between prediction accuracy and computational cost compared
with complicated electrochemical–thermal models. In real-world
EV applications, since not all battery cells are equipped with tem-
perature sensors due to space limitation and manufacturing cost,
temperatures of battery cells should be able to estimate only using
current or voltage information. This motivates our development of
a novel thermal model to predict temperatures with high accuracy
and low computational burden to fill the gap in ESC studies.

1.2. Original contributions

The paper attempts to make the following three contributions:
Firstly, ESC experiments of battery cells under different initial SOC
values (20%, 40%, and 80%) and different ambient temperatures
(�10, 10, 20, and 40 �C) were performed to establish an ESC
database for building and validating the proposed thermal model.
Secondly, an extreme learning machine (ELM)-based thermal
(ELMT) model was explored to predict battery temperature under
ESC conditions. Compared with the conventional ELM, the activa-
tion function was replaced with a lumped-state physical thermal
model to better capture the battery temperature change. Finally,
the proposed ELMT model was validated using the experimental
data in terms of model fitting and prediction accuracy as well as
computational cost. To demonstrate the effectiveness of the ELMT
model, we compared the performances of the ELMT model with
those of a multi-lumped-state thermal (MLT) model optimized
by the genetic algorithm (GA).

1.3. Organization of the paper

In Section 2, the experimental results of batteries under ESC
conditions are systematically presented and analyzed. Then, an
ELMT model is proposed and explained in detail in Section 3. In
Section 4, the proposed model is validated using data under differ-
ent initial SOC values and ambient temperatures. Conclusions are
summarized in Section 5.
Cathode material Li(Ni0.5Co0.2Mn0.3)O2

Anode material Graphite
Nominal capacity (mA�h) 2450
Operating voltage range (V) 3.0–4.2
Maximum discharge rate (A) ~7.35 (3C-rate)
Operating temperature range (�C) �20–60
2. Experimental study

To investigate the electrical and thermal characteristics of bat-
teries under ESC conditions, we carried out ESC abusing tests under
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different experimental conditions. These conditions covered high,
moderate, and low ambient temperatures (namely 40, 20, 10,
and �10 �C, respectively), as well as high, moderate, and low SOCs
(namely 80%, 40%, and 20%, respectively). Under each condition, we
repeated the ESC test twice and their experimental results were
denoted as group 1 and group 2. The data will be used to train
and validate the proposed model in this paper. Table 1 describes
the detailed specifications of the 18650 type Li(Ni0.5Co0.2Mn0.3)O2

battery cells studied in this paper.

2.1. Experiment platform of ESC test

As shown in Fig. 1, an ESC test bench has been established to
study the characteristics of batteries under ESC conditions. In our
previous work [20], we employed a similar platform to carry out
the ESC test of battery packs, which has been illustrated in detail.
In this paper, we focus on the ESC test of battery cells and briefly
explain that the configuration of the experimental platform
includes: ① an ESC test controller; ② a compressor supplying air
source to the controller; ③ an explosion-proof thermal chamber;
④ current, voltage, and temperature sensors; and ⑤ a high-
precision data acquisition system.

The data acquisition instrument was started to record
experimental data once the contactor (shown in Fig. 1) was
closed, where the contactor driven by the ESC test controller
is used to make the connection of the positive and negative
of battery cells, imitating ESC faults in EVs. Meanwhile, battery
current, voltage, and temperature were measured by relevant
sensors. When the current and voltage reduced to 0A and
0V indicating the battery was destroyed, the ESC testing was
ended manually.

2.2. Analysis of experimental results

The current and temperature data are shown in Figs. 2 and 3,
respectively. Figs. 2(a) and (b) show the results of group 1 under
different SOCs at the ambient temperatures of 20 and 40 �C;
Figs. 2(c) and (d) show the results of group 1 under different SOCs
at the ambient temperatures of 10 and �10 �C. Similarly, Fig. 3
shows the results of group 2 under different SOCs and different
ambient temperatures. As shown in Figs. 2 and 3, once the ESC
occurred, the current increased rapidly within 1 s and the peak
current can reach nearly 150A (about 61C-rate). The large cur-
rent generated Joule heat accumulating inside batteries, causing
the temperature of batteries to rise rapidly. After the current
reached the peak, it was gradually decreased. As described in
Ref. [18], the reason for current being reduced after the peak is
that the high temperature can cause a ‘‘shut down” effect of bat-
tery separator, reducing the rate of lithium-ion diffusion and
migration. Eventually, the current experienced a ‘‘discharge
plateau” and then dropped to 0A, indicating that the battery
was damaged.

