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a b s t r a c t

Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the
cornea leading to inflammation and destruction of the corneal tissues. Infectious keratitis is a medical
emergency for which a rapid and accurate diagnosis is needed to ensure prompt and precise treatment
to halt the disease progression and to limit the extent of corneal damage; otherwise, it may develop a
sight-threatening and even eye-globe-threatening condition. In this paper, we propose a sequential-
level deep model to effectively discriminate infectious corneal disease via the classification of clinical
images. In this approach, we devise an appropriate mechanism to preserve the spatial structures of clin-
ical images and disentangle the informative features for clinical image classification of infectious kerati-
tis. In a comparison, the performance of the proposed sequential-level deep model achieved 80%
diagnostic accuracy, far better than the 49.27% ± 11.5% diagnostic accuracy achieved by 421 ophthalmol-
ogists over 120 test images.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Traditionally, triage and diagnosis of diseases are carried out by
physicians through observation based upon experience and knowl-
edge constructed by individuals. In recent years, deep learning
algorithms using deep convolutional neural networks have been
tested for medical imaging interpretation with significant
advances. The application of algorithms for triage and diagnosis
of diseases has been mainly tested in fields that widely apply med-
ical imaging technologies, including computerized tomography,
magnetic resonance imaging (MRI), fundus photography, optical
coherence tomography (OCT), and pathologic images [1]. This is
because medical imaging technology exports naturally rich image
data, and commercialized medical imaging technologies create
standardized and consistent medical images that can be collected
in a short period of time in a single institution or from multiple
medical centers.

The diagnosis for many clinical diseases does not need commer-
cialized medical imaging technologies, with which imaging

recording is not routinely carried out in medical practice in many
medical institutions; therefore, the collection of a large amount
of image data will be dependent on historical accumulation
sporadically dispersed in different medical centers. However, the
development of machine learning diagnostic systems for such
diseases has at least equal importance. A study classifying skin
lesions [2], offering malignant or benign judgment, is a pioneer
attempt in the field of non-conventional medical imaging
technologies. Corneal diseases may also be broadly classified in
this category. Corneal diseases are a major cause of blindness
worldwide [3,4]. There are an estimated 4.5 million individuals
worldwide who suffer from moderate to severe vision impairment
due to the loss of corneal clarity after contracting corneal diseases
[4]. Infectious keratitis is the most common cause of corneal dis-
eases [5]. The normal cornea possesses a unique characteristic of
transparency. The most distinct feature of infectious keratitis is
the pathogen growth in the cornea leading to focal mass cloudiness
and the cornea roughness, inevitably bringing out the unique
characteristics of each pathogenic microorganism for its growth
in the tissue [6]. The diagnosis of infectious keratitis mostly
depends on discriminatively identifying the visual features of the
infectious lesion in the cornea by an ophthalmologist. Clinically,
ophthalmologists routinely depend on slit lamp microscopes to
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observe the normality or abnormality of the cornea and beyond.
Apart from being an observational tool, the slit lamp microscope
can also be used to take a photograph and record the existing sta-
tus of the corneal manifestations for each patient simultaneously,
contributing to the development of a well-annotated dataset for
artificial intelligence (AI)-based infectious keratitis recognition
and analysis.

Since 1998, we have developed a large, well-annotated slit lamp
microscopic image dataset of 115 408 images in total from 10 609
corneal disease patients. The collected dataset enabled us to devise
a deep learning based method to perform infectious keratitis diag-
nosis in an end-to-end manner. To intuitively mimic the way in
which ophthalmologists diagnose infectious keratitis, we proposed
a feature learning mechanism to identify the informative visual
patterns via sequential-level feature learning, which means the
sampled patches from the center to the edge of the infectious
lesion area in the clinical picture are grouped into a sequential-
ordered set (SOS) and fed into a neural network for feature
learning. We argue that the proposed sequential-level feature
learning mechanism can utilize the spatial relationship among
patches from the infectious lesion area and can disentangle
exploratory factors of variations underlying the data sample. In
addition, it provides a potential strategy to achieve more reliable,
effective, and accurate diagnosis.

Our model was evaluated using the dataset and achieved an
accuracy of correct diagnosis higher than that of 400
ophthalmologists.

