
Engineering 22 (2023) 71–81
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Intelligent Manufacturing—Article
Reliability Topology Optimization of Collaborative Design for Complex
Products Under Uncertainties Based on the TLBO Algorithm
https://doi.org/10.1016/j.eng.2021.06.027
2095-8099/� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: 0620486@zju.edu.cn (J. Tan).
Zhaoxi Hong a,b, Xiangyu Jiang a,b, Yixiong Feng a,b, Qinyu Tian a,b, Jianrong Tan a,b,⇑
a State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
bKey Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 November 2020
Revised 15 June 2021
Accepted 20 June 2021
Available online 19 October 2021

Keywords:
Plates structure
Reliability
Collaborative topology optimization
Teaching–learning-based optimization
algorithm
Uncertainty
Collaborative design for product life cycle
The topology optimization design of complex products can significantly improve material and power sav-
ings, and reduce inertial forces and mechanical vibrations effectively. In this study, a large-tonnage
hydraulic press was chosen as a typically complex product to present the optimization method. We pro-
pose a new reliability topology optimization method based on the reliability-and-optimization decoupled
model and teaching–learning-based optimization (TLBO) algorithm. The supports formed by the plate
structure are considered as topology optimization objects, characterized by light weight and stability.
The reliability optimization under certain uncertainties and structural topology optimization are pro-
cessed collaboratively. First, the uncertain parameters in the optimization problem are modified into
deterministic parameters using the finite difference method. Then, the complex nesting of the uncer-
tainty reliability analysis and topology optimization are decoupled. Finally, the decoupled model is solved
using the TLBO algorithm, which is characterized by few parameters and a fast solution. The TLBO algo-
rithm is improved with an adaptive teaching factor for faster convergence rates in the initial stage and
performing finer searches in the later stages. A numerical example of the hydraulic press base plate struc-
ture is presented to underline the effectiveness of the proposed method.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proliferation in the manufacturing of complex products has
exacerbated resource consumption and environmental pollution,
further stressing out the Earth’s ecosystem. For example, global
greenhouse gas (GHG) emissions continued to rise until 2018 [1].
In 2019, worldwide carbon emissions totaled 33 billion tons, a
slight slowdown in growth [2]. In complex product manufacturing,
ferrous metal smelting and processing are the major contributors
to GHG emissions, with a 35.9% share [3]. Hydraulic presses are a
staple in metal forming processes owing to their ability to deliver
high pressure forming [4,5]. However, they are also typically com-
plex products that result in high energy and material costs during
their manufacturing. In 2013, China produced approximately two
million metal forming presses [6]. The growing demand for energy
and material resources may cause irreversible damage to the envi-
ronment. Hence, this study focuses on the design optimization of
complex products, balancing performance and resource saving
metrics, using a hydraulic press as an optimization case study.

Many researchers have explored optimization methods regard-
ing hydraulic presses to reduce resource costs and alleviate envi-
ronmental pollution. These optimization methods have mainly
concentrated on the efficient usage of, for example, the drive sys-
tem [7–12] and reasonable structural design. Compared with tradi-
tional drive system optimization, the structural optimization of
machinery is crucial for saving resources and reducing consump-
tion. Structural optimization focuses on the size, weight, layout,
and so forth, of the entire machine and its parts. Among these,
the lightweight design optimization of a hydraulic press not only
saves resources but also improves the performance of the hydrau-
lic press. With respect to satisfying reliability requirements, a lar-
ger weight of the hydraulic press means a greater cost in terms of
metallic material. Furthermore, heavy hydraulic presses have large
inertia and tend to consume more fuel during transportation or
processing. However, reasonable weight reductions can increase
the natural frequency of the support while guaranteeing constant
stiffness, which results in reduced vibrations and better load bear-
ing of the hydraulic press. Therefore, it is important to correctly
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determine the support material, wall thickness, cross-sectional
shape, and size to manufacture the ribs reasonably. Strano et al.
[13] optimized the design process with respect to energy effi-
ciency. Li et al. [14] adapted an effective topology optimizer for
hydraulic presses to reduce GHG emissions and enhance their
structural performance in manufacturing. Liu et al. [15] used an
explicit topology optimization method to improve the low-
carbon casting of a hydraulic press slider.

In a hydraulic press, the support plays an important role in
ensuring safe and stable work. It considers the plate structure
formed by the tailored welding or casting of discrete plate units
as a ground structure. The plate structure has the advantages of a
simple structure, ease of manufacturing, and a high bearing capac-
ity. In the current structural design optimization of plate struc-
tures, most plates are optimized by changing the dimensional
parameters within the existing plate layout. This design optimiza-
tion aims to reduce the weight of the structure, but has limited
effectiveness. Compared to topology optimization, size optimiza-
tion of individual components has less design freedom and cannot
significantly lower weight in a limited area. Here, we propose a col-
laborative topology optimization method that simultaneously
changes the number of plate units and optimizes their sizes. In
contrast with the contemporary method that obtains the deter-
mined plate structure layout through experience, our novel
method can simultaneously reduce the overall weight and improve
the support stiffness of the plate structure effectively.