We can have the following observations from Figs. 2 and 3:
① Under the same SOC and ambient temperature conditions, the



Fig. 1. Battery ESC test bench.

Fig. 2. Current and temperature of battery cells during ESC under different ambient temperatures and SOCs (group 1). (a) Current at 20 and 40 �C; (b) temperature at 20 and
40 �C; (c) current at �10 and 10 �C; (d) temperature at �10 and 10 �C.
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results of two groups exhibit good repeatability;② under the same
ambient temperature, battery cells with lower SOC discharge
longer than those with higher SOC; ③ cells with higher SOC may
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have a larger rate of temperature rise under all ambient tempera-
tures. More ESC test results were analyzed in detail in our previous
work [19–21].



Fig. 3. Current and temperature of battery cells during ESC under different ambient temperatures and SOCs (group 2). (a) Current at 20 and 40 �C; (b) temperature at 20 and
40 �C; (c) current at �10 and 10 �C; (d) temperature at �10 and 10 �C.
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3. Modeling and prediction of battery thermal behaviors

3.1. Lumped-state thermal (LT) model

An LT model is employed to describe the temperature behavior
of a battery cell under ESC faults. It is assumed that the tempera-
ture within a battery cell is uniform. According to energy conserva-
tion, a gross heat generated by a battery can be expressed as the
convection heat and the generated heat, which is modeled by

qCpV
dT
dt

¼ hA Tamb � Tð Þ þ q ð1Þ

where h is the convection coefficient; Tamb is the ambient tempera-
ture; T is the temperature of the cell; Cp, V, A, q, and t represent the
battery specific heat capacity, volume, surface area, density, and
time, respectively; q is the heat generation [22,23], which can be
computed as

q ¼ I2LRi þ ILT
dUo

dT
ð2Þ

where I2LRi is irreversible heat generation associated with ohmic and
kinetic losses across the cell, ILTðdUo=dTÞ is the combined reversible
heat generation associated with the electrochemical reaction, IL is
the load current, Ri denotes the total impedance inside the battery,
and Uo is the open-circuit voltage. In general, the irreversible heat
generation includes two parts: ① Joule heat loss caused by the cur-
rent flowing through the interface of the current collector and solid
electrolyte interface (SEI) film; ② polarization heat loss caused by
overpotential. The reversible heat generation is the electrochemical
reaction heat generation caused by lithium-ions intercalation or
deintercalation from positive and negative materials inside the
battery.

In Eq. (2), researchers have proved that the reversible heat
generation is much smaller than the irreversible heat generation
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under ESC conditions [16]. In this work, the ESC experimental data
at 40% SOC and 20 �C in group 1 was used to calculate and compare
the two parts of heat generation. Figs. 4(a) and (b) show the
measured entropy coefficient dUo=dT and results of reversible
and irreversible heat generation, respectively.

It can be seen from Fig. 4(b) the irreversible heat generation
(I2LRi) is much larger than the reversible heat generation
(ILTðdUo=dTÞ). Therefore, ILTðdUo=dTÞ in Eq. (2) is neglected. Then,
substituting the reduced Eq. (2) into Eq. (1) and discretizing Eq. (1)
in time, we have

Tkþ1 ¼ I2LRi

hA
� Tk þ Tamb

 !
1� exp � hA

qCpV
Dt

� �� �
þ Tk ð3Þ

where Tk is the battery temperature at time instant k and Dt is the
sampling period.

3.2. Description of ELM

Huang et al. [24] first proposed ELM to overcome the drawbacks
of the single-hidden-layer feedforward neural network, for exam-
ple, slow training speed, susceptibility to a local minimum, and
sensitivity to the learning rate. The structure of a conventional
ELM is shown in Fig. 5. In ELM, the weights connecting the input
layer and the hidden layer and the bias of the hidden layer are ran-
domly generated. Learning can be made more effectively without
iteratively tuning, as the weights connecting the hidden layer
and the output layer are identified by fitting the training data [25].

The input vector X and output vector Y of the ELM are defined as

X ¼ x1; x2; :::; xn½ �T
Y ¼ y1; y2; :::; ym½ �T

ð4Þ

where x and y are input and output data, respectively; n and m
denote total data in the input and output layer, respectively.