2. Related works

2.1. Medical data mining

Over the years, electronic medical records (EMRs) have
accumulated large quantities of medical data, which has enabled
researchers to discover underlying knowledge. Data mining
methods have been widely used on medical data to discover
hidden knowledge and to use the extracted knowledge to aid in
the prediction, diagnosis, and treatment of various harmful diseases.

Disease prediction is significant in preventing the occurrence of
disease and reducing harm. Yang et al. [7] used patients’ health
records to forecast potential diabetes complications as well as dis-
cover the underlying association between complications and labo-
ratory test types. He et al. [8] predicted lung cancer postoperative
complications using the EMR dataset and extracted crucial vari-
ables from the dataset simultaneously.

EMR with predicted diagnostic labels and medication informa-
tion can help an automatic assistant to predict the disease diagno-
sis and provide a rapid diagnostic reference for doctors. Nee et al.
[9] used a large EMR text dataset to model the context of EMR of
each disease and performed an accurate disease diagnosis predic-
tion in EMR. Wright et al. [10] used data mining methods to obtain
useful relations and rule sets from the medical datasets to predict
which medication is prescribed next.

2.2. Traditional shallow models in medical image application

The traditional method uses hand-craft features (in general
shallow models) for medical image classification and segmenta-
tion. Scott et al. [11] used gradient orientation, corner, and edge
strength to detect vertebrae in dual energy X-ray images in 2003.
Region splitting and merging is a well-known technique in the
region-based approach. Manousakas et al. [12] applied the splitting
and merging technique in an attempt to overcome the difficulties
encountered when using homogeneity measures on MRI. Zhao
et al. [13] introduced basic mathematical morphological theory

and operations, and they proposed that the novel mathematical
morphological edge detection could distinguish the edge of lungs
in computed tomography (CT) images with salt-and-pepper noise.
The experimental result shows that the method proposed was
more efficient for both medical image de-noising and edge detec-
tion than the best edge detection method in 2006. Kaus et al.
[14] used K-means clustering to automatically perform segmenta-
tion of the left ventricle in cardiac MRI. Cordes et al. [15] had per-
formed research by using hierarchical clustering to measure
connectivity in functional MRI. This method could detect similari-
ties of low-frequency fluctuations, and the results indicated that
the patterns of functional connectivity can be obtained with hier-
archical clustering that resembles known neuronal connections.
In 2006, Pohl et al. [16] presented a method of embedding signed
distance maps into the linear log odds space, which could solve
the modeling problems. Although these methods focused on
regions, edges, and clustering, they have limited performance on
real-world data [17].

2.3. Deep learning methods in medical image application

In computer-aided diagnosis, deep learning is now widely used
for medical image recognition [18,19]. The basic structure of deep
learning is the convolutional neural network (CNN), which has
three types of layers, namely convolution, pooling, and total con-
nection. To develop a robust AI algorithm based on CNN, we usu-
ally require a large amount of annotated data.

The standardized collection of medical images is not as easy as
collecting general natural images. However, nowadays, several
public medical image databases and multicenter collections of data
can help solve the problem. Some types of medical image data such
as X-rays, CT, electrocardiographs, and pathology images can be
collected in large quantities. By using these big data, CNN-based
AI algorithms can perform anatomical structure segmentation on
CT images [20], classify normal or abnormal findings of chest
radiographs [21], perform screening for lung or breast cancer
[22,23], detect critical findings in head CT scans [24], classify liver
lesions using a generative adversarial network (GAN)-based model
[25], perform screening for heart conditions [26,27], and detect
lymph node metastases in pathology images [27,28].

In the field of ophthalmology, due to the easy collection of
images from fundus photography and OCT, the major area in which
CNN-based AI algorithms have been applied is detecting retinal
diseases, such as diabetic retinopathy, age-related macular degen-
eration, and glaucoma [29–31].

Currently, AI-assisted medical diagnostic systems are mainly
applied in the field of medical imaging. The diagnosis of disease,
which relies on the use of natural observation, mainly depends
on the personal experience of the doctor. One example is for skin
lesions; the current AI algorithm can differentiate malignant mel-
anoma from benign lesions on digital skin photographs [2]. Corneal
disease is another example, where ophthalmologists may use a slit
lamp microscope to obtain the right diagnosis. Thus far, there is no
research that has utilized AI to improve diagnostic accuracy for
corneal disease.

