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This paper presents the background, scientific objectives, experimental design, and preliminary achieve-
ments of the Xin’anjiang nested experimental watershed (XAJ-NEW), implemented in 2017 in eastern
China, which has a subtropical humid monsoon climate and a total area of 2674 km2. The scientific objec-
tives of the XAJ-NEW include building a comprehensive, multiscale, and nested hydrometeorological
monitoring and experimental program, strengthening the observation of the water cycle, discovering
the spatiotemporal scaling effects of hydrological processes, and revealing the mechanisms controlling
runoff generation and partitioning in a typical humid, hilly area. After two years of operation, preliminary
results indicated scale-dependent variability in key hydrometeorological processes and variables such as
precipitation, runoff, groundwater, and soil moisture. The effects of canopy interception and runoff par-
titioning between the surface and subsurface were also identified. Continuous operation of this program
can further reveal the mechanisms controlling runoff generation and partitioning, discover the spa-
tiotemporal scaling effects of hydrological processes, and understand the impacts of climate change on
hydrological processes. These findings provide new insights into understanding multiscale hydrological
processes and their responses to meteorological forcings, improving model parameterization schemes,
and enhancing weather and climate forecast skills.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The water cycle, consisting of a series of hydrological processes,
including atmospheric moisture transportation, precipitation,
evapotranspiration, infiltration, runoff generation, and runoff con-
centration, is an essential component of the climate system [1,2].
Movement of water through the liquid, solid, and vapor phases is
the most active process in the ecosystem involving the biological,
chemical, and physical exchange of water, energy, and carbon
between the land surface and the atmosphere [3,4]. Because cli-
mate dynamics, human activities, and land use/land cover changes
on multiple spatiotemporal scales influence the complex water
cycle processes [3,5–7], understanding and quantifying the com-
plex hydrological processes in a changing environment has become
a major scientific endeavor [4,8,9].

Experiments on and observation of water cycle elements are the
foundation to understanding various hydrological processes. How-
ever, a lack of reliable data is a longstanding challenge to quantita-
tively understanding the global water and energy exchange
[10,11]. Many experiments have been conducted to understand
the local, regional, and global water and energy cycles in recent
decades, such as the Global Energy and Water Cycle Experiment
in the 1990s [11,12] and the Coordinated Enhanced Observing
Period launched in 2001 [13]. The United States Department of
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Agriculture established the well-known Walnut Gulch Experimen-
tal Watershed in 1953 to study soil erosion and land degradation
problems. It gradually evolved into a comprehensive experimental
watershed with multiple functionalities for understanding hydrol-
ogy and ecosystems and interactions between water supply and
water quality in a typical semi-arid region [14–17]. Hydrological
experiments have played a critical role in discovering hydrological
mechanisms, advancing the hydrology discipline, and developing
and verifying new and existing theories and models [16,18–21].
The experimental studies of hillslope hydrology under different
conditions worldwide [22–26] have boosted the development of
hillslope hydrology and provided a basis for discovering important
hydrological theories such as the runoff generation mechanisms
under saturated storage and variable contributing area, assuming
that only partial catchment areas with saturated storage contribute
to runoff [27–30]. It further catalyzed the development of hydro-
logical models, such as the Hydrologiska Byråns Vattenbal-
ansavdelning model [31,32], topography based hydrological
model [33], Xin’anjiang model [27], variable infiltration capacity
model [34], hydrologic model system (HMS) [2,8], and grid-
topography-based distributed hydrological model [35]. More
recently, with the availability of new data and techniques, signifi-
cant progress has been made on identifying and representing the
spatial heterogeneity of runoff generation based on topography-
and physics-based estimation of root zone storage [36–38] and
topography and land cover/land use [39].

In recent years, China has launched several field camps and
regional observation programs in its northwestern semi-arid and
arid regions and the Tibetan Plateau, including the Heihe Water-
shed Allied Telemetry Experimental Research, launched in 2012
to improve the observability of hydrological and ecological pro-
cesses in the Heihe Watershed of northwestern China [40], multi-
scale soil moisture and freeze–thaw monitoring network in the
Tibetan Plateau established in 2012 [41], and third atmospheric
scientific experiment over the Tibetan Plateau to build integrated
monitoring systems for the land surface, boundary layer, tropo-
sphere, and lower stratosphere [42]. These studies have provided
valuable first-hand ground truths to validate model simulations
and assess climate change impacts. Ground and satellite observa-
tions show that climate change has intensified the water cycle
and altered the spatiotemporal distribution of water over large
regions [9,43–45]. Because detailed information on fine-scale and
multiscale hydrological processes is limited, further studies on
the first-order hydrological processes and diurnal–seasonal-inter
annual variations of various hydrological processes and mecha-
nisms controlling the water cycle in the changing environment
on fine and multiple scales [46,47] are required for more accurate
future projections.

