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An Industrial Internet platform is acknowledged to be a requisite promoter for smart manufacturing,
enabling physical manufacturing resources to be virtualized and permitting resources to collaborate in
the form of services. As a central function of the platform, manufacturing service collaboration optimiza-
tion is dedicated to establishing high-quality service collaboration solutions for manufacturing tasks.
Such optimization is inseparable from the functional and amount requirements of a task, which must
be satisfied when orchestrating services. However, existing manufacturing service collaboration opti-
mization methods mainly focus on horizontal collaboration among services for functional demands
and rarely consider vertical collaboration to cover the needed amounts. To address this gap, this paper
proposes a dual-dimensional service collaboration methodology that combines functional and amount
collaboration. First, a multi-granularity manufacturing service modeling method is presented to describe
services. On this basis, a dual-dimensional manufacturing service collaboration optimization (DMSCO)
model is formulated. In the vertical dimension, multiple functionally equivalent services form a service
cluster to fulfill a subtask; in the horizontal dimension, complementary service clusters collaborate for
the entire task. Service selection and amount distribution to the selected services are critical issues in
the model. To solve the problem, a multi-objective memetic algorithm with multiple local search opera-
tors is tailored. The algorithm embeds a competition mechanism to dynamically adjust the selection
probabilities of the local search operators. The experimental results demonstrate the superiority of the
algorithm in terms of convergence, solution quality, and comprehensive metrics, in comparison with
commonly used algorithms.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As Industry 4.0 progresses, modern manufacturing is embracing
a conversion from a traditional operation mode to an intelligent
mode [1]. Within this trend, various advanced manufacturing tech-
nologies and paradigms are emerging [2–4]. As crucial enablers of
smart manufacturing, Industrial Internet platforms aim to achieve
service-oriented and on-demand production [5,6]. Industrial
Internet platforms, which are an extension and implementation
of the Internet of Things [7,8] and cloud computing [9,10] into
the industrial field, are drawing great interest from both academia
and industry [11–13]. With the support of an Industrial Internet
platform, siloed manufacturing resources can be connected and
encapsulated as manufacturing services delivered to customers
to carry out manufacturing tasks, thereby empowering the unified
management and utilization of discrete resources [14]. In general,
the fulfillment of a manufacturing task necessitates the collabora-
tion of multiple services [15]. After receiving a task, the platform
decomposes it into several subtasks and matches each with a set
of candidate services. A manufacturing service collaboration solution
refers to a portfolio of services selected from candidate sets to ful-
fill a task. Consequently, one of the main purposes of an Industrial
Internet platform is to orchestrate services in order to generate
high-quality solutions—that is, to perform manufacturing service
collaboration optimization.

During service collaboration optimization, both the functional
requirements proposed by the customer and the required
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processing amount of the task must be satisfied. For example, it is
common for a task submitted to an Industrial Internet platform to
have more than one product to be processed. To enhance the per-
formance of the collaboration solutions, it is rational and practical
to select multiple services to fulfill a subtask in parallel. In this
way, services are fully utilized, while solution efficiencies signifi-
cantly increase. Within this context, two dimensions of collabora-
tion coexist: In the vertical dimension, a cluster of services with
similar functions collaborate in parallel for a subtask; meanwhile
in the horizontal dimension, multiple service clusters with comple-
mentary functions collaborate in sequence for the entire task,
forming a complex collaboration network. Service collaboration
optimization for such a network comprises more than just the
optimal selection of services. Amount distribution—that is, how
to reasonably distribute the processing amount of one subtask to
the multiple selected services—is indispensable. A task may have
thousands of alternative service combinations; moreover, within
a combination, there may be even more potential schemes for
amount distribution among services, resulting in numerous
collaboration solutions. To obtain high-quality solutions, neither
service selection nor amount distribution can be disregarded.

In addition, to achieve collaboration in two dimensions, an
appropriate manufacturing service modeling method is essential.
In existing service collaboration optimization, the service invoca-
tion time and cost are assumed to be fixed, regardless of the pro-
cessing amount [16,17]. This assumption cannot be employed
due to a violation of the on-demand principle when amount distri-
bution is involved. Moreover, since a subtask is fulfilled collabora-
tively by multiple services, the amount distribution of the subtask
largely hinges on the availability of these services. From the per-
spective of the entire Industrial Internet platform, manufacturing
services exist at intra-enterprise and inter-enterprise levels, result-
ing in different granularities [18]. For example, a manufacturing
service may correspond to a single resource such as a machine tool,
a group of resources such as a workstation on a shop floor, or even
a complex production process involving multiple resources in dif-
ferent subordinate companies of a conglomerate. The availability
of services is limited by their component states and relationships,
which changes over time. Unless this factor is taken into considera-
tion during service collaboration optimization, it is difficult to
safeguard the feasibility and efficiency of collaboration solutions.

With the aim of generating high-quality collaboration solutions,
this paper proposes a novel dual-dimensional manufacturing ser-
vice collaboration optimization (DMSCO) methodology. The pro-
posed methodology considers the multi-granularity characteristic
of manufacturing services and comprises both functional collabo-
ration in the horizontal dimension and amount collaboration in
the vertical dimension. The main contributions of this paper are
as follows:

(1) By analyzing the components and structures of manufactur-
ing services, a multi-granularity service modeling method is pre-
sented, which enables the introduction of complicated services
(i.e., composite services and service chains) to service collaboration
optimization.

(2) A mathematical model for DMSCO integrating service selec-
tion and amount distribution is formulated under the considera-
tion of service granularities, with the objective of optimizing the
total cost, reliability, and finishing time of service collaboration
solutions.

(3) A multi-objective memetic algorithm is developed to effi-
ciently search for collaboration solutions to the model, in which
a competition mechanism is embedded to adjust the selection
probabilities of local search operators according to their
contributions.

The rest of this paper is organized as follows. Related work is
reviewed in Section 2. Section 3 models manufacturing services
35
and formulates the DMSCO model. In Section 4, the proposed algo-
rithm is depicted. Section 5 reports the numerical experiments,
and the conclusions are presented in Section 6.
2. Related work

2.1. Manufacturing service modeling

As the prerequisites of manufacturing service collaboration,
physical resource virtualization and manufacturing service model-
ing have been intensively studied in the past decades. Researchers
initially focused on functional and non-functional information
descriptions. Shi et al. [19] proposed a manufacturing resource
hierarchy model, in which resource information abstracted from
the physical resource layer was encapsulated in a resource
expressing layer using extensible markup language, and operations
to resources were outlined in the resource interface layer in order
to shield the internal information communication details of the
resources. Vichare et al. [20] established a unified manufacturing
resource model for a computer numerical control (CNC) machining
system composed of the machine resource and additional auxiliary
devices. The model was a standard information representation able
to define the elements of the CNC machining system and support
the automation of process planning decision-making. Ameri and
McArthur [21] extended the manufacturing service description
language, an ontology used for modeling service manufacturing
capabilities, by means of property inference rules and classification
rules, thereby enhancing the ontology semantically and enabling
advanced reasoning. Wang and Wang [22] transformed the capa-
bilities of physical resources into manufacturing services utilizing
a function block mechanism, thus providing a viable integration
method capable of coordinating various manufacturing resources
in an interoperable and flexible way.

In fact, manufacturing services occur within a multi-granularity
environment [18] and, based on research progress, the construc-
tion of multi-granularity manufacturing services has attracted
the attention of researchers. The coexistence of services with dif-
ferent granularities empowers the efficient and flexible generation
of collaboration solutions. A coarse-grained service can be invoked
as a whole, quickly covering most requirements of a task [23,24].
Meanwhile, fine-grained services can flexibly meet other personal-
ized needs. Liu et al. [25] presented multi-granularity resource vir-
tualization strategies consisting of resource aggregation functions
and resource clustering algorithms to encapsulate physical
resources into cloud services, which bridged the gap between com-
plex manufacturing tasks and underlying resources. Yu et al. [26]
designed a multi-level aggregate service planning method based
on data mining techniques, thereby determining the number of
manufacturing services maintained at different granularities.
Zhang et al. [27] proposed a new application pattern—namely,
cloud manufacturing for industry alliances—for which a domain-
driven development method for multi-granularity manufacturing
services was designed, including the two phases of atomic and
coarse-grained service development, in order to achieve the on-
demand provision of manufacturing resources. Li et al. [28] pre-
sented a resource service chain composition evolutionary algo-
rithm based on the dependency between resource services in
order to construct optimal coarse-grained services, thereby
enhancing the reusability and selection efficiency of the manufac-
turing services.
2.2. Manufacturing service collaboration optimization

Existing research efforts on manufacturing service collaboration
optimization mainly focus on optimal service selection and



Table 1
Notations used for multi-granularity manufacturing service modeling.

