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Data-driven process-monitoring methods have been the mainstream for complex industrial systems
due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.
However, most data-driven process-monitoring methods assume that historical training data and
online testing data follow the same distribution. In fact, due to the harsh environment of industrial sys-
tems, the collected data from real industrial processes are always affected by many factors, such as the
changeable operating environment, variation in the raw materials, and production indexes. These fac-
tors often cause the distributions of online monitoring data and historical training data to differ, which
induces a model mismatch in the process-monitoring task. Thus, it is difficult to achieve accurate pro-
cess monitoring when a model learned from training data is applied to actual online monitoring. In
order to resolve the problem of the distribution divergence between historical training data and online
testing data that is induced by changeable operation environments, a robust transfer dictionary learning
(RTDL) algorithm is proposed in this paper for industrial process monitoring. The RTDL is a synergy of rep-
resentative learning and domain adaptive transfer learning. The proposed method regards historical train-
ing data and online testing data as the source domain and the target domain, respectively, in the transfer
learning problem. Maximum mean discrepancy regularization and linear discriminant analysis-like regu-
larization are then incorporated into the dictionary learning framework, which can reduce the distribution
divergence between the source domain and target domain. In this way, a robust dictionary can be learned
even if the characteristics of the source domain and target domain are evidently different under the inter-
ference of a realistic and changeable operation environment. Such a dictionary can effectively improve the
performance of process monitoring and mode classification. Extensive experiments including a numerical
simulation and two industrial systems are conducted to verify the efficiency and superiority of the pro-
posed method.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Process monitoring is necessary and meaningful for industrial
systems, and attracts a considerable amount of attention from both
industry and academia [1–4]. In general, process-monitoring
methods are divided into three categories: the model-based
approach, the knowledge-based approach, and the data-driven
approach [5–8]. The model-based approach uses a mathematical
representation of the system and thus incorporates a physical
understanding of the system into the monitoring scheme. The
knowledge-based approach uses graphical models such as
PetriNets, multi-signal flow graphs, and Bayesian networks (BNs)
for system monitoring and troubleshooting. This approach is espe-
cially well-suited for the prognosis of coupled systems [9]. The
data-driven approach for monitoring does not require reaction
mechanisms or first-principles knowledge of the process. In recent
years, by leveraging the rapid progress that has been made in
smart sensors, data analytics, and deep learning technologies, the
data-driven approach has been developed to enhance the effective-
ness and performance of diagnoses [10]; advances in this area
include Boltzmann machines, support vector machines (SVMs),
convolutional neural networks (CNNs), and more [11–13].
Recently, data-driven methods have become the mainstream of
complex industrial process monitoring.
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However, most data-driven methods currently assume that the
historical training data and the online monitoring data follow the
same distribution [14–16]. In fact, the collected data from real
industrial processes are always affected by many factors, such as
the changeable operating environment, variations in raw materi-
als, and production indexes [17]. These factors often lead to prob-
lems such as model mismatching when the model that was learned
based on training data is applied to actual online monitoring. Such
problems make it difficult to achieve accurate process monitoring.
In order to resolve the problem of historical training data and
online testing data following different distributions, pioneering
works have been proposed. Hou et al. [18] proposed an incremen-
tal principal component analysis (PCA) online model for time-
varying process monitoring. In this model, when a new sample is
obtained, the PCA model is updated by the original PCA model
and the new sample, the squared prediction error (SPE), and the
T2 limits are updated as well. Jiang et al. [19] proposed a multi-
model discriminant partial least-squares (DPLS) method based on
the current data and historical data to diagnose the data. Zhang
et al. [20] established a deep belief network (DBN), which had a
strong generalization ability, to monitor welding status online. In
order to adapt to the addition of new data samples, Zeng et al.
[21] proposed an incremental local preservation projection (LPP)
algorithm, which is updated by using the Laplacian matrix and
the projection value of the original sample. However, these algo-
rithms cannot cope with the large difference between two domains
that occurs when, for example, the monitored industrial process is
located in a completely different operating environment. Ge and
Song [22] proposed the online batch independent component
analysis–principal component analysis (ICA–PCA) method, in
which new data is monitored using a fitted ICA–PCA model
selected from the model storeroom. However, this method requires
the construction of multiple models, and unbalances in data will
reduce the monitoring performance.

Dictionary learning usually involves learning an over-complete
dictionary; then, the raw data can be reconstructed by a dictionary
and a sparse matrix. Real raw data usually possess the characteris-
tic of structural redundancy. Through dictionary learning, the raw
data are mapped to a lower dimensional space, which removes the
structural redundancy of the raw data while simultaneously
retaining the most concise information. Peng et al. [23] proposed
a method that worked out a mapping dictionary through LPP in
order to retain the geometric structure of the raw data. Chen
et al. [24] proposed a method that utilized dictionary regulariza-
tion to create a dictionary that learned from a small amount of tar-
get domain data; this dictionary was similar to a dictionary that
learned from the source domain data. Zhang et al. [25] proposed a
method in which a common dictionary, a source domain dictionary,
and a target domain dictionary were learned in order to realize cross-
domain classification. In the method proposed by Jie et al. [26], sev-
eral subspace dictionaries between the source domain dictionary and
target domain dictionary were learned. Long et al. [27] proposed a
transfer sparse code (TSC) that introduced graph regularization and
reduced the distribution distance in order to realize knowledge trans-
fer. These dictionary learning methods have made great achieve-
ments in signal reconstruction, signal noise reduction, image
recognition, image correction, and other aspects, which have
attracted a great deal of attention in both academia and industry.
Moreover, recent studies have shown that dictionary learning has
an extraordinary advantage in process monitoring. Huang et al.
[28] proposed a kernel dictionary learning method to achieve nonlin-
ear process monitoring and a distributed dictionary learning method
to achieve high-dimensional process monitoring.