Hydrological data are the basis for an accurate understanding of
the water cycle. Hydrological variables, such as rainfall, evapora-
tion, soil water content, groundwater level, and streamflow, are
obtained through remote sensing technology and in situ observa-
tions. Although remote sensing techniques can provide spatially
continuous in situ observations of hydrological variables, they can-
not provide temporally continuous coverage and capture fine-scale
key processes [10,48]. Furthermore, remote sensing relies on in situ
observations for calibration and performance evaluation [10,48].
However, scaling is hampered by the combined remote sensing
and in situ observation data [49–51]. Addressing these challenges
requires developing holistic, multiscale observations for more
accurate quantification [52].

Humid regions, mainly located in eastern and southeastern
China, account for approximately 32% of the total area. Topography
in eastern China varies greatly in space and creates large landscape
heterogeneity. The Xin’anjiang model [53] was developed based on
the saturation–excess runoff generation mechanism inferred from
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the observed hydrological data in the Xin’anjiang Watershed in the
eastern China humid zone. The Xin’anjiang Watershed has fre-
quent high-intensity rainfall and rapid response to hydrological
processes, which can easily lead to flash floods. Flooding due to
extremely intense rainfall is among the most severe natural disas-
ters in eastern China [54]. Some studies have shown that eastern
China has experienced an increasing trend in extreme rainfall
[55–57]. According to a recent Intergovernmental Panel on Climate
Change (IPCC) report 2020, eastern China is projected to
suffer large climate changes and experience intense climate
change-induced hydrometeorological extremes. Understanding
the hydrological processes at different scales and their responses
to meteorological forcing is the key to preventing flood hazards
and relieving their impacts in the region [2,8]. Accurate observa-
tion in the Xin’anjiang Watershed is critical to understanding the
hydrological processes, flood formation mechanisms, and water
cycle under the changing environment in eastern China humid
zones and other similar regions.

In this study, we present the background, scientific objectives,
experimental design, and preliminary achievements of the Xin’an-
jiang nested experimental watershed (XAJ-NEW), established in
2017, to understand the multiscale hydrological processes in Chi-
na’s typical subtropical humid monsoon region.
2. Scientific objectives

The scientific objectives of the XAJ-NEW were to build a com-
prehensive, multiscale, and nested hydrometeorological monitor-
ing and experimental system to strengthen the observation of
the water cycle in a typical humid, hilly area of eastern China, dis-
cover the spatiotemporal scaling effects of hydrological processes
through the observations of the multiscale nested watersheds,
and reveal the mechanisms controlling runoff generation and par-
titioning and the interaction and feedback among various pro-
cesses. XAJ-NEW observes key hydrometeorological variables,
including rainfall, soil moisture, groundwater depth, interception,
and runoff components. The observation instruments and facilities
were constructed per the relevant standards and gradually imple-
mented since August 2017.

Network observations provide key hydrometeorological vari-
ables and processes at a fine temporal scale and across multiple
spatial scales in a spatially nested fashion to accurately measure
hydrological processes and their spatial heterogeneities. Because
hydrological processes are influenced by complex topography
and meteorological conditions, observations of hydrological vari-
ables should be enhanced at both spatial and temporal scales.
For example, rainfall stations are densely distributed in typical
watersheds. In addition, the observations of these variables range
from minutes to hours in the XAJ-NEW.