Notation Description

S Manufacturing service; referring to a resource service, a
composite service, or a service chain

m, n Indexes of component services in a composite service or a service
chain, where m, n = 1, 2, . . ., N

k Index of available durations of a resource service or a composite
service, where k = 1, 2, . . ., K

c, r, p, a Unit cost, reliability, processing speed, and availability of S,
respectively

dk kth available duration of a resource service or composite service
V Set of component services in a composite service or service chain
E Set of execution constraints in a service chain
Sm, Sn mth, nth component services in a composite service or service

chain, respectively
cn, rn, pn,

an

Unit cost, reliability, processing speed, and availability of Sn,
respectively
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configuration. Abundant models have been proposed thus far. Lu
and Xu [29] investigated knowledge-based service composition
and adaptive resource planning in a cloud manufacturing environ-
ment, facilitating fast resource allocation for a given service
request through a semantic web-based system. Ren et al. [30] pro-
posed a service selection model considering social relationships
among themanufacturing services to maximize the overall synergy
effect. Five types of social relationships among services were
abstracted from the service interaction and cooperation data, and
a service synergy effect model was derived based on a weighted
aggregation of relationship strength. Considering logistics services
in service collaboration, Zhou et al. [31] analyzed and established a
collaborative optimization model of logistics and processing ser-
vices and took the average task delivery time as the optimization
objective. Wu et al. [32] presented a multi-objective integer bi-
level multi-follower programming model to concurrently optimize
the sustainability (economic, environmental, and social perfor-
mance) and quality of collaboration solutions. Wang et al. [33]
established a multi-objective dynamic service composition recon-
figuration model in which eight crucial practical constraints were
introduced according to a real-life cloud manufacturing process,
thereby narrowing the gap between theory and application.

Due to the non-deterministic polynomial-time hard (NP-hard)
nature of optimal service selection [34], intelligent evolutionary
algorithms are widely utilized to solve the problem, allowing
high-quality solutions to the models to be obtained with fewer
computing resources [35]. Bouzary and Chen [36] developed a grey
wolf optimizer combined with evolutionary operators of a genetic
algorithm; they adapted the continuous structure of the grey wolf
optimizer to the optimal service selection problem and avoided
local optimal stagnation during the hunting process by providing
more exploration strength. Akbaripour and Houshmand [37] were
the first to analyze the solution space landscape of the problem,
demonstrating that the landscape was rugged and that local
optima were gathered in a small area of the search space. Based
on their analysis, they designed a hybrid approach integrating an
imperialist competitive algorithm with a local search algorithm.
Zhang et al. [38] proposed a novel genetic-based hyper-heuristic
algorithm in which the genetic algorithm acted as a high-level
heuristic to produce appropriate combinations of low-level heuris-
tics operating on the solution domain in order to solve the multi-
task-oriented optimal service selection problem in uncertain envi-
ronments. Zhou and Yao [39] proposed a multi-objective hybrid
artificial bee colony algorithm to optimize the quality of service
and energy consumption, in which a cuckoo search with a Lévy
flight was introduced to maintain the diversity of solutions, and
a comprehensive learning strategy was designed to ensure a bal-
ance between the exploitation and exploration of the algorithm.
Zhang et al. [40] presented an improved non-dominated sorting
genetic algorithm-II (NSGA-II) coupled with a Tabu search and
enhanced K-means mechanism to optimize the long-/short-term
utilities of the providers, consumers, and operators involved in
the service collaboration.

To date, the exploration of dual-dimension service collaboration
remains limited. Some of the relevant research only focuses on ser-
vice selection [41,42]. However, distributing the processing
amount to the selected services is integral to manufacturing ser-
vice collaboration optimization when multiple services fulfill the
same subtask in parallel. Zhu et al. [43] investigated the amount
distribution but ignored the service selection phase; they dis-
tributed the amount to all the candidate services. Despite decreas-
ing the finishing time, execution of the collaboration solution
becomes difficult due to the massively involved services. Further-
more, the availability of a manufacturing service is simply assumed
to be a numerical value in previous references. Although such a
solution may be suitable for the field of computer science, the sit-
36
uation in the manufacturing industry is more complicated. The
availability of a manufacturing service is affected by many factors,
such as the service structure, internal component services, and
scheduled occupancy. Therefore, a single numerical value cannot
accurately reflect the availability of a manufacturing service.
2.3. Overview

As mentioned above, both manufacturing service modeling and
collaboration optimization have been extensively studied. How-
ever, research on service collaboration optimization rarely consid-
ers the characteristics of the service granularity, resulting in an
incoherence between the service modeling and collaboration opti-
mization. Despite the few efforts that have been made in this area
[44,45], a detailed description of the availability of services at dif-
ferent granularities is still missing. Moreover, existing research on
service collaboration optimization primarily focuses on the selec-
tion of services to satisfy functional requirements, whereas
amount-related collaboration is disregarded. Further research on
the optimization model and the specific algorithm for dual-
dimensional service collaboration is required. To this end, this
paper presents a DMSCO methodology that is multi-granularity
service-based and that simultaneously optimizes service selection
and amount distribution.
3. Problem formulation

3.1. Multi-granularity manufacturing service modeling

In the overall performance of collaboration solutions, the total
cost, reliability, and finishing time are of primary concern with
regard to customers, respectively corresponding to the unit cost,
reliability, and processing speed of services. In addition, the feasi-
bility of solutions is limited by the availability of services. While
modeling manufacturing services, this paper primarily focuses on
these attributes. It should be noted that the availability of services
is measured from the perspective of time—that is, whether the ser-
vices are available during certain time periods. Manufacturing ser-
vices exist at both the intra-enterprise level and the inter-
enterprise level. According to their internal components and struc-
tures, services can be modeled at three granularities: resource ser-
vices, composite services, and service chains. Notations used for
modeling these services are listed in Table 1, and the service
expressions and attributes are shown in Table 2.

A resource service is a simple service mapped by a single physi-
cal resource within an enterprise. Since the resource cannot be
available all the time, the availability of the service is expressed



Table 2
Modeling of multi-granularity manufacturing services.

Service Granularity Expression Unit cost Reliability Processing speed Availability

Resource service S = {c, r, p, a} c r p a = <d1, d2, . . ., dk, . . ., dK>
Composite service S = {c, r, p, a, V} c ¼PSn2V cn r ¼ Q

Sn2V rn
h i1

N p = p1 a ¼ TSn2Van

Service chain S = {c, r, p, a, V, E} c ¼PSn2V cn r ¼ Q
Sn2V rn

h i1
N p = {p1, p2, . . ., pn, . . ., pN} a = {a1, a2, . . ., an, . . ., aN}

S. Pang, S. Guo, X.V. Wang et al. Engineering 22 (2023) 34–48
as a series of available periods of time, where the element dk indi-
cates the duration of time during which the resource is accessible.

A composite service comprises multiple interdependent resource
services, which are generally provided by a single enterprise for a
specific function. A set of component services V = {S1, S2, . . ., Sn,
. . ., SN} is invoked at the same time when providing the function
to the outside, where a central service S1 acts as the main imple-
menter of the function, and the rest are auxiliary services collabo-
rating around S1. The availability of a composite service is the
intersection of the availability of its components.