Fig. 4. Results of heat generation. (a) Entropy coefficient; (b) reversible and irreversible heat generation.

Fig. 5. Structure of conventional ELM. x and y are input and output data,
respectively; n and m are total data in input and output layer, respectively; w is
the weight connecting the input layer and the hidden layer; bjs is the weight
connecting the hidden layer and the output layer; g(∙) denotes the activation
function; b is the bias in the hidden layer; i denotes the input number; j denotes the
sub-model number; and s denotes the data number in output layer.
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The procedures for constructing an ELM are described as
follows:

Step 1: Determine the number of neurons/nodes in the hidden
layer, l.

Step 2: Randomly generate the weights w between the input
layer and the hidden layer and the bias b in the hidden layer.
The matrix w and vector b are shown as

w ¼

w11 w12 ::: w1l

w21 w22 ::: w2l

..

. ..
. ..

.

wn1 wn2 ::: wnl

2
66664

3
77775

n�l

b ¼

b1

b2

..

.

bl

2
66664

3
77775

l�1

ð5Þ

Step 3: Select a type of activation function g(∙) for computing
the output.

Y ¼

y1
y2

..

.

ym

2
66664

3
77775

m�1

¼

Pl
j¼1

bj1
Pn
i¼1

g wijxi þ bj
� �

Pl
j¼1

bj2
Pn
i¼1

g wijxi þ bj
� �
..
.

Pl
j¼1

bjm

Pn
i¼1

g wijxi þ bj
� �

2
6666666666664

3
7777777777775

ð6Þ

where bjs is the weight connecting the hidden layer and the output
layer, s is the data number in output lay (s = 1, 2, ..., m), i is the input
data number, j is the sub-model number. If we define weight matrix
b as
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b ¼

b11 b12 ::: b1m

b21 b22 ::: b2m

..

. ..
. ..

.

bl1 bl2 ::: blm

2
66664

3
77775

l�m

ð7Þ

Eq. (6) can be expressed in matrix form as

YT ¼ H � b ð8Þ
where H ¼ Pn

i¼1g wi1xi þ b1ð Þ;Pn
i¼1g wi2xi þ b2ð Þ; :::;Pn

i¼1g wilxi þ blð Þ� 	
is the output matrix of the hidden layer.

Step 4: Determine the weights between the hidden layer and
the output layer. The weight matrix b can be obtained by applying
the least-squares fitting of Eq. (8) with the measurement data
matrix Y*.

min
b

¼ k H � b� Y�T k ð9Þ

The solution would be

b
^
¼ Hþ � Y�T ð10Þ

where Hþ is the Moore–Penrose inverse of H.

3.3. Proposed ELMT model

In conventional ELM, the activation function is usually nonlin-
ear and differentiable, including sigmoid function, hyperbolic tan-
gent function, and Gaussian function [24]. Further research found
that the activation function can be any nonlinear function or even
discontinuous or non-differentiable function [25–28].

In this paper, we combined a physics-based LT model with the
ELM, proposing an ELMT model to capture battery temperature
under ESC conditions. Specifically, we replaced the conventional
activation function of the ELM with the LT model previously intro-
duced in Section 3.1. The ELMT model structure is shown in Fig. 6.
In this model, we employed L sub-models, taking current Ik as the
input and temperature Tk+1 as the output (k = 1, 2, . . ., N � 1). N is
the total number of temperature data. The L sub-models can be
viewed as a type of activation functions of the ELM.

Based on Eq. (3) of the LT model and Eq. (6) of the ELM, battery
temperature Tk+1 can be expressed as

Tkþ1 ¼
XL
j¼1

bj
I2kRi jð Þ
hjA

�Hk;jþTamb

 !
1�exp � hjA

qCp jð ÞV
Dt

� �� �
þHk;j

( )

ð11Þ
where j denotes the sub-model number (j = 1, 2, . . ., L), Hk,j is the
output of the jth sub-model in the hidden layer. The significance



Fig. 6. Diagram of ELMT model. Ik: current at time instant k.
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of the other parameters has been explained in Section 3.1. The
recursive expression of Hk+1,j can be shown as

Hkþ1;j ¼
I2kRi jð Þ
hjA

�Hk;jþTamb

 !
1�exp � hjA

qCp jð ÞV
Dt

� �� �
þHk;j ð12Þ

As a result, Eq. (11) can be rewritten as

T2

T3

..