The experiments observe key hydrological processes and mete-
orological variables to better understand the important ecohydro-
logical processes and underlying mechanisms. For example, the
observations at the XAJ-NEW quantifies the canopy interception
and runoff partitioning process through the rainfall gauging array
and runoff component observing system, respectively. These
important processes in hydrology are often simulated using empir-
ical methods. The canopy rainfall interception instrument quanti-
tatively observes the interception ratio under different rainfall
intensities and canopy conditions and provides the ground truth
to develop more accurate equations to simulate interception. In
the Xin’anjiang model, runoff separation includes three compo-
nents: surface, interflow, and subsurface runoffs [53,58–60]. The
runoff component observation system directly measures the sur-
face runoff and interflow under different soil depths, further
improving our knowledge of the natural runoff partitioning
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process. Moreover, the root zone is the most active soil layer for the
transfer and partitioning of water and energy and plays a key link
between the water cycle and vegetation dynamics [61]. An array
soil moisture gauging network, implemented in the XAJ-NEW,
observes soil moisture from the topsoil to 60 cm below the ground.
Groundwater monitoring platforms were also installed in the XAJ-
NEW to monitor the groundwater dynamics and aeration zone. In
addition, the flux tower in the XAJ-NEW observes the meteorolog-
ical variables at different heights and capture the exchange of
water vapor, CO2, and energy between the terrestrial ecosystem
and atmosphere. These observations aid the development of accu-
rate ecohydrological processes and improve the hydrological and
land surface models.

3. Experimental area and network design

3.1. Study area

3.1.1. Tunxi Watershed
The XAJ-NEW was implemented across the entire Tunxi Water-

shed (Fig. 1(a)). Tunxi Watershed is the headstream of the Xin’an-
jiang Watershed and is located in Huangshan, Anhui Province
Fig. 1. Location and configuration of the XAJ-NEW: (a) geographical locations of the five-
the two 2nd-tier watersheds and distributions of their gauging stations, (c) topography of
Watershed II within the 2nd-tier Watershed II. DEM: digital elevation model.
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(Fig. 1(a)), China. The region has a humid climate and a drainage
area of 2674 km2 [62–64]. The average annual rainfall and temper-
ature were approximately 1800 mm�a�1 and 17 �C, respectively. In
the XAJ-NEW, the Tunxi Watershed was divided into five-tier
nested watersheds (Fig. 1) as follows: the 5th-tier Tunxi Watershed
(Fig. 1(a)), 4th-tier Yuetan Watershed (Fig. 1(a)), 3rd-tier Zhonghe-
cun Watershed (Fig. 1(a)), two 2nd-tier watersheds (2nd-tier
Watershed I and 2nd-tier Watershed II) located within the
Zhonghecun Watershed (Fig. 1(b)), and two 1st-tier watersheds
(1st-tier Watershed I and 1st-tier Watershed II) located within
the 2nd-tier Watershed II (Figs. 1(c) and (d)). Vegetation in this
region is dominated by evergreen broadleaf forest, evergreen
needleleaf trees, and bamboo.

3.1.2. 2nd-and 1st-tier watersheds
The two typical 2nd-tier watersheds, located in the Mukeng vil-

lage, Huangshan, are part of the Zhonghecun Watershed (Fig. 1(b)).
Named the Xin’anjiang Monitoring and Experimental Field Center
(hereinafter referred to as typical catchments), they are adjacent
with a drainage area of 0.35 km2 (2nd-tier Watershed I on the left)
and 0.23 km2 (2nd-tier Watershed II on the right), respectively. The
mean slope of the 2nd-tier watersheds is approximately 30�. The
tier nested watersheds and spatial distributions of gauging stations, (b) locations of
1st-tier Watershed I within the 2nd-tier Watershed II, and (d) topography of 1st-tier



Table 2
Types and features of instruments installed across the 2nd-tier watersheds within the
XAJ-NEW.

Instruments Main features Density of
instruments
(set�km�2)

Image

Integrated Each system has one tipping 20.69 Fig. 2(a)
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soil in this region is mainly sandy and clayey, and soil depth varies
between 5–8 m. The two watersheds represent the topography,
geomorphology, geology, and meteorology across the Tunxi Water-
shed. The two 1st-tier watersheds are heavily and intensely gauged
to observe the hydrometeorological states to study the canopy
interception, surface runoff, interflow, soil water content, and
evapotranspiration.
rainfall and
soil station

bucket rain gauge and four
soil moisture sensors to
measure rainfall and soil
moisture at depths of 10, 30,
40, and 60 cm every 5 min.

Groundwater
level station

Each station has one water
level meter equipped with a
data logger and solar panels
to record groundwater depth
every 5 min.

25.86 Fig. 2(b)

Flow weir It is implemented in the
rivulet channel and equipped
with a laser level meter to
automatically measure water
level every 5 min.

6.90 Fig. 2(c)

Array soil
moisture
gauging
network

There is an array of soil
moisture stations in both 1st-
Tier Watersheds I and II. 1st-
Tier Watersheds I and II have
30 and 10 four-layer
moisture-monitoring sites,
respectively. Four sensors are
inserted into the soil at the
depths of 10, 30, 40, and
60 cm at each location. The
data are recorded every
5 min.