3. Methods

3.1. Image datasets

Upon an institutional review board approval, the image dataset
for this study included 115 408 clinical digital images taken from
10 609 patients with 89 categories of corneal diseases by slit lamp
microscopy during the time period of May of 1998 to 2018 in the
Department of Ophthalmology, Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University. The clinical images were taken by
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two types of slit lamp microscopes, that is, Zeiss slit lamp micro-
scope SL 130 (Carl Zeiss Meditec AG, Germany), integrated with
the SL Cam for imaging module, providing each image with a
resolution of 1024 � 768 pixels; and Topcon slit lamp microscope
(TOPCON Corporation, Japan), affiliated with digital camera Unit
DC-1 offering an image resolution of 1740 � 1536 pixels or
2048 � 1536 pixels.

In the dataset, images taken from patients with corneal infec-
tion at the active stage, including bacterial keratitis (BK), fungal
keratitis (FK), and herpes simplex virus stromal keratitis (HSK),
were selected for the training or testing set for algorithmic classi-
fication into each infectious category. All the images from the
patients with corneal infections were annotated with a definite
clinical diagnosis that was corroborated by at least two pieces of
the following evidence: ① the clinical manifestations of the
corneal infection as shown in Fig. 1(a); ② the progression of the
corneal infection was influenced and terminated by diagnostic
pertinent single-drug or combined-drug therapy leading to its
ultimate curing; ③ pathogen identification of the sample from
the infection site: in bacterial and fungal infections, pathogenic
diagnosis either confirmed by sample smear under microscopic
examination or organism culture, and in viral infection, pathogenic
diagnosis confirmed by polymerase chain reaction (PCR)
evaluation of samples from the tear or corneal scraping tissues.
In addition to the categories of the corneal infections, images taken
from patients suffering from other corneal diseases with similar
visual features were classified into the category of other diagnosis.
This category includes varieties of corneal dystrophies, phlyctenu-
lar keratoconjunctivitis, various corneal tumors, corneal papilloma,
corneal degeneration, and even acanthamoeba keratitis. Represen-
tative image series for each category are shown in Fig. 1(a).

The final dataset contained 2284 images from 867 patients for
this study. The training set consisted of 387 randomly selected
images of BK, 519 images of FK, 488 images of HSK, and 528 images
of other corneal diseases, from 747 patients. The testing set con-
sisted of 86 randomly selected images of BK, 97 images of FK, 51
images of HSK, and 128 images of other diagnosis, from 120
patients. To evaluate the ophthalmologists’ classification perfor-
mance, the first-time diagnosis images of each patient in the test-
ing set were selected to construct a dataset to evaluate the
ophthalmologists (i.e., a total of 120 images had been used to eval-
uate the performance of ophthalmologists).

3.2. Sequential-level feature learning-based diagnostic deep models

As aforementioned, we devised a sequential-level feature learn-
ing method for the classification of infectious keratitis. To demon-
strate the superiority of the proposed method, we compared our
proposed method with other models, namely image-level feature
learning and the patch-level feature learning.

The image-level feature learning deep model uses a transfer
learning technique to solve the problem of limited training data
[32,33], in which original clinical images without annotation are
applied directly to a CNN for diagnostic analysis and classification.
In our experiments, we chose three classic architectures for image
classification: visual geometry group network (VGG)-16 [34],
GoogLeNet-v3 [35], and DenseNet [36].

In the patch-level feature learning deep model, the image of the
anterior segment of an eye is initially annotated by manual draw-
ing, dividing the image into four parts: the infectious lesion area of
the cornea, the area beyond the lesion of the cornea, the injection
of conjunctiva, and the exudation of the anterior chamber. There
are three transfer learning architectures in this deep model, that
is, VGG-16, GoogLeNet-v3, and DenseNet. After each patch is
classified, a method of majority voting is implemented to predict
the classification result of each clinical image.

In the sequential-level feature learning model, for each image,
the focus of attention is placed on the lesion, if there is any. The
centroid of the lesion is annotated to build a minimum circum-
scribed area. The minimum circumscribed area is further divided
into K circular rings scaling up around the center. The partitioning
method is illustrated in Fig. 2. From the inner to the outer circular
rings, the sampled patches inside the ith circular ring are used to
build a set of patches denoted as Si and a sequence of sets {S1, S2,
. . ., SK} following the order from the innermost to the outermost.
To address the issue of limited annotated data, in the training pro-
cess, a drop-out mechanism of randomly dropping out elements
from each set is applied, which can generate more sequences of
the sets, helping expand the data diversity and making the trained
model more robust.