The design objectives of the topology optimization are the plate
thickness parameters and topological variables. These objectives
can be solved using a mathematical model based on a truss-like
structure. In previous studies, many researchers have investigated
applicable methods for optimizing a truss-like structure. The finite
element method (FEM) has been improved by researchers as an
effective traditional optimization method. They used FEM to ana-
lyze the frame structure, as well as to test and evaluate the opti-
mum design parameters [16–19]. Many studies have focused on
the performance of structural characteristics, apart from the opti-
mization method. Lan et al. [20] considered three aspects—topol-
ogy, shape, and size—to optimize the design of a fine-blanking
press frame. Yan et al. [21] studied the characteristics of the heavy
load-bearing frame of a hydraulic press based on the finite element
optimization method, which enabled them to simultaneously
increase the stiffness of the frame and lighten the structure. The
above studies all performed topology optimization without consid-
ering uncertainties. However, ignoring uncertainties may result in
the unreliability or even failure of the structure.

In an actual engineering structure, parameters such as the
applied loads, material parameters, and structural geometry inevi-
tably contain uncertainties owing to the influence of manufactur-
ing and various environmental factors. The topological structure
derived from deterministic topology design optimization may vio-
late these constraints and fail to meet the performance require-
ments of the design. Thus, it is necessary to consider
uncertainties and use an appropriate model to judge the reliability
of the optimized structure. Liu and Moses [22] and Thampan and
Krishnamoorthy [23] initially introduced reliability as a constraint
in the single-objective topology optimization of a truss. Subse-
quently, many researchers have begun to consider the impact of
uncertainties on reliability. A probabilistic method was proposed
to express uncertainty parameters in the form of a normal distribu-
tion, taking structural performances as objectives, and the proba-
bility of failure as a constraint for reliability-based topology
optimization [24]. In a study by Greiner and Hajela [25], the uncer-
tainties of the external load and yield stress were represented as
Gaussian normal distributions, and the structural mass and relia-
bility were the objectives for the truss topology optimization.
Jalalpour et al. [26] researched the geometry and material
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uncertainty of a truss and proposed a stochastic stiffness reliability
topology optimization model. Torii et al. [27] proposed a proba-
bilistic approach for simultaneously optimizing the geometry and
topology of trusses, considering the uncertainties in the applied
forces and yield stresses. Furthermore, many non-probabilistic
methods have been developed to minimize various types of uncer-
tainties in reliability-based structural topology optimization. These
non-probabilistic uncertainties are mainly expressed in uncertain-
but-bounded (interval or convex) sets [28,29] or fuzzy sets [30].
There are also uncertainties of different types mixed into one reli-
ability problem, which lead to the probabilistic–non-probabilistic
hybrid reliability analysis method [31–33], and other mixed forms.
Non-probabilistic and hybrid methods have expanded the solution
to uncertain problems. Considering the practical problems com-
prehensively, in this study, we chose the probabilistic model to
study stochastic uncertainties.

According to these past studies, two problems are worth pon-
dering upon. First, the coupling of the reliability analysis of uncer-
tainties and topology optimization may lead to an inefficient
solution process. Second, the reliability topology optimization
model built based on uncertain parameters may not be well suited
to the teaching–learning-based optimization (TLBO) algorithm.
This would have a detrimental effect on the convergence speed
and accuracy of the algorithm. In this study, some innovations
were made to alleviate the above problems. First, the probability
distribution of uncertain parameters is determined in practical
engineering. In the reliability analysis stage, the probability of fail-
ure is converted into a reliability index constraint. Second, the
uncertain parameters are modified into deterministic parameters
based on their reliability. We also decoupled the previous complex
optimization process into a topology optimization process and a
deterministic reliability analysis process. The decoupled model is
suitable for parsing the algorithm and improving optimization effi-
ciency. Third, we selected the TLBO algorithm to solve for the
design variables. We improve the algorithm by adopting the adap-
tive teaching factor to make the convergence rate faster in the ini-
tial search stages, and to make the search more refined after a
certain number of iterations.

The remainder of this paper is organized as follows. In Section 2,
the characteristics of the structure are studied, and a topology opti-
mization model is built. Section 3 discusses the model analysis
with uncertain parameters based on reliability. Section 4 intro-
duces the solution process of the TLBO algorithm in detail. An
example of the optimization results is provided in Section 5, fol-
lowed by the conclusions in Section 6.
2. Hydraulic press support plate system optimization model

This section summarizes the typical structure of a hydraulic
press support and presents the optimization model.
2.1. Ground structure approach

To perform structural topology optimization, the entire struc-
ture needs to be divided into design domains for research. There
are two types of design domains: ground and continuum struc-
tures. The ground structure approach is a common method used
to study discrete structural topology optimization, which is well
suited to our research objectives. The basic idea is to construct
an exhaustive set of discrete structural elements (truss or beam/
frame elements) in the design domain. A ground structure com-
posed of a truss structure is shown in Fig. 1. The design variables
are the section parameters of these units, such as area and
thickness, and whether these units exist. The goal of topology



Fig. 1. Ground structure of a truss. P: the external force applied to the truss.
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optimization is achieved by removing some units from the original
exhaustive set of units in the design process [34].