Although the abovementioned methods exhibit superior
process-monitoring performance in industrial systems, they do
not take the distribution divergence of historical data and online
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monitoring data into account. Transfer learning, which is a general
framework for knowledge transfer in different domains, has been
extensively investigated in recent years, especially in the commu-
nities of artificial intelligence, image recognition, and computer
vision. Inspired by the powerful representation ability of dictionary
learning and the cross-domain knowledge-transfer ability of trans-
fer learning, a robust transfer dictionary learning (RTDL) method is
herein proposed to deal with the problem of the distribution diver-
gence of realistic industrial process monitoring. The proposed
method is a synergy of representative learning and domain adap-
tive transfer learning. To summarize, historical training data and
online testing data are separately treated as the source domain
and target domain in the transfer learning problem. For an indus-
trial system, although the system always operates in different
operating environments, which inevitably results in different data
distribution, the underlying internal information, such as the
mechanism, is often the same or similar. In other words, the
high-dimensional observation data of an industrial system often
have invariant subspaces in different domains. Therefore, it is fea-
sible to map the source domain and the target domain to a com-
mon subspace, in which the distribution difference between the
source domain and the target domain is eliminated. After that, pro-
cess monitoring is carried out in the learned subspace. For practical
use, a discriminative dictionary learning method is proposed to
extract features from multimodal industrial data. Next, maximum
mean discrepancy (MMD) regularization [29] is proposed as a non-
parametric distance metric to express the distribution distance,
which reduces the distribution divergence between the source
domain data and the target domain data. In addition, in order to
reduce the distance of the interior mode data, linear discriminant
analysis (LDA) regularization is introduced. Accordingly, the pro-
posed method can learn a robust common dictionary even if the
source domain and target domain are seriously affected by a different
operating environment; thus, this method can effectively improve
the performance of process monitoring and mode classification.

The main contributions of this paper are summarized as follows.
First, an RTDL method is proposed to reduce the negative effect of
an industrial system’s changeable operating environment. By reducing
the inter-domain differences, the proposed model can reduce the per-
formance degradation of process monitoring and mode classification
caused by a changeable operating environment. Second, detailed opti-
mization steps about the constrained nondifferentiable dictionary
learning problem are given, which can efficiently solve the RTDL prob-
lem. Third, the proposed method is verified by extensive experiments,
including a numerical experiment and real industrial experiments.
The results demonstrate that the proposed method can outperform
some state-of-the-art methods in accuracy; thus, this method is suit-
able for the task of process monitoring industrial systems.

The rest of this paper is organized as follows. Section 2 briefly
introduces domain adaptive transfer learning, dictionary learning,
and the motivation for this paper. In Section 3, the RTDL model
is proposed and its effective optimization steps are given. In Sec-
tion 4, extensive experiments including a numerical simulation,
the continuous stirred tank heater (CSTH) benchmark case, and a
wind turbine system case are conducted to verify the effectiveness
of the proposed RTDL method. Finally, Section 5 provides a conclu-
sion and summary remarks.
2. Preliminaries

2.1. Domain adaptive transfer

Suppose that there are a source domain with a large amount of
data, Xs ¼ xs1; xs2; :::; xns½ � (where ns is the number of source domain
data Xs), and a target domain with a small amount of data,
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Xt ¼ xt1; xt2; :::; xnt½ � (where nt is the number of target domain data
Xt). Here, the source domain and target domain are related but
not the same. Taking a wind turbine system as an example, set
the process data of the wind turbine system in winter as the source
domain and set the process data in summer as the target domain.
These two domains are related, since the data of each domain are
collected from the same wind turbine system under the same
mechanism. However, due to the external operating environments
being different, the observation data from the two seasons often
have different distributions. Mathematically, the input feature
space of the domains is the same, but the marginal distribution
and conditional distribution of the domains are different; namely,
Xs 2 v, Xt 2 v , Ps xð Þ – Pt xð Þ, and Ps yjxð Þ– Pt yjxð Þ, where Ps and Pt
represent the probability distribution of source domain and target
domain, respectively; v represents data space; x represents the
data sample; and y represents the label of the data x.

In order to achieve process monitoring in the target domain, it is
necessary to eliminate the distribution divergence between the
source domain and the target domain—namely, the conditional
distribution difference and the marginal distribution difference.
When the distribution divergence of the source domain and the
target domain is eliminated, the source domain data can show
the same process information as the target domain data, so the
method can take advantage of abundant source domain data to
aid the training model, and thus achieve a positive knowledge
transfer effect.
2.2. Dictionary learning

The philosophy of dictionary learning is to minimize data
reconstruction errors by learning a dictionary composed of a series
of atoms and a sparse matrix. Let XN ¼ x1; x2; :::; xN½ � 2 Rm�N be the
set of raw samples, where xN represents the Nth sample with a
dimension of m, m is the number of data dimensions, R is the vec-
tor space, and N represents the amount of data.
DK ¼ d1; d2; :::; dK½ � 2 Rm�K is a dictionary composed of K atoms,
where dK is the Kth atom and K is the number of atoms.
SN 2 RK�N stands for the sparse matrix. The problem of dictionary
learning can be expressed as follows:

DK ; SNð Þ ¼ argmin
DK ;SN

k XN � DKSN k2F þ ak SN k0 ð1Þ

where a (a > 0) is a parameter to control the sparsity of SN , k � kF
represents the F norm of the matrix XN, and k � k0 represents the
L0 norm of the matrix SN .
Fig. 1. This figure depicts a situation with a large amount of source domain data and a
domain and only utilizes the target domain data for model training. (b) Traditional strateg
directly utilizes all data for model training. (c) The RTDL model, which regularizes the
domain differences; this model is the most reasonable of the three. PC1 and PC2 repres
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2.3. Motivation

As mentioned earlier, although an industrial system may oper-
ate under different operating environments (e.g., due to external
interference such as different locations, time, weather, and manual
operation), which inevitably results in a divergence in the data dis-
tribution, the underlying internal mechanisms are often the same
or similar to each other. That is, the high-dimensional observation
data of an industrial system under different domains often have
invariant subspaces. Therefore, it is necessary to extract the invari-
ant knowledge or subspace in order to eliminate the extrinsic
interference and thereby further enhance the performance of
industrial process monitoring.