A service chain is a fixed service provided by multiple correlated
enterprises, such as conglomerates or alliances. It consists of a set
of component (i.e., resource or composite) services V = {S1, S2, . . .,
Sn, . . ., SN} that collaborate with specific execution constraints
E = {<Sm, Sn>|Sm 2 V, Sn 2 V}. <Sm, Sn> means that Sm is invoked
before Sn, and a component service will not be occupied until
invoked. The processing speed and availability of a service chain
are expressed as the sets of corresponding attributes of the compo-
nents, respectively.
3.2. The model for DMSCO

In the model for DMSCO, a manufacturing task T contains I sub-
tasks with different function requirements, and each subtask STi
can be fulfilled by a set of candidate services CSSi. Regarding the
vertical dimension, a cluster of functionally equivalent services
CSi = {Si1, Si2, . . ., Sij, . . ., SiJi } are selected from CSSi to fulfill STi. Aside
Table 3
Notations used for the DMSCO model.

Notation Description

i Index of subtasks, whe
j Index of manufacturin
T Manufacturing task
Amt Total required amount
CS Manufacturing service
C, R, F Total cost, reliability, a
STi ith subtask of T
Amti Total required amount
CSSi Set of candidate manu
CSi Cluster of manufacturi
Ci, Ri, Bi, Fi Total cost, reliability, b
Sij jth manufacturing serv
Amtij Processing amount dis
cij, rij, pij, aij Unit cost, reliability, p
Cij, Rij, Bij, Fij Total cost, reliability, b
dijk kth available duration
Uijk Binary variable equal t
Vij Set of component serv
Eij Set of execution constr
Sijn nth component service
pijn, aijn Processing speed and a
bijn, fijn Beginning time and fin
dijnk kth available duration
Uijnk Binary variable equal t
Cmax, Rmax, Fmax Maximum total cost, r
Cmin, Rmin, Fmin Minimum total cost, re

37
from service selection, the distribution of the processing amount of
STi to the services in CSi needs to be determined. In the horizontal
dimension, all functionally complementary CSi compose the final
collaboration solution CS = {CS1, CS2, . . ., CSi, . . ., CSI} for T. The fol-
lowing text formulates the model from the two dimensions, where
the availability constraints of the services at different granularities
are constructed, and the total cost, reliability, and finishing time
are adopted as the optimization objectives. Notations used for
DMSCO are listed in Table 3.

3.2.1. Collaboration in the vertical dimension
Considering the amount distribution, the total cost Cij, reliability

Rij, and finishing time Fij of a single Sij are formulated first. The for-
mulas are different depending on the service granularities. For a
resource service or composite service:

Cij ¼ Amtij � cij ð1Þ

Rij ¼ rij ð2Þ

Fij ¼ Bij þ Amtij=pij ð3Þ

Uijk ¼ 1; if Bij; Fij
� � � dijk

0; otherwise

(
ð4Þ

X
dijk2 aij

Uijk ¼ 1 ð5Þ
re i = 1, 2, . . ., I
g services in CSi, where j = 1, 2, . . ., Ji

of T
collaboration solution for T
nd finishing time, respectively, of CS to fulfill T

of STi
facturing services for STi
ng services selected from CSSi to fulfill STi
eginning time, and finishing time, respectively, of CSi to fulfill STi
ice in CSi (Sij is a specific S, which is used in the context in which T is involved)
tributed to Sij
rocessing speed, and availability of Sij, respectively
eginning time, and finishing time, respectively, of Sij to process Amtij
of a resource service or composite service Sij
o 1 if Amtij is processed in the duration dijk of Sij
ices in a service chain Sij
aints in a service chain Sij
in a service chain Sij
vailability of Sijn, respectively
ishing time, respectively, of Sijn to process Amtij
of Sijn
o 1 if Amtij is processed in the duration dijnk of Sijn
eliability, and finishing time, respectively, of CS
liability, and finishing time, respectively, of CS
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where Eq. (5) indicates that Amtij must be processed within an
available duration of aij, ensuring the availability of Sij.

For a service chain, Cij and Rij are calculated in the same way. Bij
and Fij are decided by the component services, and are formulated
as follows:

Bij ¼ minSijn2Vij
ðbijnÞ ð6Þ

Fij ¼ maxSijn2Vij
ðf ijnÞ ð7Þ

f ijn ¼ bijn þ Amtij=pijn ð8Þ

Uijnk ¼
1; if bijn; f ijn

� � � dijnk

0; otherwise

(
ð9Þ

Y
Sijn2Vij

X
dijnk2aijn

Uijnk ¼ 1 ð10Þ

f ijm � bijn 8 < Sm; Sn >2 Eij ð11Þ
where Eqs. (10) and (11) ensure the availability and correct invoca-
tion sequence of the component services, respectively.

For a service cluster CSi, the total cost Ci, reliability Ri, beginning
time Bi, and finishing time Fi are formulated as follows:

Ci ¼
X
Sij2CSi

Cij ð12Þ

Ri ¼
X
Sij2CSi

Amtij
Amti

� Rij ð13Þ

Bi ¼ minSij2CSi ðBijÞ ð14Þ

Fi ¼ maxSij2CSi ðFijÞ ð15Þ

Amt ¼ Amti ¼
X
Sij2CSi

Amtij ð16Þ

CSi � CSSi ð17Þ
where Eq. (16) ensures that the sum of the processing amount dis-
tributed to the services in CSi is equal to Amti, and Eq. (17) ensures
that CSi is selected from the candidate service set CSSi.

3.2.2. Collaboration in the horizontal dimension
Regarding the horizontal dimension, the total cost C, reliability

R, and finishing time F of a service collaboration solution CS are for-
mulated as follows:

C ¼
X

CSi2CS
Ci ð18Þ

R ¼
Y

CSi2CS
Ri

" #1
I

ð19Þ

F ¼ FI ð20Þ

Bi � Fi�1 � 0 ð21Þ
Due to the different measurement methods and units of C, R,

and F, objective functions are normalized as follows to optimize
the metrics at the same time:

minimize f 1 ¼
C � Cmin

Cmax � Cmin ; if Cmax–Cmin

0; otherwise

8><
>: ð22Þ
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minimize f 2 ¼
Rmax � R

Rmax � Rmin ; if R
max–Rmin

0; otherwise

8<
: ð23Þ

minimize f 3 ¼
F � Fmin

Fmax � Fmin ; if F
max–Fmin

0; otherwise

8><
>: ð24Þ
4. The proposed memetic algorithm for DMSCO

Service selection has been proved to be an NP-hard problem
[34]. Consequently, DMSCO incorporating both service selection
and amount distribution is NP-hard. To address this problem, a
competition-based multi-objective memetic algorithm (CMOMA)
is developed.

4.1. Framework of CMOMA

Memetic algorithms represent a category of metaheuristics that
combine evolutionary algorithms with local searches [46]. The
framework of the proposed CMOMA is shown in Fig. 1, where a
grey wolf optimizer is deployed for the global search, and a
competition-based variable neighborhood search is embedded for
the local search. For the adaption of DMSCO, a mixed-crossover
operator is designed for the global search. In addition, to fully
explore the search space, the population is updated through fast
non-dominated sorting, and parents (leaders) for a solution are
randomly selected from the population.

The local search is of great significance in memetic algorithms
and should be tailored to the specific problem. This paper develops
two types of local search operators corresponding to service selec-
tion and amount distribution, each ofwhich includes four operators.
When applying the local search to a solution, one of the operators is
selected for execution. In addition, a competition mechanism is
designed to update the selection probabilities of the operators.

4.2. Encoding and decoding

To accommodate DMSCO, a two-vector encoding scheme is pro-
posed, which involves a service selection vector X and an amount
distribution vector Y. Each vector consists of I segments corre-
sponding to I subtasks. Since a subtask STi is collaboratively ful-
filled by Ji services, the segment Segi in both X and Y comprises Ji
elements carrying information about the services selected for STi.
The element xij of X is an integer in [1, Li], representing the index
of a selected service in CSSi (Li is the length of CSSi). Y is used to dis-
tribute the amount to the selected services. The element yij is a real
number in [0, 1], representing the weight of the amount distribu-
ted to the allelic service on X. Fig. 2 shows an example of the
encoding scheme, in which the task contains three subtasks, each
subtask has 20 candidate services, and up to three of these can
be selected. Based on the encoding scheme, the population of
CMOMA is randomly initialized.