The box-type plate structure of the hydraulic press support is
composed of interlaced and interconnected plate elements. The
connection mode between the units is a rigid consolidated plate.
The plate units are divided into three parts for different functions,
including the carrier plate, force transmission plate, and closed
plate. As shown in Fig. 2, the upper part of the box-type plate struc-
ture is a carrier plate, where an external load is applied. The force
transmission plate in the middle is perpendicular to the carrier
plate that transmits the loads. The topology optimization discussed
in this paper is mainly aimed at the size and topology variables of
the force transmission plate. The bottom is a closed plate that
closes the overall structure together with the carrier plate and
force transmission plate to form a cavity structure.

When constructing the ground structure of the box-type plate
structure, it is necessary to limit the local displacement uy at the
center of the cavity. This limitation prevents the unreasonable
spacing of the ground structural plates from causing excessive dis-
placement of the carrier plate. For a given carrier plate thickness t,
the spacings Lx and Ly of the force transmission plate are specified.
The displacement uy at the center of the carrier plate and external
load q0 have a monotonically increasing relationship. The displace-
ment uy is larger when the external load q0 increases, and the dis-
placement reaches the permissible value [uy] when q0 is
sufficiently large. Accordingly, the plate spacings Lx and Ly, corre-
sponding to [uy], are the permissible maximum plate spacings.
2.2. Topology optimization model of the plate structure

The plate structure of the hydraulic press support is force-
supporting. Its design requires sufficient stiffness to satisfy the
loading requirements while ensuring the lightest possible struc-
ture. Thus, this is a multi-objective topology optimization problem.
After determining the ground structure of the hydraulic press sup-
port, we introduce the topological variable r ¼ r1; r2; � � � ; rn½ �T and

plate thickness variable t ¼ t1; t2; � � � ; tn½ �T, where n is the number
of plates, T is matrix transpose. The topological variable indicates
whether the plate exists. When the topological variable is set to
Fig. 2. Composition of a plate system. t: the given carrier plate thickness; q0: external
load; Lx: the spacing between the force transmission plate; uy: local displacement.
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zero, the plate thickness variable is also set to zero. By considering
both variables simultaneously, the coupling between the topologi-
cal variable and plate thickness variable in the topology optimiza-
tion is solved. The total weight of the plate structure can be
expressed as follows:

W ¼
Xn
i¼1

riAitiq ð1Þ

where q is the material density, ri is the topological variable of the
plate ðri 2 0;1f gÞ, Ai is the area of the plate, and ti is the thickness of
the plate.

The size of the structural carrying capability can be character-
ized by the overall strain energy of the structure. When the loads
are fixed, the smaller the strain energy of the structure, the smaller
the structural flexibility, and the greater the structural stiffness is.
The structural strain energy with the given loads and constraint
boundary conditions satisfies the following equation:

U ¼
Z
X
rTedX ¼ dTkd ð2Þ

where U is the structural strain energy, r is the stress matrix, e is
the strain matrix, X is the structure volume, d is the structural dis-
placement matrix generated by the load, and k is the structural
stiffness matrix.

Topology optimization of the hydraulic press support plate
structure requires an optimal compromise solution between the
two objective functions of structural mass and carrying capability.
Multi-objective optimization is usually performed for multi-
objective problems to generate a series of Pareto solutions, and
then a selective optimization is performed. In this study, the
multi-objective topology optimization problem is converted into
a single-objective problem. The norm method is often used for
the transformation of multi-objective functions [35,36] in struc-
tural topology optimization. The distance function is defined as
follows:

D ¼
X
i

ki f i tð Þ � sið Þp
" #1

p

ð3Þ

where ki represents the weighting factor of the ith objective func-
tion, fi(t) is the objective function value of the design variable, si is
the initial value of the objective function, and p is the penalty factor.

The topology optimization design of the hydraulic press support
plate structure adopts the ground structure method. The plate
thickness is the design variable, and the objectives are minimizing
the strain energy and weight of the plate structure. For calculation
convenience, the two targets are multiplied by the weight and
combined into one target fi(t). There are different orders of magni-
tude between different objective functions in the topology opti-
mization. If the actual value is taken as the optimization target
directly, the objective function of a smaller order will recede, and
that of a larger order will dominate. Therefore, a normalization
process is required during the modeling of the multi-objective
functions. A mixed-variables topology optimization model that
considers both the cross-section and topological variables is
adopted for this topology optimization problem. The design vari-

ables to be solved are the topological variables r ¼ r1; r2; � � � ; rn½ �T
and plate thickness variable t ¼ t1; t2; � � � ; tn½ �T.

