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Molten pool characteristics have a significant effect on printing quality in laser powder bed fusion (PBF),
and quantitative predictions of printing parameters and molten pool dimensions are critical to the intel-
ligent control of the complex processes in PBF. Thus far, bidirectional predictions of printing parameters
and molten pool dimensions have been challenging due to the highly nonlinear correlations involved. To
address this issue, we integrate an experiment on molten pool characteristics, a mechanistic model, and
deep learning to achieve both forward and inverse predictions of key parameters and molten pool
characteristics during laser PBF. The experiment provides fundamental data, the mechanistic model
significantly augments the dataset, and the multilayer perceptron (MLP) deep learning model predicts
the molten pool dimensions and process parameters based on the dataset built from the experiment
and the mechanistic model. The results show that bidirectional predictions of the molten pool dimen-
sions and process parameters can be realized, with the highest prediction accuracies approaching
99.9% and mean prediction accuracies of over 90.0%. Moreover, the prediction accuracy of the MLP model
is closely related to the characteristics of the dataset—that is, the learnability of the dataset has a crucial
impact on the prediction accuracy. The highest prediction accuracy is 97.3% with enhancement of the
dataset via the mechanistic model, while the highest prediction accuracy is 68.3% when using only
the experimental dataset. The prediction accuracy of the MLP model largely depends on the quality of
the dataset as well. The research results demonstrate that bidirectional predictions of complex
correlations using MLP are feasible for laser PBF, and offer a novel and useful framework for the determi-
nation of process conditions and outcomes for intelligent additive manufacturing.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Laser powder bed fusion (PBF) is one of the most important
additive manufacturing (AM) approaches, involving progressive
one-dimensional (1D) to two-dimensional (2D) and three-
dimensional (3D) printing processes with molten pools as the basic
unit [1]. The molten pool characteristics have an immediate effect
on the microstructure and properties of the laser PBF products and
thus are critical to the printing quality [2–5]. It is notable that the
molten pool characteristics are closely correlated with key process
parameters such as the laser power and scanning speed [6,7]. For
example, inadequate molten pool dimensions may cause a lack of
fusion defect [8–10]. In contrast, an excessively deep molten pool
may involve deep keyholing of the gas/metal interface of the liquid
metal, which acts as a potential source of large spherical pores that
can be trapped during fast solidification [2]. Thus, quantitative pre-
diction of the correlations between molten pool characteristics and
process parameters would be a strong support for the intelligent
management of the PBF printing processes and would further the
precise control of printing quality [11,12].

Forward and inverse predictions between laser PBF input vari-
ables and outcomes are an important theme [13], where process
conditions and printing results are critical factors in the compre-
hension and control of the printing processes [1]. For forward pre-
diction, the targeted molten pool dimensions must be predicted
using the process parameters as the input. In contrast, the required
process parameters must be predicted using specific molten pool
dimensions as the input for inverse prediction. These bidirectional
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predictions can be a powerful tool for the smart control of printing
factors in order to obtain the desired microstructure and
mechanical properties of the PBF products [14]. Although forward
prediction using MLP has been reported for metal arc welding
[15,16], laser PBF [17], and directed energy deposition (DED)
[18,19], inverse prediction for desired AM process conditions is still
lacking [20,21].

As a data-driven method, deep learning can be used for AM data
predictions without the need to explicitly understand the complex
mechanisms [22–24]. A multilayer perceptron (MLP) can be an
effective tool for the prediction of geometrical features and print-
ing parameters for AM [25,26]. For example, an artificial neural
network was used to evaluate the process parameters of the
AA2024 alloy deposit during laser DED [18]. MLP was used to pre-
dict the geometrical features of laser PBF processes with various
laser powers and scanning speeds, and an overall accuracy of up
to 90% was obtained for an unseen dataset [17]. Deep learning
models can also be used to obtain molten pool characteristics using
process monitoring data [27–30]. For example, Schmid et al. [31]
proposed a method to automatically measure the molten pool
dimensions in the cross-sections of the components. Unsupervised
deep learning was utilized to distinguish among the images of mol-
ten pools obtained by a high-speed camera [32]. Inverse prediction
was successfully carried out using a genetic algorithm (GA) to
obtain combinations of arc current, voltage, and scanning speed
for a target weld geometry [33]. However, applying GA is time con-
suming [33,34], and the success of GA is highly dependent upon
selection and mutation criteria [35]. In contrast, MLP can provide
fast predictions and has a strong ability to map nonlinear relation-
ships among a large volume of data [35]. In brief, deep learning
models can be used for the accurate prediction of complex correla-
tions and the efficient processing of AM data, and are beneficial for
process optimization and in situ smart control [36]. It should be
noted that the data-driven nature of MLP requires both adequate
volume and adequate quality of the dataset for model training
[13,20]. Thus, sufficient experimental and modeling data should
be prepared for the high-quality training of the deep learning
model [37].