Prior to decoding X, elements of Y are inspected. If yij is equal to
0, the allelic service on X will not participate in the collaboration.
Meanwhile, to prevent the amount distributed to a service from
being too small, yij will be set to 0 when less than 0.1. If all yij
belonging to Segi equal 0, one of themwill be set to a random num-
ber between 0.1 and 1.0. After inspection, the xijth candidate ser-
vice in CSSi is selected if the allelic yij is greater than 0. When
decoding Y, the last yij greater than 0 in each Segi is marked as
yi*, and the amount distributed to services is then calculated as
shown in Eq. (25). Supposing that the total amount of the task in
the example in Fig. 2 is 10 000, the decoding result is presented
in Fig. 3.



Fig. 1. Framework of CMOMA.

Fig. 2. Example of the encoding scheme.
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Amtij ¼
Amti �

yijP
yij2Segi yij

$ %
; yij – y�i

Amti �
P

yij2Segi Amtij; yij ¼ y�i
yij – y�i

8>>>><
>>>>:

ð25Þ
4.3. Global search

The global search algorithm is extended from the grey wolf
optimizer, which is an emerging evolutionary algorithm inspired
by the hunting behaviors of grey wolves [47]. In each iteration of
the grey wolf optimizer, solutions renew their positions under
39
the guidance of three leaders (the first three best solutions), a, b,
and d. Compared with similar algorithms, the optimizer is charac-
terized by a fast search speed and easy implementation. It was ini-
tially designed for solving continuous optimization problems. As
there are both discrete variables X and continuous variables Y in
the solutions, a mixed-crossover operator is designed in the pro-
posed algorithm. For X, the crossover operator is formulated as
Eqs. (26) and (27), where rand() is a function returning a random
number in [0, 1], and xnewij ; xij; xaij; x

b
ij; and xdij are X elements of

the new solution, the original solution, a, b, and d. Fig. 4 presents
an example of the crossover operator for X.

r ¼ randðÞ ð26Þ



Fig. 4. Example of the crossover operator for X.

Fig. 3. Example of the decoding scheme.
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xnewij ¼

xaij; if r < 0:25

xbij; else if r < 0:50

xdij; else if r < 0:75

xij; otherwise

8>>>><
>>>>:

ð27Þ

For Y, the original crossover operator in the grey wolf optimizer
is adopted, as shown in Eqs. (28)–(31), where a linearly decreases
from 2 to 0 during the iteration, and ynewij ; yij; y

a
ij; y

b
ij; and ydij are the

Y elements of the new solution, the original solution, a, b, and d.

y1ij ¼ yaij � a � ð2 � randðÞ � 1Þ � 2 � randðÞ � yaij � yij
��� ��� ð28Þ

y2ij ¼ ybij � a � ð2 � randðÞ � 1Þ � 2 � randðÞ � ybij � yij
��� ��� ð29Þ

y3ij ¼ ydij � a � ð2 � randðÞ � 1Þ � 2 � randðÞ � ydij � yij
��� ��� ð30Þ

ynewij ¼ 1
3

X
p¼1;2;3

ypij ð31Þ

Regarding multi-objective optimization, most research intro-
duces an external archive into the grey wolf optimizer to preserve
the non-dominated solutions obtained so far, and utilizes a
roulette-wheel method to select leaders from the archive. How-
ever, because only the best solutions are preserved, the leaders
selected from the archive are likely to cause the algorithm to fall
into a local optimum. Therefore, this paper adopts fast non-
dominated sorting to select solutions for the next population.
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When selecting leaders, all solutions in the population have the
same probability of being selected. In this way, solutions that are
not in the first Pareto front have a chance to be selected, which
is conducive to jumping out of the local optimal and fully exploring
the search space. Details about fast non-dominated sorting can be
found in Ref. [48].

4.4. Competition-based variable neighborhood search

The local search is executed by a competition-based variable
neighborhood search. Two types of local search operators are indi-
vidually designed for service selection and amount distribution,
and each type contains four operators. When the local search is
performed on a solution, the local search type is randomly deter-
mined first, and then a specific search operator from the type is
selected according to the probabilities updated by a competition
mechanism.

4.4.1. Local search for service selection
Since high-quality services can significantly improve collabora-

tion solutions, the local search for service selection is designed to
replace low-quality services with high-quality services. This type
includes three objective-oriented operators, OS1, OS2, and OS3,
and a hybrid operator, OS4. Each objective-oriented operator corre-
sponds to one objective to be optimized and performs the same
related operation on all segments in a solution. The hybrid opera-
tor randomly performs the corresponding operations of different
objectives on each segment in a solution and is dedicated to main-
taining a balance. The details of the operators are as follows:
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(1) OS1 for total cost f1: For each Segi in X, the operator finds
the service with the highest unit cost in Segi and replaces it with
a randomly selected service with a lower unit price from CSSi.

(2) OS2 for reliability f2: For each Segi in X, the operator finds
the service with the lowest reliability in Segi and replaces it with
a randomly selected service with higher reliability from CSSi.

(3) OS3 for finishing time f3: For each Segi in X, the operator
finds the service with the lowest speed in Segi and replaces it with
a randomly selected service with a higher speed from CSSi. More
specifically, if the service is a service chain, the lowest speed of
the internal component services is regarded as the speed of the ser-
vice chain.

(4) OS4 for all objectives: For each Segi in X, the operator ran-
domly selects an objective to be optimized and modifies Segi
according to the above corresponding operator. In this way, differ-
ent service selection operations to optimize different objectives
can be performed with equal probability on a solution.

4.4.2. Local search for amount distribution
Regarding total cost and reliability, collaboration solutions will

be better if the relatively low-quality service among the selected
services is distributed to less processing amount of a subtask.
Meanwhile, services are expected to be fully utilized to reduce
the finishing time. Therefore, it is preferable to distribute the pro-
cessing amount in a way that is proportional to the speeds of the
services selected for a subtask. Accordingly, a local search for
amount distribution is designed, including three objective-
oriented operators, OA1, OA2, and OA3, and a hybrid operator,
OA4. The details of the operators are as follows:

(1) OA1 for total cost f1: For each Segi in Y, the operator finds
the service with the highest unit cost in Segi and decreases the cor-
responding yij according to Eq. (32), where y0ij is the value before
decreasing.

(2) OA2 for reliability f2: For each Segi in Y, the operator finds
the service with the lowest reliability in Segi and decreases the cor-
responding yij according to Eq. (32).

(3) OA3 for finishing time f3: For each Segi in Y, the operator
adjusts all yij belonging to Segi according to Eq. (33), where pi;xij

is the speed of the current service and xiw is the index of each
selected service in Segi. Notably, the lowest speed of the internal
component services is regarded as the speed of the service chain.

(4) OA4 for all objectives: For each Segi in Y, the operator ran-
domly selects an objective to be optimized and modifies Segi
according to the above corresponding operator. As in OS4, different
amount distribution operations can be performed with equal
probability on a solution.

yij ¼ randðÞ � y0 ij ð32Þ

yij ¼
pi;xijP

xiw2Segi pi;xiw

ð33Þ
4.4.3. Competition mechanism
With the iterative execution of the algorithm, the optimization

progress of different objectives is usually different. A competition
mechanism is developed to assign more computing resources to
the objective with more space for improvement. In the mechanism,
operators with the same type compete to obtain a higher selection
probability. The new probabilities are updated depending on the
effects of the operators on the solutions. If an operator improves
a solution, it will be incentivized to obtain a higher probability;
otherwise, it will be suppressed.