min f tð Þ ¼ k
W
W0

� �
� 1� kð Þ E0

E

� �

s:t: rj � r½ � j ¼ 1;2; . . . ;m

uk � u½ � k ¼ 1;2; . . . ; l
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tw 2 Tw w ¼ 1;2; . . . ;n1

tv 2 Tv v ¼ 1;2; . . . ;n2 ð4Þ
n1 þ n2 ¼ n

ri
1; ti > 0
0; ti ¼ 0

�
i ¼ 1;2; . . . ; n

rw ¼ 1 w ¼ 1;2; . . . ;n1

rv 2 0;1f g v ¼ 1;2; . . . ;n2

whereW0 is the structural initial weight, E is the structural objective
strain energy, E0 is the structural initial strain energy, k is theweight-
ing factor, [r] is the allowable stress constraint, [u] is the permissible
maximum displacement, tw is the thickness of the plate that is not
allowed to be deleted, tv is the thickness of the plate that can be
deleted, Tw is the thickness set of the plate that is not allowed to be
deleted, Tv is the thickness set of the plate that can be deleted, rw is
the topological variable of the plate that cannot be deleted, and rv
is the topological variable of the plate that can be deleted.

In the above topology optimization model (Eq. (4)), the con-
straints are divided into the stress and displacement constraints.
The stress constraint limits the stress at the specified point of the
structure to values not greater than the allowable stress of the
material. The displacement constraint refers to the requirement
that the displacement in the specified position of the structure is
smaller than the specified allowable displacement. The multi-
objective topology optimization of the structure obtains a series
of feasible solutions. They are judged by the discriminant function
to determine the optimal compromise solution, thus obtaining the
final result. The discriminant function c is expressed as follows:

c ¼
X
i

f �i � f i tð Þ
f i tð Þ

� �2

ð5Þ

where fi* is the ideal feasible solution for the ith objective function.
By calculating the discriminant function value corresponding to dif-
ferent weighting factors, a corresponding weighting factor, which is
optimal when the discriminant function value is extremely small, is
obtained. The topology optimization result under this weighting
factor is the final optimization result.

3. Reliability analysis of the hydraulic press support plate
structure

The parameters involved in the reliability analysis of the
hydraulic press support plate structure were divided into deter-
ministic and uncertainty parameters. Deterministic parameters,
together with the optimization objective function and constraints,
constitute a mathematical optimization model.

The uncertainty variables involved in the topology optimization
include the material mechanics parameters, external load magni-
tude, and plate height. In this study, we use a probabilistic model
to describe these variables and study their stochastic uncertainties.
The uncertainty parameters are transformed into stochastic vari-
ables that conform to a certain probability distribution, such as
normal and exponential distributions. Then, the probability distri-
bution of the structural response is obtained. The mathematical
model of the reliability topology optimization can be described as

find t; r

min f ðt; rÞ
s:t: Pr Gi t; r; yð Þ � 0½ � � PT

f i
i ¼ 1; . . . ;m

hj t; rð Þ � 0 j ¼ 1; . . . ; n
tmin � t � tmax

y ¼ E; F;H½ �

8>>>>>>>>><
>>>>>>>>>:

ð6Þ
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where y is the vector of stochastic variables, considering E, the
external load magnitude F, and the uncertainty of the plate height
H, and f(t) is the objective function. Pr Gi t; r; yð Þ � 0½ � expresses the
probability of structural failure, PT

f i
is the allowable failure probabil-

ity, and hj(t, r) is the other constraint for the structure.
The reliability topology optimization aims to complete the opti-

mal design of the structure, guaranteeing that the failure probability
is less than the allowable failure probability. During the optimization
calculation, the probability density distributions and accurate perfor-
mance functions of the uncertain parameters need to be provided to
accurately calculate the failure probability. Theoretically, structural
reliability can be obtained through an integral calculation of the joint
probability density function. However, in practice, the function is
usually high dimensional, and the limit state function is implicit. In
the general reliability design process, an approximation method is
often used to make the limit state function explicit or to approximate
the failure probability calculation by means of the local expansion
method. The independent random input variables are transformed
into standard normal random variables when using the first-order
second-moment method to calculate the reliability index. The failure
probability works in the standard normal space instead of the origi-
nal space. The point closest to the origin on the limit state surface is
defined as the most probable failure (MPP) point. Furthermore, the
shortest distance from the origin on the limit state surface is the reli-
ability index b. Thus, the failure probability is transformed into a reli-
ability index constraint for the expression:

Pf i � PT
f i
) bi � bT

i ð7Þ

where bi is the reliability index of the ith limit state of the structure
and bT

i is the corresponding target reliability index. U�1 is the
inverse function of the standard normal distribution to transfer
the allowable failure probability PT

f i
into bT

i .