Each patch in a set is applied to a deep residual CNN (i.e., Den-
seNet) through sequential feature learning via an encoder–decoder
framework [37–39]. The convolutional structured encoder can
transform the jth patch in the ith set pij into a vectorial feature fij
to describe its innate characteristics, represented as a set of
patch-level features {F1, F2, . . ., FK}. For each set Fi, combined
overall-patch features can be generated through a max pooling cal-
culation, denoted as the set f’i, which represents the global charac-
teristic over a given set. Since the sets from the innermost to the
outermost rings of a lesion consist of a sequence of sets, a long

Fig. 1. Representative slit lamp microscopic images and the representations of t-
distributed stochastic neighbor embedding (t-SNE) visualization of the embedding
features in the proposed SOS model for the four classes of the corneal diseases.
(a) The representative slit lamp microscopic images of BK, FK, HSK, and the others,
including those apart from the three abovementioned categories of corneal
diseases. They exhibit different visual features at different stages of the same
disease or show a difference of visual features among categories. (b) The deep
features learned by the proposed SOS model being embedded into a two-
dimensional space via t-SNE for each category of the disease. t-SNE is utilized for
visualizing the high-dimensional data that are the feature representation in the SOS
model of the diagnosis-proven photographic test sets (362 images). Colored point
clouds represent the different categories of the diseases, showing how the
algorithm groups the diseases into different clusters. Insets show images corre-
sponding to various points.
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short-term memory (LSTM) [37], one of the classic models to learn
sequential data in deep learning, can be used to transfer the set
feature sequence {f’1, f’2, . . ., f’K} into a representation for the classi-
fication. The features for the images can be decoded by a fully con-
nected network layer, and the probability of each category of
corneal diseases is described by a softmax calculation for the
learned features. Fig. 1(b) illustrates the embedding features of
each lesion in a two-dimensional space. The working system is
shown in Fig. 3. Comparing the results of the predicted probability
with the ground-truth type of keratitis, the loss from the result is
back-propagated to fine-tune parameters of the model [40,41].

3.3. Recruitment of ophthalmologists for image-based diagnostic
analysis

Ophthalmologists were recruited from all over China to test
their performances for image based diagnostic analysis as a com-
parison study with the developed deep learning methodology.
The images presented to the recruited ophthalmologists and
diagnosis-proven images of each patient in the testing set were
randomly selected from the first visit (i.e., a total of 120 images).
The recruited ophthalmologists varied in academic title (from
residential ophthalmologists to senior ophthalmologists, all the
way to full clinical professors in medical schools), affiliation
(from teaching hospitals in university medical schools to public

municipal hospitals to community clinics), and professional
experience (categorized into 1–5 years, 6–10 years, 11–15 years,
16–20 years, and over 20 years). In total, we had recruited 421
ophthalmologists.

The ophthalmologist manual examination for image-based
diagnostic analysis followed the two-step protocol. In the first step,
an ophthalmologist conducted an image-only diagnosis. Images of
four categories of corneal diseases from the first-time diagnosis
images of each patient in the testing set, specifically BK, FK, HSK
and other corneal diseases, were presented to the ophthalmologist,
who made a diagnostic decision for each image through manual
examination. Then in the second step, the ophthalmologist was
provided with additional standardized and structured medical
information affiliated with each image, including brief medical his-
tory, time of onset, the grade of pain and recurrence episodes if
any, and history of drug use. The ophthalmologist was then asked
to make a diagnostic decision for each image through manual
examination and by considering the additional medical informa-
tion. All ophthalmologists performed this procedure independently
and without time limitations.