1052.63 Fig. 2(d)

Rainfall
gauging
array

It measures rainfall
interception by plant
canopies with different
densities. It comprises ten
tipping bucket rain gauges
evenly distributed within an
area of 40 m2. The data are
recorded every 5 min.

1.72 Fig. 2(e)

Runoff
component
gauging
system

A gauging system measures
the runoff components in
both 1st-tier Watersheds I
and II. Each gauging station is
equipped with four water
weirs and five laser water
level meters and measures
surface runoff and interflows
within three layers, i.e., 0–1,
1–2, and 2–3 m, every 5 min.

52.63 Fig. 2(f)

Evaporation
pan

One evaporation pan observes
the pan evaporation every
10 min.

1.72 Fig. 2(g)
3.2. Network configuration

The design of the XAJ-NEW is based on the idea of building a
comprehensive, multiscale, and nested hydrometeorological
monitoring and experimental system. It comprises five tiers of
nested watersheds with areas ranging from 0.003 to 2674 km2

(Fig. 1). Tunxi Watershed is the ultimate outlet of the XAJ-NEW
(Fig. 1). The implementation of the XAJ-NEW takes advantage of
existing gauging systems, including hydrological stations and rain
gauges implemented by the Hydrological Bureau of Anhui Province.
The layout and location selections of all hydrological gauges
follow the Technical Regulations for Hydrologic Network Design
(SL 34–2013) [65] issued by the Ministry of Water Resources, the
People’s Republic of China. The densities and spatial distributions
of all gauges meet the Technical Regulations for Hydrologic Net-
work Design (SL 34-2013) [65] requirements.

Ground observations were conducted across the Tunxi Water-
shed with intense measurements within two representative 2nd-
tier watersheds. There are three major types of general gauging
stations across the Tunxi Watershed: rainfall gauging stations,
comprehensive gauging stations that measure rainfall, soil mois-
ture, and groundwater, and hydrological stations that measure
streamflow and evaporation (Table 1). A network of nested hydro-
logical stations serves as the fundamental gauging system for mea-
suring streamflow and exploring the runoff concentration and
propagation on multiple spatial scales. Within the 2nd-tier water-
sheds (Fig. 1(b)), more instruments are deployed, including inte-
grated rainfall and soil moisture measurement systems,
groundwater level monitoring platforms, flow weirs, array soil
moisture gauging networks, rainfall gauging array, runoff compo-
nent gauging systems, evaporation pan, meteorological station,
lysimeter, and flux tower (Table 2 and Fig. 2). The rainfall and
groundwater stations were roughly evenly distributed across the
Tunxi Watershed and typical catchments. Soil moisture involving
three spatial scales (Tunxi Watershed and 1st-tier and 2nd-tier
watersheds) was also recorded. Three river discharge gauges are
implemented in the Zhonghecun Watershed, Yuetan Watershed,
Table 1
Types and features of generic gauging stations implemented across the XAJ-NEW.

Gauging station
type

Main features Density of
instruments
(set�km�2)

Rainfall gauging
station

Each station has one tipping bucket
rain gauge that records rainfall every
5 min.

0.0075

Comprehensive
gauging
station

Each station has one tipping bucket
rain gauge, four soil moisture sensors,
and one groundwater (pressure water)
level meter to measure rainfall,
volumetric soil water content at depths
of 10, 30, 40, and 60 cm, and
groundwater level, respectively. Data
are recorded every 5 min.

0.0037

Hydrological
station

Each station has one flow level meter to
measure water level and determine the
corresponding flow discharge. Tunxi
station has one evaporation pan to
measure pan evaporation.

0.0011

Meteorological
station

One meteorological station
observes multiple
meteorological elements
every 10 min, including air
temperature, relative
humidity, wind speed, wind
direction, precipitation, total
radiation, soil moisture, and
soil temperature.

1.72 Fig. 2(h)

Lysimeter Two lysimeters measure soil
evaporation, soil heat flux,
soil moisture, soil
temperature, electrical
conductivity, and soil water
potential at the depths of 10,
20, 40, 80, 120, and 180 cm.
Data are recorded every
10 min.