bT
i ¼ �U�1ðPT

f i
Þ ð8Þ

Traditional reliability optimization design with uncertainties
includes a topology optimization iterative process and reliability
analysis process. Both are nested within each other, which compli-
cates the solution process. The decoupled method is an efficient
and feasible method for solving reliability-based optimization
problems with high dimensions, small failure probability, or com-
plicated or implicit limit state functions. Solving the failure proba-
bility function is key in the decoupled method. The failure
probability function is defined as a function that changes with the
design variables, such that the original problem can be transformed
into a conventional deterministic optimization problem. The trans-
formed deterministic optimization problem can be solved using
general optimization algorithms. In our problem, the reliability
topology optimization process is divided into two parts after apply-
ing the decoupled method: the reliability analysis and deterministic
topology optimization. The geometric meaning of the reliability
index in the first-order reliability method is shown in Fig. 3. We
can find the design point P* corresponding to the reliability index
and sensitivity information of the function for the stochastic
variable. Then, the uncertainty parameter is modified based on the
sensitivity information. This makes the uncertainty parameters
deterministic, enabling us to conduct deterministic topology design
optimization based on obtained deterministic parameters.

For a given failure case, combined with the geometric meaning
of the reliability index, the reliability index b can be solved using
the following optimization model for the stochastic variable [37]:

b ¼ minl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP
l2

j

q
s:t: b � bT

ð9Þ

where l is the normalized stochastic variable.



Fig. 3. Geometric meaning of first order reliability. l1: the first normalized
stochastic variable; l2: the second normalized stochastic variable; l1*: the first
normalized stochastic variable of the most likely failure point; l2*: the second
normalized stochastic variable of the most likely failure point; P*: design point.
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During the solution process, the sensitivity of the structural
reliability index to the normal stochastic variable can be solved as

@b
@li

¼ 1
2
ð
X

l2
j Þ

�1=2 � 2lj ¼
lj

b lð Þ ð10Þ

Solving the optimal solution obtained can be understood as
finding the MPP l* for a given failure situation. The stochastic
parameters of the model are modified into deterministic parame-
ters using l*. The modification process is expressed as

yi ¼
gyi

þ liryi ; if
@f
@gyi

� 0

gyi
� liryi ; if

@f
@gyi

< 0

8>>><
>>>:

ð11Þ

where gyi
and ryi represent the mean and standard deviation of the

uncertainty parameter yi, respectively. For calculating the sensitivi-
ties of the uncertain parameters in the above objective function, the
finite difference method is used

@f
@gyi

¼ Df
Dgyi

¼
f gxi

þ Dgxi

� �
� f gxi

� �
Dgyi

ð12Þ

After modifying the uncertain parameters, the reliability topol-
ogy optimization problem of the plate structure can be trans-
formed into an equivalent deterministic topology optimization
problem.

given y ¼ E; F;H½ �
find t; r
min f ðt; rÞ
s:t: Gi t; rð Þ � 0 i ¼ 1; . . . ;m
hj t; rð Þ � 0 j ¼ 1; . . . ;n
tmin � t � tmax

8>>>>>>>><
>>>>>>>>:

ð13Þ

The reliability topology optimization calculation using the
decoupled method ignores the influence of the performance func-
tion. However, it effectively improves the calculation efficiency and
facilitates the optimization calculations in combination with the
heuristic method.

4. The process of the optimization solution

The TLBO algorithm chosen in this study is a swarm intelligence
algorithm with advantages in terms of convergence and efficiency.
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In contrast with most nature-inspired optimization algorithms, the
TLBO algorithm has no optimum controlling parameters that influ-
ence the performance of algorithm. For TLBO, it is assumed that the
behavior of nature is always optimum in its performance, which
also reduces the complexity of the algorithm initialization. This
algorithm has been thoroughly explored and developed through
numerous studies. Rao et al. [38] proposed the TLBO algorithm to
simulate teaching and learning processes. The TLBO algorithm
and its improvement have been applied to various optimization
scenarios [39,40], including discrete structural optimization.
Toğan [41] used the TLBO algorithm for the design optimization
of planar steel frames. Degertekin and Hayalioglu [42] and Camp
and Farshchin [43] applied the TLBO algorithm to the design opti-
mization of a plane truss and a space truss, respectively. Dede [44]
optimized a truss structure using the TLBO algorithm using dis-
crete design variables.

According to the reliability topology design optimization
applied to a hydraulic press support plate structure, the optimiza-
tion calculation based on a series of uncertainty parameters
enables the structure to reflect the engineering practice more
realistically. The reliability topology optimization flowchart is
shown in Fig. 4.

After the reliability analysis of the hydraulic press support and
its modification according to the uncertainty parameters, the
topology optimization solution is obtained using the TLBO algo-
rithm, which is divided into two phases: teaching and mutual
learning.

4.1. Population initialization

The initial population of N-dimensional P columns is randomly
generated, where N represents the number of students and P is the
number of variables. The number of maximum iterations G and the
initial conditions, together with the upper and lower limits of each
variable, are specified. The population generation process is shown
in Eq. (14), where the value is a random number between 0 and 1.

x1ði;jÞ ¼ xmin
j þ r� � ðxmax

j � xmin
j Þ ð14Þ

where x1ði;jÞ is the initial individual; xmax
j and xmin

j are the upper and
lower limits of the variable, respectively; r* is the random number.