To quantify the effect of operators in the current iteration, the
population is updated after the local search, and solutions with
the local search operator applied are identified and classified.
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Taking the local search for service selection as an example, the
effect of OSg is formulated as Eqs. (34) and (35), where g (or h) is
the index of optimization objectives. Eq. (34) is for objective-
oriented operators and takes the focused objective as the primary
factor. Other objectives are included as secondary factors to avoid
their excessive deterioration. g in Eq. (34) is a coordination coeffi-
cient used to control the weights among the factors; it is greater
than 1/3 in order to highlight the effect on the focused objective.
Eq. (35) is for the hybrid operator that considers all the objectives.
UOSg is the set containing the solutions that applied OSg, CS0 is the
original solution before the local search operator is applied, f g CSð Þ
and f g CS0ð Þ are the gth objectives of CS and CS0, f h CSð Þ and f hðCS0Þ
are the hth objectives of CS and CS0, and e is a small number pre-
venting the denominator from being 0.

eOSg ¼
X

CS2UOSg

g � f g CS0ð Þ � f g CSð Þ
f g CS0ð Þ þ e

 !
þ 1� g

2
�
X3
h¼1
h–g

f h CS0ð Þ � f h CSð Þ
f h CS0ð Þ þ e

� �2
664

3
775;

g ¼ 1; 2; 3 ð34Þ
eOS4 ¼
1
3
�
X

CS2UOS4

X3
h¼1

f h CS0ð Þ � f h CSð Þ
f h CS0ð Þ þ e

� �
ð35Þ

In the above formulas, eOSg will increase if OSg improves a solu-
tion and will decrease if a solution deteriorates, so that the incen-
tives or suppressions can be achieved. To prevent eOSg from being
negative or 0, a correction function HðeOSg Þ is presented in Eq.
(36), where lOS is a small number. l0

OS in Eq. (37) is the value of
lOS in the last iteration. In this paper, lOS is set to 0.01 at the begin-
ning of the algorithm. Since only considering effects in the current
iteration may lead to drastic changes in the selection probabilities
and thus result in instability of the algorithm, the historical effects
of operators are introduced to alleviate the changes. As the proba-
bilities used in the current iteration carry historical information,
they are deployed to update the selection probabilities. Eq. (38)
presents the formula for updating the selection probability of
OSg, where pOSg is the selection probability used in the current
iteration, and p�

OSg is the updated probability to be used in the next

iteration. Without loss of generality, the selection probabilities of
the operators are equal at the beginning. Similarly, the selection
probability of OAg can be updated.

HðeOSg Þ ¼ maxðeOSg ;lOSÞ ð36Þ
lOS ¼
0:01 �max4

h¼1ðeOSh Þ; if max4
h¼1ðeOSh Þ > 0

l0
OS; otherwise

(
ð37Þ
p�
OSg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pOSg � HðeOSg Þ

q
P4

h¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pOSh

� HðeOShÞ
q ð38Þ
5. Implementation through numerical experiments

Extensive numerical experiments were conducted to test the
performance of CMOMA in solving the proposed problem. Each
solution of the experiments determined the schemes of the service
selection and amount distribution to the selected services, which
were simultaneously optimized as the algorithm evolved. All pro-
grams for the experiments were coded with Java (JDK 14) and exe-
cuted on a laptop with 32 GB RAM and a 2.2 GHz Intel Core i7-
8750H under a Windows 10 (64) system. Parallel technology was
implemented in the decoding stage for speed.
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5.1. Performance metric and test instance

In the experiments, four indicators were adopted as perfor-
mance metrics: generational distance (GD), inverted GD (IGD),
hypervolume (HV), and set coverage (SC).

(1) GD is a convergence metric defined as Eq. (39), where U is
the non-dominated solution set obtained by a specific algorithm,
P is the true Pareto-optimal front, and dp,u is the Euclidean distance
between solutions p and u. A smaller GD value indicates a solution
set with a better convergence performance.

GD ¼ 1
jUj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u2U

minp2Pðdp;uÞ
r

ð39Þ

(2) IGD is a comprehensive metric defined as Eq. (40), which
simultaneously reflects the convergence and diversity of a solution
set. A smaller IGD value indicates a solution set with a better com-
prehensive performance.

IGD ¼ 1
jPj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p2P

minu2Uðdp;uÞ
s

ð40Þ

(3) HV calculates the volume covered by a solution set in objec-
tive space; it is defined as Eq. (41), where cu is the hypercube con-
structed by the line segment between u and the reference point as
the diagonal. Since Eqs. (22)–(24) have normalized objectives, the
reference point in this paper is (1,1,1). A solution set with a bigger
HV value is preferable.

HV ¼ volume
[
u2U

cu

 !
ð41Þ

(4) SC measures the dominance relationship between two non-
dominated solution sets U and V, through which the quality of the
two sets can be compared. SC is defined as Eq. (42), where C(U, V) is
the proportion of solutions in V that are dominated by solutions in
U, and u > v means that u dominates v. If C(U, V) is bigger than
C(V, U), U has a higher quality.

C U;Vð Þ ¼ fv 2 V j9u 2 U : u > vgj j
Vj j ð42Þ

Test instances were generated based on the principles adopted
in Ref. [40]. Services with high reliability or fast processing speed
were given high unit costs, and vice versa. As shown in Table 4,
21 instances were generated to fully evaluate the algorithm, where
the number of subtasks came in three sizes: 15, 30, and 45. In each
size, the proportion of subtasks using complicated services—that is,
composite services and service chains—increased from 20% to 80%,
with a step size of 10%. The available periods of resource services
(including the component resource services in complicated ser-
vices) were generated randomly. Each subtask has 50 candidate
services in this paper, and up to three services can be selected.
Table 4
The proportion of different services in test instances.

Test
instance

Number of
subtasks

Test
instance

Number of
subtasks

Test
instance

1 15 8 30 15
2 9 16
3 10 17
4 11 18
5 12 19
6 13 20
7 14 21
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5.2. Sensitivity analysis of the coordination coefficient g

Deployed to update the selection probabilities of local search
operators, the parameter g in the competition mechanism is the
sole parameter to be tuned in CMOMA, and impacts the perfor-
mance of the algorithm. Theoretically, a big g value causes the
algorithm to concentrate on the effect on the oriented objective
when updating the selection probabilities. In contrast, a small g
value causes the algorithm to notice the effects on the other
objectives.

To study the impact of g on CMOMA and select a suitable value
of g, a group of experiments was conducted. First, four values, 0.4,
0.6, 0.8, and 1.0, were tested to roughly determine a reasonable
scope of g. At each value, CMOMA was independently executed
20 times on the medium-sized instance 11; the running time for
each execution was 15 s. After preliminary experiments, the popu-
lation size was set to 200. Fig. 5 shows the means of the IGD with
the standard deviations. The true Pareto-optimal front consists of
the non-dominated solutions obtained by running CMOMA at all
g values. As shown in Fig. 5, g > 0.8 is a desirable scope for CMOMA,
where the algorithm maintains a preferable performance. In other
words, when updating the selection probabilities, considering
more effects on the oriented objective benefits the performance
of the algorithm. To refine g, further tests were performed in
[0.8, 1.0] with a step size of 0.02. Fig. 6 depicts the means of HV
with the 95% confidence intervals. Although it is not apparent,
the g in [0.9, 1.0] has superiorities over that in [0.8, 0.9]. However,
with an increase in g, the performance of the algorithm deterio-
rates. In particular, at the point g = 1, where no effect of other
objectives is included, noticeable performance degradation can
be observed. This phenomenon suggests that the effects of both
the oriented objective and other objectives are essential, and a bal-
ance between the two aspects is required. Among the tested val-
ues, when g = 0.9, CMOMA reaches a higher mean of HV with a
narrow confidence interval. Therefore, g is set to 0.9 for the trade-
off. In addition, from a global perspective, the trajectory of HV
shows slight fluctuations but generally remains stable when
g > 0.8, illustrating that g is insensitive if it is within an appropriate
scope, which supports the robustness of CMOMA.