1.72 Fig. 2(i)

Flux tower The flux tower measures
three-dimensional wind
speeds and directions, water
vapor, carbon dioxide, air

1.72 Fig. 2(j)

(continued on the next page)

210



Table 2 (continued)

Instruments Main features Density of
instruments
(set�km�2)

Image

temperature, and light
quantum at the height of
30 m, and soil heat flux at
depths of 5, 10, and 15 cm.
Gradient flux observation
includes air temperature,
relative humidity, and two-
dimensional wind speed and
direction at 25, 20, 15, 13, and
5 m. Other measured
variables include four
radiation components at
13 m, soil heat flux at a depth
of 10 cm, and soil moisture at
depths of 10, 40, and 100 cm.
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and Tunxi Watershed. In addition, several critical hydrological pro-
cesses are observed within the typical catchments. The array rain-
fall station was instrumental in observing canopy rainfall
interception. The runoff component gauging system observes the
runoff components.

In summary, the instrument can observe hydrological pro-
cesses, such as rainfall, soil water content, groundwater level,
canopy interception, surface runoff, and interflow. The meteoro-
logical station and flux tower within the typical catchments also
provide observations for meteorology, momentum, energy fluxes,
and CO2 fluxes. Observations in the XAJ-NEW, especially within
the typical catchments, cover almost all important hydrological
processes and key meteorological variables, providing a solid foun-
dation for studying the hydrometeorological processes in this
region, and mechanisms controlling these processes, and develop-
ing numerical methods to simulate these processes accurately. The
data are automatically stored and transmitted through the wireless
network. The reliability of the data was guaranteed through strict
quality control software and manual post-processing and quality
control. Moreover, the data and observation equipment are rou-
tinely checked and maintained.
3.3. Data analysis methods

3.3.1. Spatial interpolation
Based on the characteristics of hydrological variables, appropri-

ate spatial interpolation methods are used to obtain the spatial dis-
tributions of hydrological variables from site-level observations.
Fig. 2. Images of the instruments installed across the 2nd-tier watersheds: (a) integra
(d) array soil moisture gauging network, (e) rainfall gauging array, (f) runoff component
(j) flux tower.
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The CoKriging interpolation method was used to estimate the
groundwater depth considering the relatively low station density
and impact of terrain on the observed groundwater depth as fol-
lows [66,67]:

Pv
l¼1

Pnl
i¼1kilclv xi; xj

� �� lv ¼ cuv xj; x
� �

Pnl
i¼1kil ¼

1; 1 ¼ u

0; 0–u

�
8><
>: ð1Þ

cuv hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

Zu xið Þ � Zu xi þ hð Þ½ � Zv xið Þ � Zv xi þ hð Þ½ � ð2Þ

where i and j are the origin and extremity number of the vector, n is
the number of primary variables, l is the number of covariate vari-
ables, u and v are the primary (groundwater depth) and covariate
(elevation) variables, respectively, k is the weight associated with
the data, c is the value of the variogram, Z xð Þ indicates the magni-
tude of the variable, and NðhÞ is the total number of pairs of attri-
butes that are separated by a distance h. Additionally, we applied
the inverse distance weighting method to obtain the precipitation
distribution in space.

3.3.2. Analysis of the spatial scaling effect of rainfall
The product moments (PM) method was used to assess the spa-

tial scaling effect [68,69]. If a hydrological variable on one spatial
scale can be transformed to another scale of equivalent distribu-
tion, it is considered scalable. Simple and multiscaling approaches
are the two most common methods used to evaluate the scaling
effects of hydrological variables [70,71]. If a hydrological process/-
variable ðXiÞ at watershed i follows simple scaling, its moments
and drainage area meet the following relationships:

lnðEðXk
i ÞÞ ¼ lnðEðXk

j ÞÞ þ bklnðAiÞ ð3Þ

bk ¼ bk ð4Þ

where E Xk
i

� �
is the moment of order k for Xi, Ai is the drainage area,

EðXk
j Þ is the moment of order k for Xj of the reference watershed, bk

is the fitted slope, and b is the scaling factor, which is a constant.
The multiscaling approach is followed if the scaling factor is vari-
able. Based on the observed rainfall data on multiple spatial scales,
we evaluated the scaling effect of rainfall and assessed whether it
met simple scaling.

3.3.3. Analysis of observed key water cycle components
We calculated the inter-site spatial correlation coefficients (R)

of the soil water content at the four depths to investigate its spatial
ted rainfall and soil moisture station, (b) groundwater level station, (c) flow weir,
gauging system, (g) evaporation pan, (h) meteorological station, (i) lysimeter, and
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variability. The box–whisker plot, or box plot, represents the distri-
bution of these correlation coefficients.