4.2. Teaching phase

In this phase, the adaptive value of each individual in the initial
population is calculated. Then, the optimal individual is selected as
the ‘‘teacher” to teach other individuals, namely, ‘‘students.” When
the number of iterations is g, Xg

teacher represents the ‘‘teacher” indi-
vidual in the current population and Mg is the mean of the individ-
ual design variables. The ‘‘student” learns and improves according
to Eq. (15):

Xnewg
i
¼ Xoldg

i
þ r� � ðXg

teacher � TF �MgÞ ð15Þ

where Xoldg
i
and Xnewg

i
represent the values of the ith student before

and after learning, respectively, and TF represents the learning fac-
tor, which is generally randomly selected in 1 or 2.

4.3. Mutual learning phase

Each student improves their individual adaptive value through
a mutual study in this phase. After the teaching phase, for a ran-
dom student Xi, another student Xh (h – i) is chosen to analyze
the gap between the two students and adjust them
simultaneously.



Fig. 4. Flowchart of the reliability topology optimization of a hydraulic press
support plate structure. Xoldg

i
: the value of the ith student before learning; Xnewg

i
: the

values of the ith student after learning; TF: the learning factor; Xi, Xj: two different
random students; Mg: the mean of the individual design variables; g: the number of
iterations; r*: the random number.
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As the topology variable is a discrete value in the topology opti-
mization of the plate structure, it is regarded as a continuous vari-
able between [0, 1] during iterative learning. The topology variable
is rounded when calculating the objective function value and the
constraints, and in the final calculation when the results are
expressed. This processing mode ensures that the topology vari-
able remains random during the learning evolution process.

The standard TLBO algorithm cannot process the constraint
problems involved in engineering applications. The penalty func-
tion is introduced to transform the problem with constraints into
a problem without constraints. The general form of the penalty
function is

/ xð Þ ¼ f xð Þ þ pðxÞ ð16Þ
where /(x) is the synthetic objective function added to the penalty
term and p(x) is the penalty term, which is expressed as
76
p xð Þ ¼
Xm
i¼1

ri �max 0; gi xð Þð Þ2 þ
Xp

j¼1

cj � hj xð Þ�� �� ð17Þ

where ri and cj are penalty factors, and gi(x) and hj(x) are the
inequality and equality constraints, respectively.

In the calculation process of the standard TLBO algorithm, the
change in the learning factor TF is crucial, the value of which can
affect the rate and accuracy of the iterative search. Generally, the
value of the teaching factor is randomly selected as 1 or 2 by the
system. In the calculation process of the optimization iteration, if
TF is small, the convergence rate of the optimization process will
slow down, and the search will be more refined. If the value is
large, the convergence rate will be faster, but the algorithm will
likely be premature. The value of TF was discussed and improved
by Rao et al. [45], and the TLBO algorithm was also optimized.
Niknam et al. [46] associated the value of the teaching factor with
the current students’ average grades and the teacher’s level. TF is
represented as the ratio of the students’ grades (Mi) to the teacher’s
level (Ti) at the ith iteration: TF ¼ Mi=Ti. In this study, an adaptive
teaching factor calculation method [47] is adopted, expressed as

TF ¼ TFmin
þ abs

f Mið Þ � f ðMopt;iÞ
f ðMiÞ

� �
ð18Þ

where Mopt,i is the average grade of each student after the ith
iteration through teaching and mutual learning optimization.
TFmin

= 1; when f(Mi) is 0, TF equals 1. This value of the teaching factor
makes the convergence rate faster in the initial search stage,
whereas a more detailed search is utilized after several iterations
up to a certain number of times.

Griewank and Rastrigrin numerical functions were selected to
compare the original TLBO and the improved algorithms, verifying
the effectiveness of the improvement. The two functions are both
typically nonlinear multimodal functions with many local minima.
It is difficult to find their global minima through optimization algo-
rithms. The function dimension was set as 30, the algorithm
population size as 10, the maximum number of iterations as 100,
the maximum value of the teaching factor as 2, and the minimum
value as 1.

Both the original TLBO and the improved TLBO algorithms can
converge to a global optimal value after a certain number of itera-
tions. However, the improved TLBO algorithm has obvious advan-
tages in terms of convergence speed compared to the original
algorithm. The original TLBO algorithm did not converge to the glo-
bal optimal value until more than 90 generations, whereas the
improved TLBO algorithm converged in less than 20 generations.
The test results prove that the improved algorithm jumps out of
the local optimum more easily. The algorithm efficiency is greatly
improved as well when calculating the topology optimization of a
high-dimensional complex model.
5. Example analysis

The hydraulic press support is a box-shaped plate structure. It is
mainly made of polygonal plates created through welding or cast-
ing. The interior is staggered with plates to form an independent
space. The upper part is supported by a load-bearing plate. The
plate arrangement of the hydraulic press support is different owing
to the different manufacturing processes. The ground structure
needs to be constructed differently for different process forms to
reflect the plate arrangement and process characteristics in the
topology optimization. There are two typical forms of the arrange-
ment shown in Fig. 5: neat grids and staggered grids. In the follow-
ing, we introduce topology optimizations for the neat grid and the
staggered grid layouts. Both optimization objectives consist of the
total mass and load stiffness of the plate structure, whereas the



Fig. 5. Welded plate structure.
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local maximum displacement is set as a constraint to meet the
reliability requirements.