.

TN

0
BBBB@

1
CCCCA

ðN�1Þ�1

¼

H2;1 H2;2 ::: H2;L

H3;1 H3;2 ::: H3;L

..

. ..
. ..

.

HN;1 HN;2 :::HN;L

0
BBBB@

1
CCCCA

ðN�1Þ�L

b1

b2

..

.

bL

0
BBBB@

1
CCCCA

L�1

ð13Þ

Eq. (13) shows that the temperatures at every time instant are
regarded as the weighted sum of L sub-models. In this model, we
can directly measure or calculate the battery mass, surface area
A, and ambient temperature Tamb. The unknown parameter matrix
P is shown as follows:

P ¼

Ri 1ð Þ Cp 1ð Þ h 1ð Þ
Ri 2ð Þ Cp 2ð Þ h 2ð Þ

..

.

Ri Lð Þ Cp Lð Þ h Lð Þ

2
666664

3
777775 ð14Þ

There are 3 � L parameters in the L sub-models that need to be
determined. According to the principle of ELM, these parameters
are assigned randomly within reasonable ranges and do not need
to be tuned using the experimental data. This practice can signifi-
cantly reduce the computational complexity of model parameteri-
zation. The ranges of these parameters are given based on prior
knowledge [29,30]. For example, h is usually between 10 and
200W�m�2�K�1 under forced air convection. Therefore, the wide
ranges of these parameters as shown in Table 2 are provided to
cover a variety of battery operation conditions and obtain the opti-
mal solution.

The weights bj connecting the hidden layer and the output layer
are determined by fitting the experimental data as in Eq. (10). In
this paper, the number of LT model is set to 20 to balance the com-
putational efficiency and model fidelity.

The advantages of the ELMT model are summarized as follows:
Table 2
Parameter ranges of LT model.

Parameter Range

Ri (mX) 0.1–1000
h (W�m�2�K�1) 5–300
Cp (J�kg�1�K�1) 700–2000
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(1) Compared to general machine learning models, the ELMT
model greatly improves the computation efficiency, as learning
can be made more effectively without iteratively tuning parame-
ters in Eq. (14).

(2) Since the ELMT model is a type of neural network model, it
can achieve better accuracy by fitting the training data compared
to the simple lumped thermal model.

(3) Compared to conventional ELM, the ELMT model employs
the physics-based thermal model to replace the activation func-
tion, rendering its physical significance. The ranges of these
weights w and bias b can be set based on the prior knowledge of
the model parameters.

(4) The method to combine thermal model and conventional
ELM can also be extended to other complicated electrical and elec-
trochemical models, in which some parameters are difficult to
determine. The proposed method can obtain an accurate model
by setting parameters in reasonable ranges.

3.4. MLT model

To demonstrate the advantages of the ELMT model, an MLT
model is employed as the benchmark for comparison. The MLT
model consists of five LT models and the MLT model structure is
the same as that of the ELMT model shown in Fig. 6. However, in
the MLT model, the parameters, for example, Ri, h, Cp, and bj, can
be tuned to fit the experimental data. For a fair comparison, a total
of 20 tunable parameters in the MLT model are the same as those
of the ELMT model (20 weights bj connecting the hidden layer and
the output layer).

The parameters of the MLT model are identified using GA,
which is a commonly used nonlinear heuristic optimization algo-
rithm [29]. In GA, the parameters are tuned to minimize a least-
squares objective function J defined as

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

k¼1
Test � Tmeað Þ2

r
ð15Þ

where Test is the estimated temperature and Tmea is the measured
temperature.

Overall, there are 20 tunable parameters in both ELMT and MLT
models. The major difference between the two models is the
method to tune the parameters. For the ELMT model, the parame-
ters are obtained through a one-shot least-square fitting without
tuning iteratively; for the MLT model, the parameters are obtained
through a process of iterative optimization.

4. Evaluation of the proposed method

In this section, we used the experimental data presented in
Section 2 to evaluate the proposed ELMT model. We checked both
the fitting accuracy of the model under the original training data in
group 1 and the prediction accuracy under new data acquired from
different battery cells in group 2. In all fitting and prediction cases,
the MLT model is used as the benchmark to evaluate the ELMT
model.