For canopy interception, we analyzed the statistical relationship
between the canopy rainfall interception ratios (CRIR) measured by
the array rainfall stations and the corresponding canopy leaf area
index (LAI) measured using the LAI-2000 Plant Canopy Analyzer
(Li-Cor, Inc., USA). Finally, we analyzed the observed runoff compo-
nents at the 1st-tier Watershed I and compared the discharge pro-
cesses across the XAJ-NEW on multiple spatial scales.
4. Preliminary results

4.1. Spatial scaling effect of rainfall

It is well known that rainfall exhibits great variability in space
[72]. In this study, 30 rainfall stations, evenly distributed across
the Tunxi Watershed (with a drainage area of 2674 km2), were
ig. 3. Relationships (a) between the logarithm of mean value of coefficient of
ariation of the rainfall lnðEðCv ÞÞ and the logarithm of the watershed area (lnðAÞ),
nd (b) between the fitted slope bk and the moment of order k.
F
v
a

Fig. 4. Five-minute time series of site-averaged volumetric soil water content at four soil
Watersheds I and II, and boxplots of inter-site correlation coefficients (R) at the four soil d
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selected to identify the spatial scaling effects of rainfall. Corre-
spondingly, 11 and 2 of the 30 rainfall stations are located within
the Yuetan (drainage area of 854 km2) and Zhonghecun water-
sheds (drainage area of 140 km2), respectively. The PM method
was used to examine the scaling effect of rainfall. The coefficient
of variation (Cv) was used to evaluate the spatial variability of
rainfall.

First, the linear relationship between lnðEðCv ÞÞ and lnðAÞ indi-
cate that the drainage area reflects the main characteristics of
the spatial variability of rainfall (Fig. 3(a)). Second, the fitted slope

bk (i.e., the slope of thelnðEðCk
v ÞÞ � lnðAÞ curve) is a linear function

of k with the intercept close to zero (Fig. 3(b)), showing that the
scaling factor of Cv is a constant (0.4258). The above results indi-
cate Cv of rainfall across the Tunxi Watershed follows simple scal-
ing and increases as the drainage area increases, leading to larger
spatial heterogeneity.

4.2. Rainfall and soil water content

The soil water content and rainfall were analyzed at two spatial
scales: the Tunxi Watershed and typical catchments. The spatial-
averaged soil water content of the Tunxi Watershed has a similar
seasonality to that of the typical catchments (Fig. 4). The seasonal
variations in the observed 5-min spatial-averaged soil water con-
tent in 2018 are shown in Figs. 4(a) and (b). The soil moisture of
the top layer (10 cm) shows large variability and fluctuations
between March and September for both the Tunxi Watershed
and typical catchments (Fig. 4). The regional average soil water
content shows an apparent vertical gradient, with soil moisture
increasing with soil depth (Fig. 4), demonstrating the buffering
effects of the soil column on the soil moisture. To investigate the
spatial variability of soil water content, we also calculated the
inter-site spatial correlation coefficients of the soil water content
at depths of 10, 30, 40, and 60 cm (Figs. 4(c) and (d)). The mean
inter-site correlation coefficient of the first layer (10 cm) is
layers and rainfall in 2018 for (a) the 5th-tier Tunxi Watershed and (b) the 2nd-tier
epths for (c) the 5th-tier Watershed Tunxi and (d) the 2nd-tier Watersheds I and II.
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relatively high for the Tunxi Watershed, and typical catchments at
0.7758 and 0.8839, respectively, and decreases as soil depth
increases, with the lowest values at the 60 cm layer (0.4882 and
0.7231) (Figs. 4(c) and (d)). Therefore, soil moisture has a higher
spatial correlation on the surface and a lower spatial correlation
underground. The mean inter-site correlation coefficient of the
Tunxi Watershed at different depths ranges from 0.4882 to
0.7758 (Fig. 4(c)), while those of the typical catchments are above
0.7231 (Fig. 4(d)). These results demonstrate the distance-
dependent correlation of soil moisture.