The structural design parameters are listed in Table 1. The tar-
get performance is defined by the overall strain energy of the struc-
ture. The structure mass was constrained to 80% of the original
mass of the structure. The number of iterations was set to 100.
The upper limit thickness of each plate was set to 5 cm, and the
maximum displacement of the bearing plate was set to 2.5 mm
in the z direction. The boundary condition adopted the complete
constraint around the cylindrical hole of the bottom plate, and
loads were applied in a 1.8 m � 1.2 m rectangular area at the cen-
ter of the upper plate, where the displacement constraint was used.
The load, material elastic modulus, and plate height were all set as
normal stochastic variables. The structural uncertainty parameters
are presented in Table 2. After setting the parameters, the decou-
pled method was used to calculate and correct the sensitivity of
the stochastic variables. Then, the corrected stochastic variables
were substituted into the mathematical topology optimization
model for the calculation.
Table 1
The values of structural design parameters.

Parameter Value

Overall length (m) 2.50
Overall width (m) 1.50
Material density (kg∙m�3) 0.48
Poisson ratio 0.33
Plate thickness range (m) 0–0.05
Displacement constrains (mm) 0.50

Table 2
Values of uncertain parameters before modification.

Types Load size
(MPa)

Elastic modulus
(�1011 Pa)

Plate height
(m)

Average value 0.76 2.1 0.48
Standard deviation

value
0.20 0.1 0.05
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The support plates of the cylindrical hole at the four corners of
the base are set as non-removable plates because of their func-
tionality, whereas the other support plates can be added or
deleted. The topology optimization target reliability bT was set
to 3, and the ideal weighting factor k was selected as 0.8 accord-
ing to the optimization iteration results and the discriminant
function (Eq. (5)). The layout of the carrier plate is symmetrical
so that only the lower left quarter is required for modeling anal-
ysis, whereas the rest is calculated using a symmetric method. In
the example, the materials in each part are the same; thus, only
the structural volume is calculated as the objective function.
The optimized topology variables and plate thickness variables
of each plate are listed in Tables 3 and 4, respectively. The final
topology optimization results are listed in Table 5. The neat grid
and staggered grid structures, together with their numbers, are
shown in Figs. 6 and 7, respectively. The topology optimization
iterative process and final optimization results are shown in
Figs. 8–11.

The topology configuration and plate element distribution after
the optimizations of the neat grid and the staggered grid structures
are shown in Figs. 8 and 10, respectively. Compared to the topology
optimization results of the two ground structures, those acquired
through reliability optimization have more retention plate ele-
ments than those acquired through deterministic optimization.
Tables 3 and 4 show the quantitative data of the topology and plate
thickness variables obtained through reliability and deterministic
topology optimizations. In the neat grid structure, the plate thick-
ness of plates X23 and Y12 near the center of the base was signifi-
cantly increased. In addition, the topology variables of plates Y13
and Y21 became equal to 1 after reliability topology optimization.
Similarly, the plate thickness variable was also significantly
increased under the staggered grid structure. The topology vari-
ables of plates Y12 and Y23 near the center of the structure became
equal to 1 after reliability topology optimization. The overall mate-
rial quantity of the structure was increased, and the structural reli-
ability was enhanced.

The iterative changes of the volume and strain energy objective
functions are shown in Figs. 9 and 11, respectively, based on
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different ground structures. For the volume objective function in
both ground structures, the final convergence value of the reliability
topology optimization was greater than that of the deterministic
topology optimization. This result is consistent with the intuitive
results presented in Figs. 8 and 10. For the strain energy objective
function, a higher strain energy results in a smaller support stiffness.
The structural strain energy calculated through the reliability topol-
ogy optimizationwas higher than that of the deterministic topology
Table 3
Topology and size variables of the optimal neat grid plate structure.

Number Deterministic topology optimization

Topology variables Size variable

X11 1 0.010
X12 1 0.017
X13 0 0
X21 1 0.013
X22 1 0.050
X23 1 0.042
Y11 1 0.034
Y12 1 0.038
Y13 0 0
Y21 0 0
Y22 1 0.026
Y23 0 0

Table 4
Topology and size variables of the optimal staggered grid plate structure.

Number Deterministic topology optimization

Topology variables Size variable

X11 1 0.012
X12 1 0.014
X13 0 0
X21 1 0.013
X22 1 0.047
X23 1 0.039
Y11 1 0.010
Y12 0 0
Y13 0 0
Y21 0 0
Y22 0 0
Y23 0 0

Table 5
Comparison of the topology optimization results.