In order to show the effect of the transferable feature between
the source domain data and target domain data vividly, Fig. 1
shows a scatter diagram of data that are influenced only by differ-
ent environmental factors that cause different distributions. The
marginal distribution and conditional distribution of the source
domain and target domain are obviously different. The traditional
data-driven method has two common strategies: As shown in
Fig. 1(a), the first strategy is to ignore the source domain data
and only use the target domain data as the input data, so as to meet
the assumption that the distribution of the training data is the
same as the distribution of the testing data. However, because
there is very little training data in the target domain, the final
model is prone to overfitting. As shown in Fig. 1(b), the second
strategy is to ignore the different characteristics of the source
domain and the target domain. This strategy uses a large amount
of historical data and a small amount of new data directly to con-
duct the model training task; thus, the final model confuses
inter-domain difference information with abnormal information.
Moreover, it is easy for the model to be dominated by the source
domain, which has a large amount of samples. In contrast,
Fig. 1(c) shows the RTDL model proposed in this paper. This
method attempts to find a mapping relationship function
U �ð Þ. Through this mapping relationship, the raw data are mapped
into a subspace. In this subspace, the marginal distribution
and conditional distribution of the source domain are the same
as those of the target domain; that is, Ps U xð Þð Þ ¼ Pt U xð Þð Þ and
Ps yjU xð Þð Þ ¼ Pt yjU xð Þð Þ (where U(x) is the mapping with respect
to x). We believe that if U �ð Þ can overcome the interference of the
extrinsic environment and only keep the most concise internal
mechanism information, it can transfer knowledge from the source
domain to the target domain. That is, by incorporating MMD and
LDA-like regularizations into the dictionary learning objective
function, the proposed method can take advantage of the abundant
small amount of target domain data. (a) Traditional strategy 1 ignores the source
y 2 ignores the different characteristics of the source domain and target domain and
constraints on the data of the source domain and target domain, eliminates inter-
ent the two principal components of data.
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source domain data to aid the training model and achieve the
transfer effect, in order to improve industrial process monitoring.

3. Method

Before discussing the method in detail, an assumption is intro-
duced here for the proposed method. This assumption is reason-
able and is often satisfied by an industrial system.

Assumption: A complex industrial process usually runs in dif-
ferent modes to meet different realistic demands. The characteris-
tics of the observed variables are different under different modes.
In order to clearly describe different observations, the historical
training data and online testing data are regarded as the source
domain and target domain, respectively.

In general, there are two ways of conducting multimode data
process monitoring. The first way is to treat the multimode
data separately, and then fulfil the process-monitoring tasks
individually. The second way is to treat the multimode data glob-
ally, and then fulfil the process-monitoring task using a single
model. When the data collected in each individual mode is suffi-
cient, the first way is a better choice. However, for a real industrial
process-monitoring task, the data in the target domain is always
seriously inadequate and the separate method is prone to overfit-
ting; therefore, it is better to treat multimode data globally. More-
over, the observed variables are not only determined by the
internal mechanism of the industrial process, but also influenced
by the extrinsic environment (e.g., manual operation, uncertain-
ties, discontinuities of parameter measurement, and noise). The
extrinsic environment of online testing data is different from that
of historical training data, so domain divergence occurs. In order
to obtain an accurate process-monitoring result, a wise option is
to eliminate the irrelevant extrinsic interference by using the
domain adaptive transfer learning method.

3.1. Discriminative dictionary

Traditional dictionary learning has been extensively introduced
for process monitoring. Moreover, recent studies have shown that
learning a discriminative dictionary can enable the dictionary to
possess the mode-recognition ability [30–33]. Therefore, a discrimi-
native dictionary learning method is urgently needed for the
process-monitoring task. Here, the discriminative dictionary is

recorded as D ¼ D1;D2; :::;DC½ � 2 Rm�Ck, where C represents the
number of modes, k represents the number of atoms of each mode,
and DC is a subdictionary of k atoms used to represent the charac-
teristics of the Cth mode. The sparse matrix (S) of raw samples

matrix (X) over D is S ¼ S1; S2; :::; SC½ � 2 RCk� nsþntð Þ, where
SC ¼ SsC ; StC

� �
, SsC represents the sparse coding of Cth mode source

domain data and StC represents the sparse coding of Cth mode tar-
get domain data. For the sake of simplicity, we record the sparse

coding of Xi over D as Si ¼ S1
i ; S

2
i ; :::; S

C
i

h i
, where SC

i is the coding

coefficient of Xi over the sub-dictionary DC , Xi is a matrix com-
posed of the ith mode samples (i 2 1;2; :::; Cf g), which is a subma-
trix of X.

In order to improve the representation ability of the multimode
data, prior constraints should be incorporated into the dictionary
learning. First, the data should be well reconstructed by a dic-
tionary and the corresponding sparse matrix; that is, X � DS. Sec-
ond, the data should be well represented by its own sub-dictionary

Di and sub-sparse matrix Si
i; that is, Xi � DiS

i
i 8i 2 1;2; :::;Cf g.

Third, since the data can be well represented by its own sub-

dictionary and sub-sparse matrix, the item Si0
i i0 – i
� �

should be as
close to zero as possible, so the Eq. (1) can be transformed into
the following formation [31]:
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D; Sð Þ ¼ argmin
D;S

k X � DS k2F þ k X � DSin k2F

þ k DSout k2F þ ak S k0
s:t: 8k db k2 � 1

ð2Þ

where db represents bth atom of the dictionary D. Sin and Sout are the
expressions about S, which are given as follows:

Sin a; b½ � ¼ S a; b½ �
0

�
xa; db 2 same mode
otherwise

ð3Þ
Sout a; b½ � ¼ S a; b½ �
0

�
xa;db R same mode
otherwise

ð4Þ

where xa is the ath sample of X.

In particular, k X � DSin k2F ¼ PC
i¼1k Xi � DiS

i
i k

2

F means that the
data Xi should be well represented by its own sub-dictionary Di

and sub-sparse matrix Si
i. That is, kDSout k2F ¼ PC

i¼1

P
i0–ik DiS

i0
i k

2

F .