5.3. Performance verification of the competition mechanism

To verify the effectiveness of the competition mechanism, a
variant of CMOMA, fixed-probability multi-objective memetic
algorithm (FMOMA), was developed for comparison; this variant
removes the competition mechanism and adopts fixed equal
probabilities to select local search operators. Both algorithms were
repeated 20 times on each instance with the same running time for
each repetition (10, 15, and 20 s for small, medium-sized, and large
instances, respectively). Table 5 presents the means of the GD, IGD,
and HV. To calculate the IGD, the results of three well-known
multi-objective algorithms—namely, NSGA-II [48], strength Pareto
Number of
subtasks

Proportion

Service
chain

Composite
service

Resource
service

45 10% 10% 80%
15% 15% 70%
20% 20% 60%
25% 25% 50%
30% 30% 40%
35% 35% 30%
40% 40% 20%



Fig. 5. Means of the IGD with standard deviations at different g values on test instance 11.

Fig. 6. Means of HV with 95% confidence intervals at different g values on test instance 11.

Table 5
Means and two-sample t-test results of GD, IGD, and HV for CMOMA and FMOMA on all test instances.

Test instance GD IGD HV

CMOMA FMOMA CMOMA FMOMA CMOMA FMOMA

1 1.1402 � 10�3 1.3180 � 10�3+ 2.3340 � 10�2 2.3355 � 10�2= 7.9977 � 10�1 7.9802 � 10�1=
2 8.9269 � 10�4 1.0554 � 10�3+ 2.1670 � 10�2 2.2390 � 10�2+ 8.2696 � 10�1 8.2328 � 10�1+
3 9.2624 � 10�4 1.1366 � 10�3+ 2.0485 � 10�2 2.1510 � 10�2+ 8.1010 � 10�1 8.0836 � 10�1=
4 1.0683 � 10�3 1.3717 � 10�3+ 1.9490 � 10�2 2.1390 � 10�2+ 8.5031 � 10�1 8.4925 � 10�1=
5 9.0086 � 10�4 1.2245 � 10�3+ 2.0115 � 10�2 2.1690 � 10�2+ 8.5315 � 10�1 8.5117 � 10�1+
6 8.8471 � 10�4 1.1432 � 10�3+ 1.7660 � 10�2 1.8415 � 10�2+ 8.5614 � 10�1 8.5769 � 10�1=
7 1.0415 � 10�3 1.4650 � 10�3+ 1.7275 � 10�2 1.8140 � 10�2+ 8.8252 � 10�1 8.8138 � 10�1=
8 7.9311 � 10�4 1.0661 � 10�3+ 1.9570 � 10�2 2.0410 � 10�2+ 7.7647 � 10�1 7.7718 � 10�1=
9 8.7197 � 10�4 1.0704 � 10�3+ 1.9740 � 10�2 1.9670 � 10�2= 8.0296 � 10�1 7.9883 � 10�1+
10 7.6937 � 10�4 1.0079 � 10�3+ 1.9885 � 10�2 2.0125 � 10�2= 8.1026 � 10�1 8.0704 � 10�1+
11 7.8789 � 10�4 1.0368 � 10�3+ 2.0765 � 10�2 2.1170 � 10�2= 8.2136 � 10�1 8.1340 � 10�1+
12 7.7134 � 10�4 1.0219 � 10�3+ 1.7870 � 10�2 1.9090 � 10�2+ 7.9085 � 10�1 7.8832 � 10�1=
13 8.7732 � 10�4 1.0757 � 10�3+ 1.8085 � 10�2 1.9780 � 10�2+ 8.4326 � 10�1 8.3691 � 10�1+
14 7.9210 � 10�4 1.0462 � 10�3+ 1.8105 � 10�2 1.9375 � 10�2+ 8.3489 � 10�1 8.2903 � 10�1+
15 7.4785 � 10�4 1.0317 � 10�3+ 1.9610 � 10�2 2.0175 � 10�2= 7.6262 � 10�1 7.5633 � 10�1+
16 7.0934 � 10�4 1.0484 � 10�3+ 1.8290 � 10�2 2.0220 � 10�2+ 7.9199 � 10�1 7.8373 � 10�1+
17 6.9929 � 10�4 1.0574 � 10�3+ 1.9605 � 10�2 2.0405 � 10�2= 7.9177 � 10�1 7.8538 � 10�1+
18 7.0551 � 10�4 1.0221 � 10�3+ 1.7440 � 10�2 1.8970 � 10�2+ 8.0302 � 10�1 7.9714 � 10�1+
19 8.1797 � 10�4 1.0681 � 10�3+ 1.8055 � 10�2 2.0265 � 10�2+ 8.1730 � 10�1 8.0498 � 10�1+
20 8.2308 � 10�4 1.1589 � 10�3+ 1.8810 � 10�2 2.0905 � 10�2+ 8.0723 � 10�1 7.9788 � 10�1+
21 7.6813 � 10�4 1.1156 � 10�3+ 1.8935 � 10�2 2.1415 � 10�2+ 8.0504 � 10�1 7.9633 � 10�1+

The symbols ‘‘+” and ‘‘=” are respectively used below to indicate that the results of CMOMA are statistically superior or similar to those of FMOMA.
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evolutionary algorithm-2 (SPEA-2) [49], and multi-objective Grey
Wolf optimizer (MOGWO) [50], which will be discussed in the fol-
lowing section in detail—were deployed to construct the true
Pareto-optimal front. An independent two-sample t-test with a
0.05 significance level was performed on each instance. The sym-
bols ‘‘+” and ‘‘=” are respectively used below to indicate that the
results of CMOMA are statistically superior or similar to those of
FMOMA. It is clear that CMOMA obtains the best GD values on
all instances. This advantage is also confirmed from a statistical
perspective, demonstrating the preferable convergence of CMOMA.
For the IGD, CMOMA achieves the best values on 20 instances,
among which the results on 15 instances are significantly superior
to those of FMOMA. In terms of HV, CMOMA always yields better
results than FMOMA, despite their similar values on seven
instances in the statistical sense. To sum up, CMOMA outstrips
FMOMA in terms of comprehensive metrics.

To assess the quality, Table 6 compares the means of SC.
C(CMOMA, FMOMA) are manifestly bigger than C(FMOMA,
CMOMA) on all instances, suggesting the advantage of CMOMA
in searching for high-quality solutions. To obtain more intuitive
insights, Fig. 7 depicts the SC results with the linear regression
trend lines. The superiority of CMOMA becomes apparent as the
instance size increases. In particular, on large-sized instances,
approximately half of the solutions of FMOMA are dominated by
those of CMOMA. On instances with the same scale, a similar con-
clusion is observed. As the proportion of complicated services
increases, the advantage of CMOMA is enhanced. This can be pri-
marily attributed to the competition mechanism enabling the algo-
rithm to find appropriate selection probabilities for local search
operators. Combining all the above analyses confirms that CMOMA
Fig. 7. SC results for CMOMA and

Table 6
A comparison of the means of SC between CMOMA and FMOMA on all test instances.

Test instance C(CMOMA, FMOMA) C(FMOMA, CMOMA)

1 27.75% 17.95%
2 28.55% 14.43%
3 31.23% 13.70%
4 31.38% 16.03%
5 34.40% 13.25%
6 30.20% 14.65%
7 28.88% 16.58%
8 32.78% 10.33%
9 33.00% 11.00%
10 33.38% 11.70%
11 41.13% 9.33%
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surpasses FMOMA and that the designed competition mechanism
contributes to the performance.

5.4. Comparisons with other algorithms

To further evaluate the performance of CMOMA, comparisons
were made with both classical and emerging multi-objective algo-
rithms: namely, NSGA-II, SPEA-2, and MOGWO. The experiment
settings remained the same as those described in Section 5.3.
Moreover, the Taguchi method was executed to tune the parame-
ters of the comparison algorithms for optimal performance. For
NSGA-II, the crossover rate is 1, and the mutation rate is 0.02; for
SPEA-2, the crossover rate is 1, and the mutation rate is 0.03.
MOGWO requires no predefined parameter.