Types Weight ratio (W/W0) Strai

Certainty Reliability Certa

Neat grid 0.76 0.77 1.44
Staggered grid 0.71 0.78 1.56

Fig. 6. Neat grid ground structure.
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optimization. This indicates that after the stochastic parameters
were modified, the structure satisfied the optimization constraints
with a smaller support stiffness. As a result, the structure gained a
stronger anti-failure capability and higher reliability.

Table 5 presents the deterministic and reliability topology opti-
mization results for the two ground structures. It is seen that the
optimization results satisfy the displacement constraint of 0.5
mm. Nevertheless, the results obtained using the two different
Reliability topology optimization

s Topology variables Size variables

1 0.012
1 0.019
0 0
1 0.015
1 0.050
1 0.049
1 0.010
1 0.050
1 0.010
1 0.025
0 0
0 0

Reliability topology optimization

s Topology variables Size variables

1 0.017
1 0.032
0 0
1 0.020
1 0.050
1 0.030
1 0.028
1 0.020
0 0
0 0
0 0
1 0.039

n energy ratio (E/E0) Maximum displacement (mm)

inty Reliability Certainty Reliability

1.35 0.48 0.49
1.32 0.45 0.47

Fig. 7. Staggered grid ground structure.



Fig. 8. Topology optimization of the neat grid ground structure. (a) Deterministic topology optimization results; (b) reliability topology optimization results (bT = 3).

Fig. 9. Convergence process of the objective function of the neat grid ground structure. (a) Volume convergence process; (b) strain energy convergence process.

Fig. 10. Topology optimization of the staggered grid ground structure. (a) Deterministic topology optimization results; (b) reliability topology optimization results (bT = 3).

Fig. 11. Convergence process of the objective function of the misaligned square structure. (a) Volume convergence process; (b) strain energy convergence process.
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ground structures were slightly different. The reliability topology
optimization of the neat grid structure increased less in terms of
the weight ratio, only increasing from 0.76 to 0.77. Furthermore,
the weight ratio increased from 0.71 to 0.78 in the staggered grid
structure. In both cases, the ratio of the overall strain energy of
the final optimization result to that of the initial structure was sig-
nificantly reduced using the reliability topology optimization pro-
cess. The ratio of the strain energy of the neat grid to the original
strain energy was 1.35, and the ratio of the strain energy of the dis-
location grid to the original strain energy was 1.32. The reliability
topology optimization lowers the structural support stiffness when
the structure is lightweight. As a result, the structure can be con-
structed to satisfy a predetermined reliability index.

Compared to the deterministic topology optimization, the
results obtained using the reliability topology optimization are
more conservative, the weight is larger, the strain energy is smal-
ler, and the overall stiffness of the structure is larger under uncer-
tain conditions. However, compared to the unoptimized structure,
the weights obtained using deterministic topology optimization as
well as those obtained using reliability topology optimization
decreased, while the strain energy increased. At the same time,
the structure meets the reliability requirements and has a smaller
risk of failure based on reliability topology optimization under
uncertain conditions. Based on the numerical example, it can be
concluded that the reliability topology optimization is effective
in balancing the structural performance and environmental
protection.
6. Conclusions

A lightweight design of a hydraulic press structure is carried out
to save resources based on reliability to guarantee high perfor-
mance. We studied the discrete topology optimization method
with numerous uncertainties with the aim of reducing the mass
of the hydraulic press support. First, the ground structure method
was applied to divide the support of the hydraulic press into a plate
structure, simultaneously changing the number of plate units and
optimizing their sizes. Second, the uncertainties of the loads, size
parameters, and material parameters were transformed into
stochastic variables through a probability distribution. The failure
function of reliability and uncertainties of the parameters were
simplified based on the reliability index. The decoupled method
divided the two-level nesting of the reliability calculation and
topology optimization processes into two independent parts.
Third, the TLBO algorithm was adapted to solve the decoupled
model, offering few parameters, simple results, and a fast solution.
We improved it by adding an adaptive teaching factor to make con-
vergence faster in the initial stage while enabling finer searches in
later stages. The design optimization of an actual hydraulic press
was conducted using the proposed method to determine the opti-
mal design scheme with respect to the layout and size. In this
design, the materials of the support structure were fully used in
an optimum position to achieve an overall lightweight structure,
ensuring a balance in the structural design between economy
and safety.

However, there are some limitations to this study. In some
cases, the uncertain parameters can only be determined by a sim-
ple range, which the probabilistic model in this study fails to deal
with. Moreover, the decoupled method neglects the impact of the
performance functions of uncertain parameters to improve the cal-
culation efficiency. The topology optimization based on reliability
only reduces the energy and material costs to a small extent. In
other words, it mainly enhances the utilization of each material
unit. Future studies need to focus on these problems to achieve
more suitable methods, propose a model to deal with uncertainties
80
expressed in different forms, and try to continuously improve
model accuracy in describing uncertainties. Future studies may
investigate and apply an algorithm that is more efficient than a
decoupled method to solve the reliability topology optimization
problem. They may also combine the topology optimization with
other optimization methods to achieve greater weight reduction
and resource savings in hydraulic presses.
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