Thus, the item Si0
i i0 – i
� �

should be as close to zero as possible.
3.2. Regularizations

Since the source domain and target domain of the industrial
system are affected by different environmental factors, the data
distributions are different. To ensure that the learned dictionary
captures the latent common mechanism information rather than
irrelevant extrinsic interference in the source domain and target
domain, a straightforward way is to reduce the distribution differ-
ence by minimizing some predefined metrics. MMD regularization
is considered to be a nonparametric metric to express the distribu-
tion difference between domains [27], which can make the centers
of the sparse matrices Ss;i and St;i close. Mathematically, the MMD
regularization is expressed as follows:

c1 ¼
XC
i¼1

1
nsi

X
sj2Ssi

sj � 1
nti

X
sj2Sti

sj

������
������
2

F

¼
XC
i¼1

tr SiM
iST

i

� 	
¼ tr SMST

� 	
ð5Þ

where c1 represents the MMD regularization between the source
domain and the target domain, nsi and nti represent the numbers
of samples of ith mode in source domain and target domain,

respectively, sj is a sparse code in sparse matrix S, Mi represents
the ith mode part of MMD matrix M, which can be calculated as
follows:

Mi
�aa ¼

1=n2
si x�a; xa 2 source domain

1=n2
ti x�a; xa 2 target domain

�1=ðnsintiÞ otherwise

8><>: ð6Þ
M ¼ diag M1;M2; . . . ;MC
� 	

where Mi
�aa represents the element of Mi in the �ath row and ath col-

umn, x�a is the �ath sample of X , and xa is the ath sample of X.
It is well known that the distribution of observed data in the

same mode should be the same. However, due to the uncertainty
of the operating environment, the data in the same mode also exhi-
bit certain differences. In order to eliminate the interference from
the uncertain environment, it is preferable to make the sparse code
of the same mode data become closer to each other no matter
which domain the data comes from. That is, each column vector
in Si ¼ Ssi; Sti½ � 8i 2 1;2; :::; Cf g should be close to each other. Thus,

the value of
P

sj2Si sj � s
�
i

� 	T
sj � s

�
i

� 	
should be as small as possible,
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where s
�
i is the center of Si. Accordingly, the following constraint

should be introduced.

c2 ¼
XC
i¼1

X
sj2Si

sj � s
�� 	T

i
sj � s

�� 	
i
¼ tr S I � Hð ÞST

� 	
ð7Þ

where c2 refers the intra-mode distances of all modes, and I is the
identity matrix. The LDA-like matrix H can be obtained as follows:

H ¼ diag H1;H2; :::;HCð Þ;Hi ¼ 1
ni
1ni1

T
ni

ð8Þ

where 1ni is a vector with length ni, with all elements equal to 1, ni
is the total number of data for ith mode in the source domain and
target domain. The regularization of Eq. (7) appears to be similar
to the LDA regularization [34], so it will be called ‘‘LDA-like regulari-
zation” from this point on.

In summary, the MMD and LDA-like regularizations can be
thought of as a progressive relationship. The MMD regularization
makes the source domain center of each mode close to the target
domain center of each mode. In a complementary way, the LDA-
like regularization makes the data of the same mode closer to each
other, in order to reduce the intra-mode distance. Based on the
synergy effect of these two regularizations, the proposed method
was formulated by joining Eqs. (2), (3), and (7) together; the objec-
tive function of the proposed method can be rewritten as follows:

D; Sð Þ ¼ argmin
D;S

k X � DS k2F þ k X � DSin k2F

þk DSout k2F þ ak S k0 þ b1tr SMST
� 	

þb2tr S I � Hð ÞST
� 	

s:t: 8db � 1

ð9Þ

where b1 and b2 (b1;b2 > 0) are hyper-parameters of the MMD
regularization and the LDA-like regularization, respectively; and
these hyper-parameters can balance the weight between the
reconstruction error and the regularization constraints. Since the
proposed method reduces the distribution divergence between
the source domain and the target domain, it can achieve the effect
of eliminating extrinsic environmental interference.
3.3. Optimization

The optimization variables of the above objective function are D
and S. Since the optimization problem is not a joint convex prob-
lem for both variables, but is separately convex to D (while holding
S fixed) and convex to S (while holding D fixed), the alternative
optimization method is introduced to calculated the optimal val-
ues of D and S iteratively [35].

3.3.1. Updating D
When updating the dictionary by fixing S, the objective function

can be simplified to

D ¼ argmin
D

k X � DS k2F þ k X � DSin k2F þ k DSout k2F
s:t: 8k db k2 � 1

ð10Þ

After constructing a new data matrix and a new sparse matrix
Xnew ¼ X;X;O½ �, Snew ¼ S; Sin; Sout½ �, where O is the zero matrix of
the same dimension as X, the objective function (Eq. (10))
becomes

D ¼ argmin
D

k Xnew � DSnew k2F ; 8k db k2 � 1 ð11Þ

The objective function can be solved effectively by using the
Lagrange dual method [35]. First, consider the Lagrangian:
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L D;~k
� 	

¼ trace Xnew � DSnewð ÞT Xnew � DSnewð Þ
� 	

þ PCk
j¼1

kj
Pm
i¼1

D i; j½ �2 � 1

 �

;8kj � 0
ð12Þ

where L is Lagrange function, k
!¼ k1; k2; :::; kCk½ � is the introduced

nonnegative parameter.
Minimizing the Lagrangian (Eq. (12)) by D yields the Lagrangian

dual problem, as follows:

B ~k
� 	

¼ min
D

L D;~k
� 	

¼ trace XT
newXnew � K� XnewS

T
new SnewS

T
new þ K

� 	�1
XnewS

T
new

� 	T

 �

ð13Þ

where B is the Lagrangian dual formula; K is a diagonal matrix con-

sisting of k
!
, K ¼ diagð k!Þ. The Lagrangian dual problem (Eq. (13))

can be optimized by the Newton method or by a conjugate gradient.