4.1. Fitting accuracy

The experiment data in group 1 was used to examine the fitting
accuracy of the ELMT model, which indicates the capability of the
model to capture the fundamental dynamics of battery thermal
behavior under ESC conditions. Fig. 7 shows the model fitting
results of the ELMT and MLT models under the ambient tempera-
tures of 20 and 40 �C and 80%, 40%, and 20% SOCs, and Fig. 8 pre-
sents the results under the ambient temperatures of �10 and
10 �C and the same SOCs as those in Fig. 7. Besides, the inset (i)



Fig. 7. Model fitting results with different SOCs under ambient temperatures of 20 and 40 �C. (a) 80% SOC at 40 �C; (b) 40% SOC at 40 �C; (c) 20% SOC at 40 �C; (d) 80% SOC at
20 �C; (e) 40% SOC at 20 �C; (f) 20% SOC at 20 �C.
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of each subplot represents the errors of the ELMT model, and inset
(ii) represents those of the MLT model. It can be seen that the tem-
perature errors of the ELMT model were less than 4 �C, whereas
those of the MLT model can be as high as 25 �C.

Table 3 compares the root mean squared error (RMSE) of the
two models under different conditions. Table 4 shows the average
RMSE results under each ambient temperature as well as all condi-
tions. It can be seen that the ELMT model has better fitting accu-
racy than the MLT model under all the conditions, namely the
average RMSE of the ELMT model is 0.65 �C whereas that of the
MLT model is 3.95 �C (Table 4). Thus, the ELMT model has a better
ability than the MLT model with the same number of tuning
parameters to capture the temperature response under all battery
initial SOCs and ambient temperatures.

In terms of the computational efficiency of model training/fit-
ting, the training time of the twomodels under different conditions
are shown in Table 5. The computing time is recorded from the
start of the program to the end of the program based on MATLAB
2013b (MathWorks, USA). All results were obtained on the
platform of a ThinkPad T470 (Intel�CoreTM i7-7700HQ central
401
processing unit (CPU) 2.8GHz, random access memory (RAM)
16GB, solid state drive (SSD) 500 GB).

It is clear that the ELMT model takes less time to compute than
the MLT model. As mentioned previously, the reason for the better
computational efficiency of the ELMT model is that the majority of
its parameters are randomly assigned without the need for training
and the remaining parameters are obtained through a one-shot
least-square fitting without the need for iterative tuning. On the
contrary, the parameters of the MLT model are identified by using
the more complicated iterative GA.

4.2. Prediction accuracy

The experiment data in group 2 was used to evaluate the pre-
diction accuracy of the ELMT model for the thermal behavior of a
different set of batteries under the same ESC conditions. The same
group of the data was also employed to the MLT model as the
benchmark for comparison.

Fig. 9 shows the temperature prediction results of the two mod-
els under 20 and 40 �C at three different SOCs; Fig. 10 shows the



Fig. 8. Model fitting results with different SOCs under ambient temperatures of �10 and 10 �C. (a) 80% SOC at 10 �C; (b) 40% SOC at 10 �C; (c) 20% SOC at 10 �C; (d) 80% SOC at
�10 �C; (e) 40% SOC at �10 �C; (f) 20% SOC at �10 �C.

Table 3
Model fitting RMSE under different conditions.

Model RMSE under different conditions (�C)

80% SOC
at 40 �C

40% SOC
at 40 �C

20% SOC
at 40 �C

80% SOC
at 20 �C

40% SOC
at 20 �C

20% SOC
at 20 �C

80% SOC
at 10 �C

40% SOC
at 10 �C

20% SOC
at 10 �C

80% SOC at
�10 �C

40% SOC at
�10 �C

20% SOC at
�10 �C

ELMT 0.68 0.84 0.44 0.84 0.21 0.27 0.48 0.72 1.07 0.92 0.29 1.07
MLT 5.07 3.99 3.76 4.25 3.47 1.99 6.29 5.7 2.61 5.08 3.57 1.63

Table 4
Average RMSE results under different ambient temperatures.

Model Average RMSE under different ambient temperatures (�C) Average RMSE under all condition (�C)

40 �C 20 �C 10 �C �10 �C

ELMT 0.65 0.44 0.76 0.76 0.65
MLT 4.27 3.24 4.87 3.43 3.95
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results under �10 and 10 �C at the same SOCs. In each subplot of
Figs. 9 and 10, inset (i) denotes the temperature prediction errors
from the ELMT model; inset (ii) denotes the temperature predic-
tion errors from the MLT model.
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Table 6 shows the comparison of the RMSE results between the
predicted values by the two models and measured data under
different SOCs and ambient temperatures. Table 7 shows the
comparison of the average RMSE results under each ambient



Fig. 9. Temperature prediction results with different SOCs under ambient temperatures of 20 and 40 �C. (a) 80% SOC at 40 �C; (b) 40% SOC at 40 �C; (c) 20% SOC at 40 �C;
(d) 80% SOC at 20 �C; (e) 40% SOC at 20 �C; (f) 20% SOC at 20 �C.