4.3. Groundwater depth

Groundwater depth was observed at the Tunxi Watershed and
typical catchments. The temporal variations in the groundwater
depth anomalies in 2018 are shown in Fig. 5. The groundwater
level rises significantly from April to June and declines after July
(Figs. 5(a) and (b)). The groundwater depth across the Tunxi
Watershed ranges between �1.35 and 4.97 m relative to the
2018 yearly average (Fig. 5(a)), whereas the typical catchments
have a much lower fluctuation, varying between �0.89 and
2.49 m (Fig. 5(b)). Tunxi Watershed has a larger elevation range
and a much larger drainage area (1523 m and 2674 km2, respec-
tively) than the 2nd-tier typical watersheds (318 m and
0.58 km2, respectively), contributing to the large spatial variability.
In addition, the spatiotemporal distributions of precipitation, soil
properties, and other geographical factors may also impact the
variability of the groundwater level. We applied the CoKriging
interpolation method [66] to estimate the spatial distribution of
groundwater depth based on station observations. For the Tunxi
Watershed, yearly average groundwater depth ranges from �7.64
to �0.07 m, with shallower water tables near the drainage network
and downstream areas (Fig. 5(c)). Groundwater depths across the
typical catchments have a much lower spatial variability (Fig. 5
(d)) than the Tunxi Watershed because of the small area (only
0.58 km2). In addition, the groundwater depths near the outlets
Fig. 5. Five-minute time series of site-wise (colored lines) and site-averaged (black line
(b) the 2nd-tier Watersheds I and II, and spatial distributions of the 2018 yearly averag
Watersheds I and II interpolated by the CoKriging method; positive anomalies means sh
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and streams are lower (Fig. 5(d)). The ground surface elevation
for the Tunxi Watershed and typical catchments is 96–1619 and
188–506 m, respectively. We conclude that topography variability
and scale play an important role in controlling the spatial variabil-
ity of groundwater depth across the Tunxi Watershed.

4.4. Canopy rainfall interception

Using the LAI-2000 Plant Canopy Analyzer, the canopy LAI over
each rain bucket was measured on March 16, 2019. The LAI values
over the nine rain buckets were 1.560, 1.150, 1.210, 0.388, 0.054,
0.000, 0.620, 0.010, and 0.301. Accordingly, we divided the samples
into three categories: LAI � 0.5, LAI < 0.5, and all LAI values. Rain-
fall above the canopy was selected as a reference to evaluate the
interception function of the canopy. Twenty-nine rainfall events
were used to analyze the relationship between CRIR and accumu-
lated rainfall and LAI. CRIR decreases as the LAI decreases (Fig. 6).
In addition, there is a logarithmic relationship between the inter-
ception ratio and accumulated rainfall (Fig. 6), consistent with
the findings of Yu et al. [73]. As the accumulated rainfall increases,
the CRIR decreases rapidly and gradually levels off (Fig. 6). In addi-
tion, LAI has a large impact on CRIR. Canopy with LAI � 0.5 can
intercept 20% of a rainfall totaling 51 mm, while canopy with
LAI < 0.5 can only intercept 20% of a rainfall totaling 9 mm
(Fig. 6). The relationship between CRIR, accumulated rainfall, and
LAI can be used to estimate the canopy interception required in
hydrological and ecological models [74,75].

4.5. Separation of runoff components

The gauging system can observe the surface runoff and inter-
flow between 0–1, 1–2, and 2–3 m below ground in the XAJ-
NEW. We chose a typical rainfall–runoff event of the 1st-tier
Watershed I to analyze the surface runoff and interflow processes
in 2018 (Fig. 7). Before this rainfall event (#2018042302), the
typical catchments did not receive rainfall for several days, making
s) groundwater depth anomalies in 2018 for (a) the 5th-tier Tunxi Watershed and
e groundwater depth across (c) the 5th-tier Tunxi Watershed and (d) the 2nd-tier
allow depth.



Fig. 6. Relationships between event-level canopy rainfall interception ratios (CRIR) and accumulated rainfall under different canopy densities (LAI). Point-level samples are
grouped by their corresponding LAI categories (i.e., LAI < 0.5, LAI � 0.5, and all LAI values) and averaged to produce the data points.