After maximizing B k
!� 	

, we obtain the optimal bases D as follows:

DT ¼ SnewS
T
new þ K

� 	�1
XnewS

T
new

� 	T
ð14Þ
3.3.2. Updating S
The matrix S will be updated column by column. When sj is

being updated, the objective function can be expressed as follows:

sj ¼ argmin
sj

f sj
� �

¼ argmin
sj

k xj � Dsj k2F þ k xj � DQsj k2F þ k DPsj k2F

þaPCk
p¼1

s pð Þ
j

��� ��� þ b1Mjj þ b2 I � Hð Þjj
� 	

sTj sj þ sTj hj

ð15Þ

where Q , P, and hj are intermediate variables in the simplifica-
tion process of the objective functions. Q ¼ diag 0; 0; :::;1;1;1; ::::;ð
0;0;0Þ 2 RCk�Ck, P ¼ I � Q , and hj ¼ 2

P
j0–j b1Mjj0 þ b2 I � Hð Þjj0

� 	
sj0 .

Q is a diagonal matrix, and 1 is present only on the corresponding

k positions of the mode of sj. xj is the jth sample in X. s pð Þ
j is the

pth element in sj. We optimize Eq. (15) through a feature-sign
search algorithm [27,35]. Define g sj

� �
as follows:

g sj
� � ¼ k xj � Dsj k2F þ k xj � DQsj k2F þ k DPsj k2F

þ b1Mjj þ b2 I � Hð Þjj
� 	

sTj sj þ sTj hj

ð16Þ

where g sj
� �

is the differentiable part of the Eq. (15). In order to
address the feature-sign search algorithm for the problem in
Eq. (15), a lemma should be introduced.

Lemma 1: Define a continuous function over x as
F xð Þ ¼ G xð Þ þ kk x k1; the optimal necessary conditions of
x ¼ argmin

x
F xð Þ are

rpG xð Þ þ ksign xpð Þ ¼ 0;
rpG xð Þ�� �� � k;

(
if xpj j – 0
if xpj j ¼ 0

8xp ð17Þ

where G xð Þ is a continuous differentiable function over vector x
[36,35], xp is the pth element in vector x, and rpG xð Þ is the partial
derivative of G xð Þ over xp.
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Algorithm 1. Sparse matrix optimizing algorithm.

Input: Data matrix X, MMD matrix M, LDA-like matrix H, parameters a, b1, and b2
Output: Optimal sparse matrix S
Begin optimizing algorithm
For each sj in S do
Step initialization:

sj ¼ 0, h ¼ 0, active set A = fg, where h is a vector that represents a symbol of sj, hp 2 �1; 0;1f g denotes sign (s pð Þ
j )

Step activate:

From zero coefficients of sj, select p :¼ argmax
p

jr pð Þg sj
� �j. Activate s pð Þ

j (add p to A) only if it locally improves Eq. (15); that is, if

r pð Þg sj
� �

> a, then set hp ¼ �1, A = pf g [ A; otherwise, if r pð Þg sj
� �

< �a, then set hp ¼ 1, A = pf g [ A
Step feature-sign search:

Let D̂, dDQ , and dDP be a submatrix of D, DQ , and DP that contains only the columns in A; let ŝj, ĥj, and ĥj be sub-vectors of sj, hj, and h

in A, respectively
Compute the solution to the resulting unconstrained quadratic optimization problem (QP):

min f̂ ŝjÞ ¼ jjxj � D̂ŝjjj2F þ jjxj � dDQ ŝjjj2F þ jjdDPŝjjj2Fþ�
b1Mjj þ b2 I � Hð Þjj

� 	
ŝTj ŝj þ ŝTj ĥj þ aĥjŝj

If we let @ f̂ ŝjÞ=@ŝj ¼ 0
�

, we can obtain the optimal value of sj under the current A:

ŝnewj ¼ D̂TD̂þ dDQ TdDQ þdDPTdDP þ b1Mjj þ b2 I �Hð Þjj
� 	

I
n o�1

D̂Txj þdDPTxj � aĥj þ ĥj

� 	
=2

� 	
Perform a discrete line search on the closed line segment from ŝj to ŝnewj

Check the objective value at ŝnewj and all points where any coefficient changes sign

Update ŝj (and the corresponding entries in s) to the point with the lowest objective value
Remove zero coefficients of ŝj from the active set A and update h :¼ sign sj

� �
Step check optimality conditions:

(i) Optimality condition for nonzero coefficients: r pð Þg sj
� �þ asign s pð Þ

j

� 	
¼ 0;8s pð Þ

j – 0

If condition (i) is not satisfied, go to the step ‘‘feature-sign search” (without any new activation); otherwise, check condition (ii)

(ii) Optimality condition for zero coefficients: r pð Þg sj
� ���� ��� � a;8s pð Þ

j ¼ 0

If condition (ii) is not satisfied, go to the step ‘‘activate”; otherwise, return sj as the optimal solution
End for
End optimal algorithm
Proof: We provide a brief proof through a reduction to
absurdity. Assume that there is an element xp in the optimal
solution x that does not meet the condition. First, for
xpj j– 0, rpG xð Þ þ ksign xpð Þ– 0, it is obvious that rpF xð Þ ¼
rpG xð Þ þ ksign xpð Þ– 0. Therefore, we can find another value
x	p to take the place of xp to make F x	ð Þ be smaller. This is contra-
dictory to the assumption. Second, for xpj j ¼ 0, rpG xð Þ > k, since
G xð Þ is a continuous differentiable function, we can
find an x	p < 0 to take the place of xp and G x	ð Þ � G xð Þ < kx	p is
met. Therefore, F x	ð Þ ¼ G x	ð Þ þ kk x	 k1 ¼ G x	ð Þ þ kk x k1 � kx	p

< G xð Þ þ kk x k1 ¼ F xð Þ, which is also contradictory to the assump-
tion. For xpj j ¼ 0, rpG xð Þ < �k, the same way can be used to show
that the assumption is not true.