3.4. Statistical analysis

Given the different confidences resulting from the different aca-
demic titles, affiliations, and professional experiences, the statisti-
cal package for social sciences (SPSS version 18.0; Cary, USA) was
used for statistical analysis of the ophthalmologist manual diagno-
sis data. The average performances denoted as the diagnostic accu-
racy achieved by the ophthalmologists were summarized and
represented in terms of mean ± standard deviation in percentage.
Data normality was initially verified using the Kolmogorov–
Smirnov test. Differences in the diagnostic accuracy among differ-
ent hospital levels and professional title groups were analyzed
using one-way analysis of variance (ANOVA), in accordance with
the data normality. The least significant difference was used for
post-hoc analysis of the parametric variables. Correlation between
the diagnostic accuracy and the years of professional experience
was tested using Pearson’s correlation coefficient. Multi-linear
regression analysis with the stepwise method was employed to
explore the influence of the demographic factors, in terms of
academic titles, hospital levels, and years of professional experi-
ence. Paired t-test (for normally distributed variables) and
Wilcoxon signed ranks test (for non-normally distributed vari-
ables) were performed to determine if there were any significant
differences in diagnostic accuracy between the doctors’ perfor-
mances with and without additional medical information. The
significance level for all the tests was set to 0.05.

Fig. 2. Illustration of how patches are sampled and how they are divided into K sets.
Circles represent the boundaries for each set and squares represent the sampled
regions. Note that, to avoid excessive overlapping in the picture, only half of the
patches are shown.

Fig. 3. The process of sequential deep feature learning for one lesion area. For each slit lamp microscopic image, the lesion area is divided into the minimum circumscribed
circle to K circular ring parts (K = 3 here, only for intuitive clarification). From the innermost to the outermost circular rings, we sample patches from each circular ring, and
the sampled patches are used to generate sequence of sets. The sequential features can be learned via max-pooling and LSTM.
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4. Results

4.1. Performances of the different deep models

Image-level deep model is currently popular for clinical image
diagnosis in which original clinical images are directly applied to
CNNs. Three classic deep architectures, VGG-16, GoogLeNet-v3,
and DenseNet, are used in this study to report the diagnostic per-
formances of this model for BK, FK, and HSK, respectively, docu-
mented in Table 1. Considering the fact that the whole image
directly applied to CNN in the training process may contain irrele-
vant information, we thereafter developed a patch-level deep
model [42,43] using the VGG-16, GoogLeNet-v3, and DenseNet
architectures. In the patch-level deep model, instead of using the
whole image, patches including infectious lesion of the cornea,
beyond infectious lesion of the cornea, the injection of conjunctiva,
and the exudation of the anterior chamber are initially annotated
by manually segmentation. We have found that the three patch-
level deep models can achieve an accuracy of 49.62%, 51.52%,
and 60%, respectively, for patch classifications (i.e., the classifica-
tion of each patch into a corresponding infectious keratitis). After
each patch is classified, majority voting is implemented to perform
clinical image classification. The patch-level deep models with vot-
ing have respectively achieved an accuracy of 52.50%, 55.52%, and
66.30%, as documented in Table 1.

Finally, we applied sequential-level deep models, which are
considered to have the ability to preserve the subtle spatial struc-
tures of clinical images. As aforementioned, the sequential-level

features are learned in an inner–outer sequential order (referred
to as the SOS), and we have achieved 78.73% classification accuracy
with SOS features. Instead of generating a sequence of sets in an
inner–outer sequential order, we can also generate a sequence in
terms of random-ordered patches (ROPs) and sequential-ordered
patches (SOPs). ROP generates a sequence of patches via a random
order and SOP generates a sequence of patches via an inner–outer
order (but without the utilization of a set structure to group each
patch into different sets). The final evaluation shows that ROP fea-
tures yielded an accuracy of 74.23% (75.29% for BK, 68.04% for FK,
and 82.35% for HSK) and SOP features yielded an accuracy of
75.14%. This evaluation study has demonstrated that the
sequential-level deep models are the best models for automatic,
image-only diagnosis for corneal diseases.

4.2. Comparison study on ophthalmologists’ diagnosis

We evaluated all the algorithms that we considered in this
paper using the dataset to compare the performances between
each algorithm and the ophthalmologist. Table 2 lists the accura-
cies of all the algorithms and the average performance of ophthal-
mologists on this dataset (120 images). The performances of
ophthalmologists in the diagnosis of clinical images are listed in
Table 3. There were 421 ophthalmologists recruited from all over
China participating in this study. The average accuracy perfor-
mance all ophthalmologists without additional medical informa-
tion was 49.27% ± 11.5% (range: 20.00%–86.67%), which was far
lower than that achieved by AI deep learning models. For example,

Table 1
Performance of classification accuracy among different deep learning models on the test dataset.