Tables 7–10 present the comparison results of the GD, IGD, HV,
and SC. It can be seen that CMOMA achieves the best results in all
metrics, showing impressive performance. Regarding the GD,
CMOMA significantly outperforms NSGA-II on 20 out of 21
instances and significantly outperforms SPEA-2 and MOGWO on
all instances. In terms of the IGD, CMOMA overwhelms the com-
parison algorithms. NSGA-II and SPEA-2 show a comparable per-
formance with each other, outstripping MOGWO. However, their
results are far inferior to those of CMOMA, particularly on large
instances. For HV, the results of CMOMA on all instances remain
at around 0.8, which means that the non-dominated solutions of
CMOMA consistently cover a large volume of the objective space.
Conversely, the performances of NSGA-II, SPEA-2, and MOGWO
are inferior, and significant performance degradations can be seen
on medium-sized and large instances. As for the quality
comparison, CMOMA has tremendous advantages. The solutions
FMOMA on all test instances.

Test instance C(CMOMA, FMOMA) C(FMOMA, CMOMA)

12 37.35% 11.25%
13 42.05% 11.63%
14 41.00% 12.83%
15 36.05% 9.75%
16 43.93% 8.58%
17 44.25% 6.35%
18 44.05% 8.65%
19 41.53% 10.78%
20 50.03% 8.10%
21 53.33% 8.18%



Table 7
Means and two-sample t-test results of GD for CMOMA, NSGA-II, SPEA-2, and MOGWO on all test instances.

Test instance CMOMA NSGA-II SPEA-2 MOGWO

1 1.1402 � 10�3 1.1716 � 10�3= 1.8564 � 10�3+ 2.5177 � 10�3+
2 8.9269 � 10�4 1.1832 � 10�3+ 1.5757 � 10�3+ 2.3667 � 10�3+
3 9.2624 � 10�4 1.2792 � 10�3+ 1.9651 � 10�3+ 2.6771 � 10�3+
4 1.0683 � 10�3 1.3604 � 10�3+ 1.9080 � 10�3+ 3.1077 � 10�3+
5 9.0086 � 10�4 1.3917 � 10�3+ 2.1230 � 10�3+ 3.7516 � 10�3+
6 8.8471 � 10�4 1.2978 � 10�3+ 1.6351 � 10�3+ 2.7415 � 10�3+
7 1.0415 � 10�3 1.3033 � 10�3+ 1.8277 � 10�3+ 4.1431 � 10�3+
8 7.9311 � 10�4 8.9139 � 10�4+ 1.0697 � 10�3+ 1.6005 � 10�3+
9 8.7197 � 10�4 1.1159 � 10�3+ 1.3992 � 10�3+ 2.2571 � 10�3+
10 7.6937 � 10�4 9.7697 � 10�4+ 1.1289 � 10�3+ 2.0441 � 10�3+
11 7.8789 � 10�4 1.0573 � 10�3+ 1.2310 � 10�3+ 2.1723 � 10�3+
12 7.7134 � 10�4 9.5573 � 10�4+ 1.2966 � 10�3+ 2.2548 � 10�3+
13 8.7732 � 10�4 1.0020 � 10�3+ 1.5837 � 10�3+ 3.1690 � 10�3+
14 7.9210 � 10�4 1.0903 � 10�3+ 1.2610 � 10�3+ 2.4987 � 10�3+
15 7.4785 � 10�4 1.0657 � 10�3+ 1.2482 � 10�3+ 1.9489 � 10�3+
16 7.0934 � 10�4 1.0747 � 10�3+ 1.1446 � 10�3+ 1.8948 � 10�3+
17 6.9929 � 10�4 9.4979 � 10�4+ 1.1071 � 10�3+ 2.2707 � 10�3+
18 7.0551 � 10�4 9.8959 � 10�4+ 1.2360 � 10�3+ 2.4601 � 10�3+
19 8.1797 � 10�4 1.1376 � 10�3+ 1.2641 � 10�3+ 2.2323 � 10�3+
20 8.2308 � 10�4 1.1959 � 10�3+ 1.4157 � 10�3+ 2.7575 � 10�3+
21 7.6813 � 10�4 1.1232 � 10�3+ 1.1994 � 10�3+ 2.6607 � 10�3+

Table 8
Means and two-sample t-test results of IGD for CMOMA, NSGA-II, SPEA-2, and MOGWO on all test instances.

Test instance CMOMA NSGA-II SPEA-2 MOGWO

1 2.3340 � 10�2 7.2065 � 10�2+ 1.0358 � 10�1+ 1.5891 � 10�1+
2 2.1670 � 10�2 6.1960 � 10�2+ 9.6220 � 10�2+ 1.4701 � 10�1+
3 2.0485 � 10�2 5.6040 � 10�2+ 8.9475 � 10�2+ 1.4169 � 10�1+
4 1.9490 � 10�2 6.0020 � 10�2+ 8.8250 � 10�2+ 1.3948 � 10�1+
5 2.0115 � 10�2 7.9250 � 10�2+ 1.0278 � 10�1+ 1.5871 � 10�1+
6 1.7660 � 10�2 5.7635 � 10�2+ 9.4770 � 10�2+ 1.5045 � 10�1+
7 1.7275 � 10�2 7.0960 � 10�2+ 8.8365 � 10�2+ 1.5922 � 10�1+
8 1.9570 � 10�2 1.0879 � 10�1+ 1.2709 � 10�1+ 1.8022 � 10�1+
9 1.9740 � 10�2 1.3424 � 10�1+ 1.4818 � 10�1+ 2.0281 � 10�1+
10 1.9885 � 10�2 1.4195 � 10�1+ 1.5176 � 10�1+ 2.0302 � 10�1+
11 2.0765 � 10�2 1.3806 � 10�1+ 1.4424 � 10�1+ 1.9940 � 10�1+
12 1.7870 � 10�2 1.5765 � 10�1+ 1.5572 � 10�1+ 2.1148 � 10�1+
13 1.8085 � 10�2 1.4425 � 10�1+ 1.4284 � 10�1+ 1.9310 � 10�1+
14 1.8105 � 10�2 1.5876 � 10�1+ 1.5185 � 10�1+ 2.0712 � 10�1+
15 1.9610 � 10�2 1.6540 � 10�1+ 1.6076 � 10�1+ 2.1196 � 10�1+
16 1.8290 � 10�2 1.8027 � 10�1+ 1.7266 � 10�1+ 2.2438 � 10�1+
17 1.9605 � 10�2 1.8536 � 10�1+ 1.6972 � 10�1+ 2.2557 � 10�1+
18 1.7440 � 10�2 1.7498 � 10�1+ 1.7019 � 10�1+ 2.1648 � 10�1+
19 1.8055 � 10�2 1.9341 � 10�1+ 1.8550 � 10�1+ 2.3061 � 10�1+
20 1.8810 � 10�2 1.7300 � 10�1+ 1.6607 � 10�1+ 2.0930 � 10�1+
21 1.8935 � 10�2 1.8195 � 10�1+ 1.7194 � 10�1+ 2.1275 � 10�1+

Table 9
Means and two-sample t-test results of HV for CMOMA, NSGA-II, SPEA-2, and MOGWO on all test instances.