Table 5
Comparison of computing time under different conditions.

Model Computing time under different conditions (s)

80% SOC
at 40 �C

40% SOC
at 40 �C

20% SOC
at 40 �C

80% SOC
at 20 �C

40% SOC
at 20 �C

20% SOC
at 20 �C

80% SOC
at 10 �C

40% SOC
at 10 �C

20% SOC
at 10 �C

80% SOC
at �10 �C

40% SOC
at �10 �C

20% SOC
at �10 �C

ELMT 0.02 0.04 0.05 0.03 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.05
MLT 58.00 130.00 176.00 56.00 287.00 65.00 129.00 234.00 170.00 151.00 179.00 205.00
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temperature as well as all conditions. As shown in Table 7, the
average RMSE of all conditions from the ELMT model is only
3.97 �C, whereas that from the MLT model is 6.11 �C. Thus, the
ELMT model has better temperature prediction accuracy than the
MLT model under all initial SOCs and ambient temperatures.
5. Conclusions

In this paper, we develop an ELMT model to capture the thermal
behavior of lithium-ion batteries under different ESC conditions. In
the proposed model, we replaced the conventional activation func-
403
tion with a physics-based LT model. Then, we systematically per-
formed the ESC experiments of battery cells under different
initial SOCs (20%, 40%, and 80%) and ambient temperatures (�10,
10, 20, and 40 �C). The experimental database is established to con-
struct and evaluate the proposed model. To demonstrate the effec-
tiveness of this model, we compared the ELMT model with an MLT
model parameterized by GA. The two models are first evaluated by
comparing their fitting training data (experimental data in group
1). The average RMSE of the ELMT model is 0.65 �C under all ESC
conditions, whereas that of the MLT model is 3.95 �C. Besides, the
computational complexity of the two models is also compared
and it has been proved that the ELMT model has lower computing



Table 6
RMSE of predicted results of two models under different conditions.

Model RMSE under different conditions (�C)

80% SOC
at 40 �C

40% SOC
at 40 �C

20% SOC
at 40 �C

80% SOC
at 20 �C

40% SOC
at 20 �C

20% SOC
at 20 �C

80% SOC
at 10 �C

40% SOC
at 10 �C

20% SOC
at 10 �C

80% SOC at
�10 �C

40% SOC at
�10 �C

20% SOC at
�10 �C

ELMT 1.53 5.81 2.58 1.24 1.41 2.20 3.09 5.64 3.44 4.97 4.28 11.39
MLT 6.12 8.35 3.75 4.89 3.05 3.48 5.63 9.60 3.76 7.11 4.97 12.56

Table 7
Average RMSE results of two models under different ambient temperatures.

Model Average RMSE under different ambient temperatures (�C) Average RMSE under all condition (�C)

40 �C 20 �C 10 �C �10 �C

ELMT 3.31 1.62 4.06 6.88 3.97
MLT 6.07 3.81 6.33 8.21 6.11

Fig. 10. Temperature prediction results with different SOCs under ambient temperatures of �10 and 10 �C. (a) 80% SOC at 10 �C; (b) 40% SOC at 10 �C; (c) 20% SOC at 10 �C;
(d) 80% SOC at �10 �C; (e) 40% SOC at �10 �C; (f) 20% SOC at �10 �C.

R. Yang, R. Xiong, W. Shen et al. Engineering 7 (2021) 395–405
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cost than the MLT model. Then, the two models are further evalu-
ated for the prediction ability using the new data from different
battery cells (experimental data in group 2). The average RMSE
of the ELMTmodel is 3.97 �C under all ESC conditions, whereas that
of the MLT model is 6.11 �C. All these results show that the ELMT
model has better fitting and prediction accuracy as well as a lower
computational burden than the MLT thermal model.

Our future work includes: ① studying on damage characteris-
tics under different ESC stages; ② improving the generalization
ability of the ELMT model to predict battery internal temperature.
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