Level Algorithm Test dataset (%)

Acc BK FK HSK Others

Image-level VGG-16 (image) 55.24 48.84 52.57 62.74 53.90
GoogLeNet-v3 (image) 57.73 53.49 55.67 66.67 58.59
DenseNet (image) 61.04 60.46 56.70 80.39 57.03

Patch-level VGG-16 (voting) 52.50 45.34 54.64 56.00 54.68
GoogLeNet-v3 (voting) 55.52 44.19 51.55 74.51 58.59
DenseNet (voting) 66.30 59.30 68.04 58.82 72.66

Sequential-level Random-ordered patches (ROPs) 74.23 75.29 68.04 82.35 75.00
Sequential-ordered patches (SOPs) 75.14 66.28 86.60 84.31 68.75
SOSs 78.73 65.12 83.51 90.20 79.70

The image-level, patch-level, and sequential-level features are learned from the whole image, the lesion area, and the sequence of patch sets, respectively. The test dataset
contains 362 images, including 86 BK, 97 FK, 51 HSK, and 128 others from 120 patients. Acc indicates the overall accuracy of each model, and columns BK, FK, HSK, and others
show the recall for each corresponding category.

Table 2
Deep learning models competing with ophthalmologists using a dataset of 120 images in total.

Level Algorithm Dataset for evaluation of ophthalmologists (%)
(%)

Acc BK FK HSK Others

Image-level VGG-16 (image) 50.83 46.67 43.33 73.33 40.00
GoogLeNet-v3 (image) 55.83 50.00 63.33 70.00 40.00
DenseNet (image) 64.17 56.67 63.33 80.00 56.67

Patch-level VGG-16 (voting) 51.67 23.33 43.33 76.67 63.33
GoogLeNet-v3 (voting) 54.17 26.67 73.33 80.00 36.67
DenseNet (voting) 71.67 46.67 86.67 73.33 80.00

Sequential-level ROPs 77.50 66.67 70.00 93.33 80.00
SOPs 79.17 73.33 70.00 96.67 76.67
SOSs 80.00 53.33 83.33 93.33 90.00

Human-level Average performance of ophthalmologists provided with image only 49.27 46.55 45.56 65.01 39.95
Average performance of ophthalmologists provided with image together with medical history 57.16a 55.55a 56.28a 73.25a 43.56a

The first-visit and diagnosis-proven images of patients with four categories of the corneal diseases were selected from the testing set to construct a dataset for evaluation and
comparison of deep learning models with ophthalmologists. The dataset included 120 clinical images.

a P < 0.001 compared to the average performance of ophthalmologists provided with image only.
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the SOS algorithm achieved a diagnostic accuracy of 80%, including
accuracies of 53.33%, 83.33%, and 93.33% for BK, FK, and HSK,
respectively (Table 2). Fig. 4 depicts the receiver operating charac-
teristic (ROC) curve, the confusion matrix of SOS model, and the
performance of ophthalmologists. The ROC curve is a visualization
method for classification models. The area under the curve (AUC) is
a measure of performance, with a maximum value of 1. The model
achieves superior performance over an ophthalmologist if the sen-
sitivity–specificity point of the ophthalmologist lies below the
curve of the classification model.

The effect of location of work on the ophthalmologists’ perfor-
mance was revealed in this study, wherein those from teaching
hospitals demonstrated a far better performance than those from
city hospitals and community clinics (both probability value
P < 0.001), whereas no significant difference was found between
city hospitals and community clinics (P = 0.226). The ophthalmol-
ogists with higher professional ranks appear to have a better
performance in diagnosing clinical images with a better accuracy,
such as the attending ophthalmologists and fellows who per-
formed better than residents (P < 0.001 and P = 0.003, respectively),
but no significant difference was found between the groups of
attending and fellow ophthalmologists (P = 0.071). No significant
correlation was found between the duration of employment and
diagnostic accuracy (P = 0.084).

When the factors of hospital ranking and doctor’s ranks were
considered together, better performance was found in the group
of ophthalmologists with the attending title from teaching hospi-
tals (accuracy of 57.08% ± 12.02%, range: 33.33%–86.67%) than
the group of ophthalmologists with resident ranks from commu-
nity clinics (accuracy of 41.99% ± 10.51%, range: 22.50%–63.33%).