Test instance CMOMA NSGA-II SPEA-2 MOGWO

1 7.9977 � 10�1 7.2323 � 10�1+ 6.4637 � 10�1+ 5.6612 � 10�1+
2 8.2696 � 10�1 7.3936 � 10�1+ 6.5293 � 10�1+ 5.8092 � 10�1+
3 8.1010 � 10�1 7.2721 � 10�1+ 6.4423 � 10�1+ 5.7386 � 10�1+
4 8.5031 � 10�1 7.5772 � 10�1+ 6.8929 � 10�1+ 6.0273 � 10�1+
5 8.5315 � 10�1 7.6331 � 10�1+ 7.0096 � 10�1+ 6.1010 � 10�1+
6 8.5614 � 10�1 7.6245 � 10�1+ 6.7799 � 10�1+ 5.8590 � 10�1+
7 8.8252 � 10�1 7.5996 � 10�1+ 7.0769 � 10�1+ 5.9014 � 10�1+
8 7.7647 � 10�1 5.8710 � 10�1+ 5.4731 � 10�1+ 4.7669 � 10�1+
9 8.0296 � 10�1 6.1238 � 10�1+ 5.6919 � 10�1+ 5.0286 � 10�1+
10 8.1026 � 10�1 6.0328 � 10�1+ 5.6409 � 10�1+ 5.0319 � 10�1+
11 8.2136 � 10�1 6.0780 � 10�1+ 5.7310 � 10�1+ 5.0382 � 10�1+
12 7.9085 � 10�1 5.7480 � 10�1+ 5.4932 � 10�1+ 4.8258 � 10�1+
13 8.4326 � 10�1 5.8471 � 10�1+ 5.6201 � 10�1+ 4.9909 � 10�1+
14 8.3489 � 10�1 5.9109 � 10�1+ 5.8402 � 10�1+ 5.0734 � 10�1+
15 7.6262 � 10�1 5.2343 � 10�1+ 5.1068 � 10�1+ 4.5009 � 10�1+
16 7.9199 � 10�1 5.2316 � 10�1+ 5.1511 � 10�1+ 4.6096 � 10�1+
17 7.9177 � 10�1 5.3436 � 10�1+ 5.2781 � 10�1+ 4.6419 � 10�1+
18 8.0302 � 10�1 5.2764 � 10�1+ 5.1421 � 10�1+ 4.6993 � 10�1+
19 8.1730 � 10�1 5.2730 � 10�1+ 5.2423 � 10�1+ 4.7525 � 10�1+
20 8.0723 � 10�1 5.1571 � 10�1+ 5.1236 � 10�1+ 4.5845 � 10�1+
21 8.0504 � 10�1 5.0620 � 10�1+ 5.0290 � 10�1+ 4.5930 � 10�1+
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Table 10
A comparison of the means of SC between CMOMA and NSGA-II, SPEA-2, and MOGWO on all test instances.

Test instance C(CMOMA, NSGA-II) C(NSGA-II, CMOMA) C(CMOMA, SPEA-2) C(SPEA-2, CMOMA) C(CMOMA, MOGWO) C(MOGWO, CMOMA)

1 20.93% 19.35% 55.43% 2.70% 89.64% 0.13%
2 32.73% 11.60% 54.65% 3.78% 92.09% 0.13%
3 39.73% 11.03% 75.53% 1.18% 97.25% 0.05%
4 39.53% 9.20% 63.05% 2.48% 95.83% 0.15%
5 45.25% 8.85% 66.08% 2.15% 96.74% 0.05%
6 55.08% 8.35% 65.93% 3.15% 98.28% 0.03%
7 47.53% 8.28% 66.45% 3.00% 99.51% 0
8 38.93% 6.25% 57.23% 1.35% 97.41% 0
9 56.88% 3.08% 77.70% 0.23% 99.86% 0
10 50.55% 4.78% 68.30% 1.05% 99.14% 0
11 61.75% 1.95% 84.78% 0.40% 100.00% 0
12 55.30% 3.68% 83.31% 0.65% 99.77% 0
13 49.60% 3.03% 79.80% 0.45% 100.00% 0
14 56.03% 2.70% 81.28% 0.45% 100.00% 0
15 57.63% 1.55% 77.43% 0.43% 99.37% 0
16 72.15% 0.73% 86.78% 0.18% 99.93% 0
17 70.30% 0.80% 89.95% 0.05% 100.00% 0
18 61.80% 1.08% 92.90% 0.05% 99.87% 0
19 63.74% 0.98% 83.06% 0.35% 100.00% 0
20 70.45% 0.58% 90.90% 0.05% 100.00% 0
21 82.11% 0.45% 98.20% 0.00% 100.00% 0
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of CMOMA dominate most of the solutions of SPEA-2 and MOGWO.
Except for the first instance, the solutions of CMOMA are much bet-
ter than those of NSGA-II, particularly on large instances.

The above analyses reveal a phenomenon in which the superi-
ority of CMOMA becomes more apparent as the instance size
increases. To further explore this phenomenon, non-dominated
solutions obtained by randomly running the algorithms on three
instances of each size are shown in Fig. 8. On the small instance,
NSGA-II reaches a limited Pareto front and presents a relatively
good distribution, surpassing SPEA-2. However, on the medium-
sized and large instances, the performance of NSGA-II degrades
palpably. The solutions of NSGA-II, SPEA-2, and MOGWO are close
and concentrated in a small area, failing to explore the objective
space adequately. In contrast, the solutions of CMOMA on all
instances occupy large spaces and cover most of the solutions of
the comparison algorithms. This advantage mainly stems from
the local search operators and the competition mechanism, which
allow the algorithm to search broadly and efficiently.

To recap, this paper illustrates the efficacy of the proposed
DMSCO methodology by preferentially investigating a sequential
pattern in which the subtasks of a task are fulfilled in sequence.
This is a fundamental pattern that can be effortlessly extended to
other patterns. For example, to accommodate a pattern in which
parallel subtasks exist, all research can be adopted with just two
minor modifications. First, it is necessary to convert Eq. (20)
F ¼ FI to F ¼ maxCSi2CSðFiÞ and Eq. (21) Bi � Fi�1 � 0 to Bi � Fl � 0,
where l is the index of subtasks and subtask STi should be started
after STl (as more than one precursor STl could exist with a parallel
relationship before STi). Second, in the encoding scheme, it is
necessary to ensure that a subtask is placed after all its precursor
subtasks. In this way, this paper shows how DMSCO improves
service collaboration solutions while being capable of providing
references for other patterns and retaining extensibility.
6. Conclusions

With the application of Industrial Internet platforms in the
manufacturing industry, high-quality manufacturing service col-
laboration solutions are desirable. This paper proposes a DMSCO
methodology to optimize service selection and amount distribu-
tion in order to improve the solution quality. In this work, manu-
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facturing services are modeled at three granularities, and their
components and structures are discussed to ensure the feasibility
of collaboration solutions. Unlike previous works, the availability
of a manufacturing service is formulated as a series of accessible
periods of the physical resource corresponding to the service. In
particular, the availability of a complicated service is affected by
the component services and their relationships. The DMSCO model
is then formulated to simultaneously optimize service selection
and amount distribution. A CMOMA embedding a competition
mechanism is developed for searching for solutions to the model.
Extensive experiments are conducted, and the results suggest the
superiority of the proposed algorithm. To be specific, CMOMA out-
performs FMOMA that is without the competition mechanism in
all considered metrics, thereby verifying the effectiveness of the
designed mechanism. Compared with NSGA-II, SPEA-2, and
MOGWO, CMOMA also exhibits excellent performance. Moreover,
as the size of the instances increases, the superiority of CMOMA
over the comparison algorithms becomes evident.

This paper aims to introduce a novel DMSCO for Industrial
Internet platforms, thereby providing fresh insights to stakehold-
ers. Motivated by studies on optimal service selection, the devel-
oped DMSCO is comprehensible for relevant practitioners and
easily compatible with existing processes. In parallel, the results
of the experiments in this study reveal the proposed method’s
potential for practical applications in scenarios with complex
production processes and large production amounts, such as
automobile, equipment, and household appliance manufacturing.
A link in the production process can be assigned to multiple
qualified manufacturing services, thus enhancing the overall ser-
vice performance. However, it should be noted that the manu-
facturing service modeling in this paper focuses on physical
processing resources, while Industrial Internet platforms also
contain other types of resources, such as software and logistics
resources. For future work, the proposed method will be vali-
dated and evaluated through real-world scenarios and experi-
ments. Research on enhancing the expressive ability of
manufacturing service modeling and the corresponding service
collaboration model is recommended. In addition, this paper
mainly focuses on collaboration solutions that satisfy customer
requirements. Since the interests of service providers are also
crucial, it is worth studying how to simultaneously improve
the satisfaction of both sides.



Fig. 8. Non-dominated solutions obtained by a random running of CMOMA, NSGA-II, SPEA-2, and MOGWO on small test instances (2, 4, and 6), medium-sized test instances
(9, 11, and 13), and large test instances (16, 18, and 20).
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