Multiple physical processes occur in a molten pool, such as the
fast heating and cooling processes of the feedstock materials; the
drastic flow of the liquid metal in the molten pool driven by forces
including the surface tension, the Marangoni stress, and the recoil
pressure and gravity; and the rapid solidification of the molten
pool metal [2,38,39]. These physical processes generate molten
pools with variable geometries and dimensions under different
printing conditions [40], which exhibit highly nonlinear correla-
tions. The determination of molten pool dimensions is commonly
done through experiments and characterizations. However, trial-
and-error attempts are often time consuming and expensive, and
produce a limited volume of data. In such cases, prediction of the
laser PBF input variables and outcomes using deep learning models
would be less accurate due to insufficient data for model training.

High-fidelity mechanistic models can help to augment the data-
set with appropriate validations against typical experimental
results [40,41]. Large-volume and high-quality source data for
the training of deep learning models can be constructed using a
hybrid experimental and computational approach. Moreover, it is
challenging to experimentally observe the spatiotemporal varia-
tions of a molten pool and the factors involved including heat
transfer and liquid metal flow, which leads to inadequate mecha-
nistic understanding of the complex printing processes. In contrast,
multi-physics numerical models can help to reveal the spatiotem-
poral variations of critical printing factors, such as the evolution of
the molten pool and the resultant build [2,6,24,42]. In this way, a
better understanding of the mechanisms of experimental phenom-
ena can be achieved, which aids in the analysis of the learnability
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of certain datasets and the prediction performance of the deep
learning models. In addition, virtual printing can be cost effective
and provides more design flexibility for typical cases.

However, mechanistic models also present the challenge of
inverse prediction from the molten pool data to the process
parameter data [2]. To this end, deep learning models such as MLP
can be a potential powerful approach for bidirectional prediction
for PBF printing. Upon inverse prediction, the desired dimensions
of themolten pool can be obtained via the predicted process param-
eters, which can be useful for the control of printing defects. In brief,
the threemajormodules discussed above—that is, the deep learning
model, the laser PBF experiment, and the mechanistic model—
shouldbe combined to formaplatform for the prediction andunder-
standing of critical process conditions and molten pool characteris-
tics in order to overcome their individual limitations [2,6,43].

To the best of our knowledge, a systematic approach to combine
the deep learning model, the laser PBF experiment, and the
mechanistic model such as the one proposed here is still lacking
in the literature. Under the proposed novel framework, the laser
PBF experiment provides fundamental data that can be used to val-
idate the mechanistic model and train the deep learning model.
The mechanistic model helps to augment the dataset for the train-
ing of the deep learning model. The physics-informed deep learn-
ing model is used for both forward and inverse predictions
between the process parameters and the molten pool dimensions.
This research provides immediate support for the determination of
process conditions for desired molten pool characteristics and thus
offers a novel and useful component to promote the development
of intelligent AM.
2. Methodologies

2.1. Laser PBF experiment

In this work, AA2024 powders produced from the bulk alloy via
vacuum induction gas atomization were used for the laser PBF
feedstock materials. The particle size range was approximately
20–95 lm in diameter. The powders were dried in an oven at
60 �C for 4 h to remove potential residual moisture and ensure
the flowability of the powders. A powder layer thickness of
50 lm was used for all cases. The equipment used in this experi-
ment was a Concept Laser M2 using an ytterbium (Yb)-fiber laser
with a radius of 40 lm. The nominal laser power was 400 W,
and the wavelength range was 1064–1100 nm. An argon protection
environment was used to keep the oxygen content below 0.1%
during the process. More experimental details are available in
our previous articles [7,44].

Single-track samples were printed by means of laser PBF using
various laser powers and scanning speeds; the process parameters
are shown in Table 1. The dependences of the molten pool charac-
teristics on laser power or scanning speed were examined via
groups of single-variable experimental cases. In addition, the linear
energy density—that is, laser power over scanning speed—was uti-
lized to assess the sensitivity of the prediction accuracies of the
MLP models. In the experiments, square contours were printed to
obtain four single tracks for each identical set of process parame-
ters. The track dimensions of the square contour samples were
measured, and the mean values were taken as the experimental
results for the validation of the mechanistic model.
2.2. Mechanistic model for laser PBF

In order to compute the complex transport phenomena that
occur during laser PBF, conservation equations of mass, momen-
tum, and energy were solved concurrently with the volume of fluid
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(VOF) equation in a phenomenological model developed based on
OpenFOAM [8]. The details of the model are available in our previ-
ous articles [8,38,39]. The spatiotemporal variations of the geomet-
rical features of the molten pools and tracks are computed and
demonstrated in the present study. Since the molten pool experi-
ences a significant transient process during linear scanning with
constant process parameters, the dimensions of the molten pools
were determined after the printing reached a quasi-steady state
[38]. The length, width, and height of the computational domain
were 1000 lm � 400 lm � 500 lm, and the thickness of the pow-
der layer was 50 lm. The thermophysical properties of the feed-
stock materials are presented in Table 2 [7].