The stepwise multiple regression analysis resulted in three models
that affected diagnostic accuracy. Model 1 (coefficient of determi-
nation R2 = 0.062) had only the factor of hospital levels (beta error
b = 0.254, P < 0.001); Model 2 (R2 = 0.100) had the factors of hos-
pital levels (b = 0.239, P < 0.001) and professional titles
(b = 0.200, P < 0.001); Model 3 (R2 = 0.109) had all three factors
of hospital levels (b = 0.227, P < 0.001), professional titles
(b = 0.326, P < 0.001), and years of employment (b = �0.164,
P = 0.024).

When the ophthalmologists were further provided with addi-
tional medical information affiliated to each image, including brief
medical history, time of onset, the grade of pain and recurrence
episodes if any, and history of drug use, the mean total diagnostic
accuracy increased from 49.27% to 57.16%, resulting in a statisti-
cally significant difference (Wilcoxon signed ranks test,
P < 0.001). In detail, the accuracy increased from 46.55% to
55.55% (P < 0.001) for BK, from 45.56% to 56.28% (P < 0.001) for
FK, and from 65.01% to 73.25% (P < 0.001) for HSK. With additional
medical information, the mean total accuracy of 404 doctors
increased by 8.28%, the accuracy of nine doctors decreased by
2.13%, and the accuracy of the other eight doctors remained
unchanged.

5. Discussion

In general, fact judgment by humans is achieved through vision,
audio, touch, taste, and smell, which enables a person to classify
things into appropriate categories [44]. Visual perception plays
the most important role for this purpose [45] and visual knowledge

Table 3
Average classification accuracy performance according to the hospital level, years of employment, and professional titles of the ophthalmologists.

RK: rank; STD: standard deviation; * P = 0.003; ** P < 0.001.
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can describe the relation between spatial shapes, sizes and
correlation, as well as colors and textures [46]. Physicians making
diagnoses for diseases primarily depend on observation and rea-
soning. Among all human diseases, corneal diseases have the most
direct and most significant displays of changes in visual percep-
tion, because the healthy cornea of an eye has a unique character-
istic of complete transparency, which is in sharp contrast to the
pathological conditions that always manifested as image changes
in and beyond the cornea. Diagnostic decision-making of corneal
disease by human professionals is carried out through image
understanding and analysis, which is likely the most appropriate
task for an AI to provide assistance to humans.

Generally speaking, deep learning is driven by a large amount of
annotated data [47,48]. However, it is not clear how much training
data of clinical images is sufficient for developing an AI system for
diagnosing clinical diseases. Our center has been collecting and
documenting corneal disease cases with clinical images for
20 years, but when all the images are annotated according to each
disease category, there can be thousands of clinical images in the
most common disease categories, whereas there are only a few
dozen clinical images in some rare disease categories. The imbal-
ance of the annotated data in each corneal disease category leads
us to focus on the most common diseases, such as infectious cor-
neal diseases, to develop the first stage of AI diagnostic system in
this study.

In this study, we have demonstrated that deep learning through
CNNs can be applied to clinical diagnosis for corneal infectious dis-
eases using clinical images taken via slit lamp microscopy. We
have evaluated three sets of nine deep learning architectures in
total in an effort to develop an image-only diagnostic system for
corneal infectious diseases. From the results of image-level and
patch-level deep models, we can say that despite only having four
categories, this is a hard problem, especially for VGG-16 and
GoogLeNet-v3. These two structures achieved poor performance
in patch classification, and as a result, voting among patches did