According to Lemma 1, the necessary condition in Eq. (15) can
be described as follows:

r pð Þg sj
� �þ asign s pð Þ

j

� 	
¼ 0;

r pð Þg sj
� ���� ��� � a;

8><>:
if s pð Þ

j

��� ���– 0

if s pð Þ
j

��� ��� ¼ 0
ð18Þ

When the first condition is violated, The objective function f sj
� �

in Eq. (15) is differentiable over s pð Þ
j because the sign of s pð Þ

j is
known, and it becomes an unconstrained optimization problem
(QP). When the second condition is violated, assume that
r pð Þg sj

� �
> a. Since r pð Þf sj

� �
must be greater than zero, in order

to minimize the local value of f sj
� �

, s pð Þ
j must decrease. Since s pð Þ

j
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starts at zero, any infinitesimal adjustment to s pð Þ
j will make the

sign of s pð Þ
j negative. Thus, we directly let the sign of s pð Þ

j be �1.

Then, f sj
� �

is similarly differentiable over s pð Þ
j , and the problem

can be solved simply. If r pð Þg sj
� �

< �a, s pð Þ
j can be updated in the

same way.
Accordingly, the complete process of the sparse matrix opti-

mization algorithm is summarized as shown in Algorithm 1.
3.4. Online process monitoring

After the common dictionary D is obtained, the process moni-
toring and mode classification task will be carried out.
3.4.1. Process monitoring
Dictionary D and the orthogonal matching pursuit (OMP) algo-

rithm [37] are used to calculate the sparse code sj of the target
domain data xj in the training set; the reconstructed residual
(RES) of the target domain data in the training set can be obtained
according to Eq. (19).

r ¼ k x� Ds k2 ð19Þ

where k � k2 represents the L2 norm of the vector, and r is the recon-
struction error of sample x.
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Next, the kernel density estimation (KDE) [38] is used to calcu-
late the residual distribution interval of the data in the target
domain, which can be used to detect whether the new testing data
is normal or abnormal. When the new testing data x comes from
the target domain, the sparse code s is obtained by using the same
OMP algorithm; then RES r of the testing data can be obtained
using Eq. (19). When the RES r belongs to the above distribution
interval, it is normal data. Otherwise, it is faulty data.

3.4.2. Mode classification
After testing data is detected as normal data, mode classifica-

tion is carried out, and the data x is identified by Eq. (20).

mode ¼ argmin
i

k x� Disi k2F ð20Þ

where si is sub-sparse code of s.
In summary, the complete model flow of the proposed method

is summarized in Algorithm 2.

Algorithm 2. RTDL.

Input: Source domain data matrix Xs ¼ xs1; xs2; :::; xns½ �, target
domain data matrix Xt ¼ xt1; xt2; :::; xnt½ �, parameters a, b1,
and b2

Begin RTDL algorithm
Step 1. Initialization
Structure data matrix X ¼ Xs1;Xt1; :::;Xsc;Xtc; :::;XsC ;XtC½ �,
MMD matrix M by Eq. (4) and LDA-like matrix H by Eq. (8).
D and S are initialized as random values, where
XsC and XtC represent the datasets of Cth mode of the
source domain and target domain, respectively

Step 2. Off-line training
Obtain D and S iteratively
To fix S, update D using Eq. (14)
To fix D, update S using Algorithm 1

Step 3. Online testing
(i) Process monitoring
Get the RES limit by D and the OMP and KDE algorithms
Conduct process monitoring by comparing the RES statistic
and RES limit
(ii) Mode classification
After the testing data is detected as normal data, conduct
mode classification using Eq. (20)

End RTDL algorithm
Table 1
Detailed description of data generation.

Mode Variable

t1 t2 e1; e2; :::; e5ð Þ
Mode 1 in source domain N 5;0:8ð Þ N 15;1:3ð Þ 3E 0:5ð Þ
Mode 2 in source domain U 2;3ð Þ N 15;1:7ð Þ 3E 0:5ð Þ
Mode 1 in target domain N 5;0:8ð Þ N 15;1:3ð Þ 0:1 F

�
5;10ð Þ

Mode 2 in target domain U 2;3ð Þ N 15;1:7ð Þ 0:1 F
�
5;10ð Þ
4. Illustrative experiments

In this section, extensive experiments are carried out on a
numerical simulation, the CSTH benchmark, and a wind turbine
system to demonstrate the effectiveness and superiority of the pro-
posed RTDL method. For the sake of performance visualization and
parameter sensitivity analysis, the MMD regularization and LDA-
like regularization are introduced separately in the numerical sim-
ulation in order to make it possible to visually observe the distribu-
tion of the samples. For the CSTH benchmark and the wind turbine
system, the proposed method is compared with some state-of-the-
art methods for a performance comparison.

4.1. Performance visualization and parameter sensitivity analysis

4.1.1. Datasets
Experiments on a numerical simulation are performed to verify

the motivation and intuitively evaluate the performance. The data
generation model of the numerical simulation is as follows:
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x
� ¼

x
�
1

x
�
2

x
�
3

x
�
4

x
�
5

26666664

37777775 ¼

0:5768 0:3766
0:7382 0:0566
0:8291 0:4009
0:6519 0:2070
0:3972 0:8045

26666664

37777775
t1
t2

 �
þ

e1
e2
e3
e4
e5

26666664

37777775 ð21Þ
where x
� ¼ x

�
1; x

�
2; x

�
3; x

�
4; x

�
5

h iT
is the observed variable of process

monitoring, t1 and t2 are two independent input variables of the
data simulation model, and e1; e2; :::; e5 are the noise of the observed
variable due to the current environment interference. For the sake
of brevity, we assume that there are two modes in the source
domain and target domain. The mode state is determined by the
independent input variables t1 and t2, while the environment inter-
ference e1; e2; :::; e5ð Þ results in domains difference. A detailed
description of the data is shown in Table 1, where N u;r2

� �
repre-

sents the Gaussian distribution whose mean is u and whose vari-

ance is r2. U x;x
�� 	

denotes a uniform distribution that ranges

from x to x
�
. E kð Þ denotes an exponential distribution with the

parameter k. F
�
c;qð Þ represents an F distribution with the degrees

of freedom as c and q. Abnormal data are collected from mode 2
in the target domain, with the bias faults occurring in x2.