Fig. 7. Five-minute time series of observed four runoff components, namely, surface runoff (Qs), and interflows of level 1 (0–1 m) (QI1), level 2 (1–2 m) (QI2), and level 3 (2–
3 m) (QI3) at the outlet of the 1st-Tier Watershed I during the typical rainstorm event #2018042302.
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the soil relatively dry and the mean soil water content at the 10 cm
layer was 0.2 m3�m�3. Rainfall started at 2:10 AM on April 23,
2018. During the first 12 h, the rainwater infiltrated into the soil
to fill the soil water deficit, and no runoff was generated (Fig. 7).
As rainfall continued, runoffs start to yield and reach the peaks
around 15:35 with surface runoff depth of 0.43 mm per 5 min
and level 3 interflow depth (2–3 m) of 0.09 mm per 5 min around
15:55 (Fig. 7). For this event, the accumulated rainfall is
126.30 mm, while runoff depths for the surface, 0–1, 1–2, and 2–
3 m layers, are 16.3 mm (12.9%), 2.24 mm (1.78%), 1.96 mm
(1.55%), and 8.28 mm (6.55%), respectively. The 0–1 and 1–2 m lay-
ers yielded little interflow, suggesting that rainfall intensity may
surpass the infiltration capacity during the peak period [76], and
gravity plays an important role in interflow partitioning. In addi-
tion, surface runoff during this event shows a rapid rise and fast
recession, while the interflow runoff in the 2–3 m layer is slower
and flatter, indicating the regulation of the soil column on the
hydrological processes.

4.6. Multiscale discharge

The discharge gauges were installed at the outlets of the
Zhonghecun, Yuetan, and Tunxi Watersheds. As shown in Fig. 8,
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the hydrographs at the three discharge gauges show steep rising
and falling limbs but with different durations. Tunxi has the long-
est flood, lasting (175.00 ± 73.61) h, followed by Yuetan ((160.33
± 62.63) h) and Zhonghecun ((131.00 ± 36.89) h), indicating the
influence of the size and water storage capacity of the watershed
on flooding. Flood events #2019051220 and #2019052508 have
narrow, steep, and single-peaked hydrographs at all three stations
(Fig. 8). However, for flood event #2019061615, the hydrograph of
Tunxi station has a double-peaked hydrograph corresponding to
the double-peaked hyetograph, whereas the hydrographs of the
Yuetan and Zhonghecun stations have a single-peak (Fig. 8).
Because the Tunxi station is the outlet of the entire Tunxi Water-
shed and has a larger contributing area, more complex geographi-
cal characteristics and spatial variability of rainfall can produce a
more complex hydrograph. Moreover, as a part of the Yuetan
Watershed, the Zhonghecun station tends to reach flood peaks ear-
lier than the Yuetan station (Fig. 8). However, the flood peak time
at the Tunxi station is slightly shorter than that at the Yuetan sta-
tion (Fig. 8). Furthermore, we produced a map of accumulated rain-
fall for each flood event using the inverse distance weighting
method (Fig. 9). The first two events (#2019051220 and
#2019052508) have relatively even rainfall across the region than
the third event (#2019061615). The uneven temporal and spatial



Fig. 8. Hourly time series of observed streamflow during the flood season of 2019 at the outlets of the 3rd-tier Zhonghecun Watershed, 4th-tier Yuetan Watershed, and 5th-
tier Tunxi Watershed; there are three flood events (#2019051220, #2019052508, and #2019061615) during this period.

Fig. 9. Spatial distributions of observation-based accumulated rainfall during the three flood events in 2019: (a) Event #2019051220, (b) Event #2019052508, and (c) Event
#2019061615.
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distributions of rainfall (Fig. 8 and Fig. 9(c)) can explain the double-
peaked hydrograph at Tunxi and the earlier flood peak occurrence
at Yuetan than at Tunxi.
5. Summary

A spatially nested experimental watershed named XAJ-NEW
was successfully built in the Xin’anjiang Watershed, making it
the very first of its kind in the eastern China humid zone. Aimed
at understanding the multiscale water cycle, this unique and com-
prehensive system can aid in observing a set of key hydrological
elements and meteorological states. The system is designed for
long-term operation and can provide more data in the future.
The comprehensive experiment can quantify critical hydrological
processes and reveal the underlying mechanisms controlling the
hydrological and other relevant processes in the typical Chinese
humid, hilly region. The existence and continuous operation of
the XAJ-NEW system will be valuable to support systematic stud-
ies on the mechanisms of runoff generation and concentration,
especially in the context of changing environments, and promote
the development and improvement of hydrological, ecological,
and land surface models. Further development of the XAJ-NEW
system should focus on enhancing soil moisture observation
across the whole root zone and implementing additional flux tow-
ers across this region to better monitor carbon and energy
processes.
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