not improve their performance significantly. In contrast, DenseNet
reached 60% in patch classification and achieved 66.3% after voting.
This shows that focusing on patches from the infectious lesion area
can yield higher performance than seeing the whole picture, pro-
vided that the model performs well enough in patch classification.
The ROP method can be viewed as another way to combine patch
features besides voting. Its result shows that even without spatial
information, patch-level deep model can be further improved
given the appropriate combining method. We have found that
overall, SOS is the most promising method for image-only diagno-
sis for corneal disease images. A possible reason for why SOS was
better than the other methods is how an appropriate utilization
of spatial structures of clinical images is directly implemented into
this model of deep learning. SOP did not perform as well because it
did not consider the circular structure of the lesion area. To the
best of our knowledge, this is the first study that presents a deep
learning model to perform corneal disease classification with
higher accuracy than that of human ophthalmologists in image-
only diagnosis. It was noted in this study that general professional
human performance in image-only corneal disease diagnosis was
worse than that of an AI system. There is no doubt that incorrect
diagnosis can lead to prolonged use of inappropriate medications
that cause the identifying features to be obscured [6], making
human decision-making for diagnosis more difficult. The multiple
regression analysis in our study demonstrated that the three
demographic factors, in terms of academic ranks, affiliations, and
professional service duration, had influences on the diagnostic per-
formance, whereas the coefficients of determination were low in
the three models. This indicates that the above factors may not
truthfully and comprehensively determine the diagnostic accuracy
of corneal diseases in ophthalmologists, or the factors affecting the
diagnostic performance may be very complicated and may not be
accurately summarized simply by the above three factors. There-
fore, if AI can help clinicians improve their ability significantly with
a higher diagnostic accuracy, this will greatly benefit patients

Fig. 4. ROC curve and confusion matrix of SOS model and the performance of ophthalmologists. (a) ROC curve of SOS model; (b, c) confusion matrices of the ophthalmologists
and the SOS model on the dataset for evaluation of ophthalmologists; (d–f) ROC curves for the disease categories of BK, FK, and HSK, respectively. AUC: the area under the
curve.
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suffering from corneal diseases, save medical resources, and reduce
societal burden. There is still a large population of 4.5 million indi-
viduals who are now suffering from moderate to severe vision
impairment due to the loss of corneal clarity caused by corneal dis-
eases worldwide [4], especially in developing countries. There are
two ways of raising diagnostic accuracy. One is to improve the
physician training system and to strengthen the professional edu-
cation and training for physicians; the other is to develop a practi-
cal AI system to assist in diagnosis. Our current study
demonstrates that it is realistically achievable to develop an AI sys-
tem by using clinical images to improve the diagnostic accuracy for
corneal diseases. In examining the ophthalmologists’ performance,
we found that when the medical professionals were provided with
images together with medical history, the diagnostic accuracy
increased to a certain extent (from 49.27% to 57.16%, P < 0.001)
as compared to the accuracy when the professionals were provided
with images only. This result indicates that, while additional infor-
mation can help to further improve the performance. This may also
be true to AI diagnostic systems. Researches show that integrating
data-driven machine learning with human knowledge can effec-
tively lead to explainable, robust, and general AI [49]; and informa-
tion like medical history may contain humanlike common sense
which can enable models to solve many different tasks with lim-
ited training data [50]. for improving our AI diagnostic system to
raise the diagnostic accuracy, a multi-modal learning model (i.e.,
the effective combination of visual and non-visual information)
or a more suitable sequential learning model may need to be
devised in future work.

It is undeniable that our AI diagnostic accuracy at this stage is
only confirmed by the limited image data we have collected,
through a comparison study with the performances of ophthalmol-
ogists using the same clinical images. A real-world application of
such an AI system in assisting physicians in clinical practice
requires further and more extensive clinical evaluations on a larger
scale [51].

6. Conclusions

Infectious keratitis is the most common ophthalmological dis-
ease that may cause blindness. Ophthalmologists observe and
diagnose diseases by observing slit lamp images, facilitating diag-
nosis using computer-aided image analysis algorithms. In this
work, we propose a sequential-level deep model for end-to-end
diagnosis of infectious keratitis. Specifically, relying on the excel-
lent feature extraction performance of deep convolutional net-
works, we first extract the detailed patterns of the corneal region
and then group the local features into an ordered set that conforms
to the spatial structure to learn the global representation of the
corneal image and perform diagnosis. We collected over 110 000
images from more than 10 000 patients. On that basis, sufficient
experimental comparison results proved that our model is a more
feasible structure and has achieved better diagnostic performance
than those conventional CNNs. In addition, through a comparison
with more than 400 professional ophthalmologists, we found that
our model can greatly exceed the average level of professionals and
reach the level performance of top ophthalmologists. To the best of
our knowledge, this is the first study on the diagnosis of infectious
keratitis, and our research has strongly demonstrated the potential
of using AI to perform clinically assisted diagnosis of these types of
diseases.
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