For the training data, we collect 100 pieces of normal data for
each mode in the source domain and 10 pieces of normal data
for each mode in target domain. For the testing data, we collect
50 pieces of normal data for each mode and 300 pieces of abnormal
data in the target domain.
4.1.2. Performance visualization experiments
As mentioned above, MMD regularization and LDA-like regu-

larization can eliminate distribution divergence from different
perspectives. In order to verify that both have the ability to elimi-
nate distribution divergence, we separately introduce one of them
to observe the distribution of the samples visually by setting the
other regularization parameter as zero. The training data are uti-
lized to learn a common dictionary. Next, the sparse code of the
source domain data, target domain data, and abnormal data are
obtained through the common dictionary and OMP algorithm.
We visualize the sparse code by means of PCA. The visualization
is shown in Fig. 2.

Fig. 2(a) shows the raw data distribution. The domain distribu-
tion divergence that occurs is due to environmental interference.
The abnormal information is obscure. Figs. 2(b) and (c) show that,
with one of the regularizations used on its own, the distribution
divergence is partly eliminated and the abnormal information
emerges by means of dictionary learning. Fig. 2(d) shows that the
source data and target data are completely mixed and the abnor-
mal information can easily be identified by means of the proposed
method using both regularizations. Accordingly, the experimental
results agree with the motivation of this paper (Section 2.3).



Fig. 2. Distribution of samples. (a) Raw data; (b) sparse code learned by dictionary learning with LDA-like regularization; (c) sparse code learned by dictionary learning with
MMD regularization; (d) sparse code learned by dictionary learning with both regularizations.
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4.1.3. Parameter sensitivity analysis experiments
The parameter a is an important adjusting parameter in dic-

tionary learning that controls the sparsity of S. In general, a can
be selected by observing the sparsity of S, which represents the
percentage of nonzero elements in matrix S. As shown in Fig. 3, a
satisfactory process-monitoring result can be obtained when the
sparsity rate (SPR) ranges from 20% to 50% approximately; thus,
the parameter sensitivity analysis for SPR verified the robustness
of the proposed method.

Next, the process-monitoring performance is shown for the
modified b1 and b2 parameters. Let b1 change from 101 to 105,
while b2 changes from 10 to 70. The false alarm rate (FAR) and fault
detection rate (FDR) are considered to be two evaluation indexes
for process monitoring. The results are shown in Figs. 4 and 5. It
can be seen that the FAR is always lower than 3% and the FDR is
always greater than 80% when b1 and b2 are changed. This perfor-
mance of the process monitoring is commendable, even though b1
and b2 are changed in a wide range. When the values of b1 and b2

are too small, the learned dictionary can reconstruct the training
data well; however, the irrelevant environmental interference of
Fig. 3. Sensitivity analysis of the RTDL for FAR and SPR with parameter a. FAR: false
alarm rate.
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the training data is also learned by the dictionary. When the values
of b1 and b2 are too big, the objective function is only to reduce the
distribution difference between the domains; the learned dic-
tionary cannot reconstruct the process data well, and underlying
semantic information such as the mechanism information from
the data will be lost. Both of these cases reduce the ability of the
dictionary to capture the common latent information in the pro-
cess data, resulting in a poor performance in process monitoring.
In order to choose a suitable value for these hyper-parameters,
an optimization method such as the grid search can be selected.

4.2. Performance comparison experiments

4.2.1. Datasets
Since the performance of the proposed method is commendable

in the numerical simulation, we will now consider its performance
in realistic industrial scenarios. Two datasets were prepared for
these experiments.

(1) CSTH: The CSTH process is a nonlinear real platform that
has been widely used as a benchmark for evaluating different
Fig. 4. Sensitivity analysis of the RTDL for FAR with parameters b1 and b2.



Table 2
The sensor current signal setting parameters of CSTH.

Mode Liquid level sensor
cuttent (mA)

Temperature
sensor current
(mA)

Water valve position
sensor current (mA)

Mode 1 12 10.5 5.5
Mode 2 12 10.5 5.0

Fig. 5. Sensitivity analysis of the RTDL for FDR with parameters b1 and b2.
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process-monitoring methods [39]. The principle of CSTH is shown
in Fig. 6. In the CSTH process, there are two physical balances: a
mass balance and a thermal balance. Cold water and hot water
simultaneously flow into the sink, are stirred, and are heated by
steam [40]. Suppose that this process has two modes, where the
mode state is determined by the liquid level setting, temperature
setting, and hot water valve position setting. The details are given
in Table 2. To simulate environmental interference, we add an
exponential distribution variable E 0:5ð Þ to all observed variables
in order to form the source domain and an F distribution variable

0:1 F
�
5;10ð Þ to all observed variables in order to form the target

domain. An additivity fault is imposed onto the observed flow vari-
able to generate abnormal data. We collect 100 data for each mode
in the source domain and 30 normal data for each mode in the tar-
get domain in order to form training data. The testing data consist
of 50 data for each mode and 200 abnormal data in the target
domain.

(2) Wind turbine system: The data on the wind turbine system
come from a wind power company in Beijing. The data were sam-
pled every minute from 1 January 2011 to 11 November 2011 by
eight wind turbines, and the 15-dimensional data shown in Table 3
were used for process monitoring and mode classification. There
are different manifold structures among the data of each wind tur-
bine, which can be considered to be the operating modes of the
wind turbine system. The temperature and wind in summer are
different from those in winter, resulting in different operating tem-
peratures and operating powers for the wind turbine, and leading
Fig. 6. CSTH schematic diagram. TC: temperature controller; FC: flow controller;
LC: liquid level controller; TT: temperature sensor; FT: flow sensor; LT: liquid level
sensor; sp: set point. Reproduced from Ref. [40] with permission of Elsevier, �2008.
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to data distribution divergence. The wind turbine system is
affected by different environmental interferences in different sea-
sons. We assume the winter season to be the source domain while
the summer season is the target domain. A detailed description is
shown in Table 4. The training data is composed of 350 normal
pieces of data for each mode in the source domain and 50 normal
pieces of data for each mode in the target domain. A number of 50
normal pieces of data for each mode and 300 abnormal pieces of
data in the target domain are taken to constitute the testing data.
Due to the huge difference in the dimensions of the wind turbine
system data, all the data were normalized before the experiment.
4.2.2. Comparison experiments for process monitoring
In order to evaluate the proposed method quantitatively, two

other novel dictionary learning methods and an adaptive
monitoring method are used for comparison. In addition, two
data-processing strategies mentioned in Section 2.3 are used.
Comparison methods include: label consistent K-singular value
decomposition (LC-KSVD)(S+T), LC-KSVD(T), Fisher discrimination
dictionary learning (FDDL)(S+T), FDDL(T), moving window PCA
(MWPCA), and RTDL.

The LC-KSVD [41], FDDL [31], and MWPCA [42] methods are
three state-of-the-art methods for process monitoring. LC-KSVD
and FDDL possess the ability of mode classification, while
MWPCA is another adaptive method for process monitoring. Here,
LC-KSVD(S+T) and FDDL(S+T) refer to the LC-KSVD method and
FDDL method, respectively, using all the source domain training
data and target domain training data directly as the input data
points without considering the different characteristics between
the domains. LC-KSVD(T) and FDDL(T) refer to the LC-KSVD
method and FDDL method, respectively, only using the target
domain training data as the input data points. The MWPCAmethod
uses all the source domain training data and the target domain
training data directly as input data points without considering
the different characteristics between domains. RTDL uses the
source domain training data and the target domain training data
discriminately as the input data points. In order to make the
comparison fair, the size of the dictionary and other parameters
are set to be the same. In order to compare the performance of
the models, we refer to two indexes: FAR and FDR.

The results are shown in Figs. 7 and 8. As shown in these figures,
the proposed method outperforms the baselines in terms of accu-
racy in both of the realistic datasets. There are also some interest-
ing results. In CSTH, the FDR of LC-KSVD(S+T) is close to the FDR of
LC-KSVD(T), but the FAR of LC-KSVD(S+T) is clearly greater than
the FAR of LC-KSVD(T). This result agrees with the observation that
if the distribution divergence of the domains is ignored, the model
may easily confuse inter-domain difference information with
abnormal information, leading to a poorer process-monitoring
result.
4.2.3. Comparison experiments for mode classification
The proposed method can deal with multimode data. In addi-

tion, when data is detected to be normal data, mode classification
can be carried out; thus, in this section, the effectiveness of the
mode classification is evaluated by a comparison with the



Fig. 7. Process-monitoring results of baselines and the proposed method on CSTH. (a) The DRE statistic of LC-KSVD(S+T); (b) the DRE statistic of LC-KSVD(T); (c) the DRE
statistic of FDDL(S+T); (d) the DRE statistic of FDDL(T); (e) the T2 statistic of MWPCA; and (f) the DRE statistic of RTDL. DRE: dictionary reconstruction error.

Table 3
Features used in the wind turbine system experiment.

Table 4
Detailed description of the wind turbine system data.

Domain Model Abnormal data

Mode 1 Mode 2

Source domain Normal data in January 2011 in
wind turbine 20

Normal data in January 2011 in
wind turbine 70

No

Target domain Normal data in July and August 2011
in wind turbine 20

Normal data in July and August 2011
in wind turbine 70

Abnormal data in July and August 2011
in wind turbine 70
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baselines. Like the parameters setting, baselines can be used as the
comparison experiment for process monitoring. Note that the
mode classification task cannot be carried out by the MWPCA
method, so that method is not utilized for the mode classification
experiment. In order to compare the performance of the models,
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we refer to two indexes: mode 1 accuracy and mode 2 accuracy.
The result is shown in Table 5. It can be seen that the performance
of the proposed method in mode classification is better than that of
the baselines, which further verifies the effectiveness of the pro-
posed method.



Table 5
Mode classification result.

Method CSTH Wind turbine system

Mode 1 accuracy Mode 2 accuracy Mode 1 accuracy Mode 2 accuracy

LC-KSVD(S+T) 96 98 92 74
LC-KSVD(T) 0 64 76 84
FDDL(S+T) 0 100 18 88
FDDL(T) 0 100 48 42
RTDL 98 100 94 88

Fig. 8. Process monitoring results of the baselines and the proposed method on the wind turbine system. (a) The DRE statistic of LC-KSVD(S+T); (b) the DRE statistic of LC-
KSVD(T); (c) the DRE statistic of FDDL(S+T); (d) the DRE statistic of FDDL(T); (e) the T2 statistic of MWPCA; and (f) the DRE statistic of RTDL.
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5. Conclusions

Since industrial processes are often affected by a changeable
operating environment, online monitoring data and historical
training data do not always follow the same distribution. As a
result, learned process-monitoring models based on historical
training data cannot carry out the task of monitoring the online
streaming data accurately. In this paper, an RTDL method was pro-
posed. The proposed method is a synergy framework of represen-
tative learning and domain adaptive transfer learning. That is, the
dictionary learning method, which projects the raw data into a
subspace, is first used to learn a common dictionary to represent
both the source domain data and the target domain data. After
reducing the inter-domain distribution distance and the intra-
mode distance in the subspace, the distribution divergence caused
by environmental interference is eliminated, which improves the
ability of the learned dictionary to represent internal semantic
information, such as mechanism information. Through extensive
experiments including a numerical simulation, the CSTH bench-
mark platform, and a real wind turbine system, the superiority of
1272
the proposed method for the domain transfer problemwas demon-
strated. Thus, it can be concluded that the proposed method can
transfer knowledge from a single source domain to a single target
domain. Since industrial processes usually encounter several oper-
ating environments, future works will focus on realizing knowl-
edge transfer from multiple source domains to multiple target
domains.
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