The laser power range was 100–350Wwith an interval of 25W,
and the scanning speed was 300–1500 mm�s�1 with an interval of
150 mm�s�1. The two groups of process parameters were combined
to obtain 99 groups of data, with the corresponding parameters
listed in Table 3. It should be noted that the selected process
parameters are within the limits of experimental processing
parameters to prevent unpredictable conditions. In order to avoid
unbalanced interference for the training of the deep learning
model, the 12 computational cases shown in Table 3 that have
proximate process parameters with the experimental cases were
removed; thus, 87 groups of parameters were left. Such a data
volume is adequate for the bidirectional prediction of process
parameters and molten pool dimension, supported by a prelimi-
Table 1
Process parameters used for the laser PBF experiment.

Sample No. Laser power (W) Scanning speed (mm�s�1)

1 220 300
2 270 300
3 300 300
4 220 600
5 270 600
6 300 600
7 350 600
8 220 900
9 270 900
10 300 900
11 350 900
12 220 1100
13 270 1100
14 300 1100
15 350 1100
16 220 1500

Table 2
Thermophysical properties of AA2024 used in the calculations [7].

Property Value

Solidus temperature (K) 811
Liquidus temperature (K) 905
Evaporation temperature (K) 2743
Density of metal (kg�m�3) 2780
Thermal conductivity of liquid metal

(W�m�1�K�1)
85.5

Thermal conductivity of solid metal
(W�m�1�K�1)

188

Specific heat of liquid metal (J�kg�1�K�1) 1140
Specific heat of solid metal (J�kg� 1�K�1) 768.8 + 0.3T � 2 � 10�4T2

Viscosity of liquid metal (Pa�s) 0.0015
Temperature coefficient of surface tension

(N�m�1�K�1)
�0.155 � 10–3

Gas constant (J�K�1�mol�1) 8.314
Stefan–Boltzmann constant (W�m�2�K�4) 5.67 � 10–8

Latent heat of fusion (J�kg�1) 2.97 � 105

Latent heat of evaporation (J�kg�1) 1.12 � 105

T: temperature.
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nary testing of the data volume sensitivity for the prediction
accuracy of the deep learning model.

The mechanistic model was validated by comparing the compu-
tational results with the corresponding experimental data. A com-
parison of molten pool widths under different process parameters
is shown in Fig. 1(a), presenting an average error within 4%.
Fig. 1(b) depicts the detailed correlations between the molten pool
width and the process parameters for both the experimental and
computational results. The molten pool depth is shown in
Fig. 1(c). The average error of the depth data is 8.98% for the results
obtained from the experiments and the mechanistic models. The
relatively larger error for the track depth modeling results may
originate from the significant fluctuations of the keyhole and thus
of the molten pool depth during printing, which will be explored in
the subsequent section. Fig. 1(d) shows the transverse sections of
the molten pool under different process parameters. With the sup-
port of the experimental and mechanistic modeling data, an ade-
quate dataset was built for the subsequent training of the deep
learning model. Apart from augmenting the dataset, the mechanis-
tic model helps to uncover the underlying reasons for various pre-
diction accuracies of the MLP model by revealing the
spatiotemporal variations of the molten pools and the tracks [8].

2.3. Deep learning model for bidirectional prediction

2.3.1. Forward and inverse predictions
The MLP deep learning model was used to predict the bidirec-

tional correlations between the process parameters and the molten
pool dimensions, according to the illustration presented in Fig. 2.
For the forward prediction, the molten pool dimensions were pre-
dicted via the MLP model using the process parameters as the
input. For the inverse prediction, the process parameters were pre-
dicted using specific molten pool dimensions as a prerequisite.

The inverse prediction can be further divided into two schemes,
as shown in Fig. 3. In Scheme 1, the MLP model input is the molten
pool dimensions, while the output is the laser power or scanning
speed. In Scheme 2, the MLP model input combines the molten
pool dimensions and one process parameter, while the output is
another process parameter. For example, the prediction of laser
power requires the input of the molten pool width, depth, and
scanning speed. Scheme 2 was proposed considering that the same
molten pool dimensions may be obtained through the combination
of different laser powers and scanning speeds.

According to the prediction results of the inverse MLP models
under these two schemes, Scheme 1 and Scheme 2 were selected
to predict the process parameters. To ensure the correspondence
of the forward and inverse prediction results, the dataset and the
MLP model parameters used in the two schemes were consistent.
It should be noted that a finite number of cases was carried out
within a specific timeframe for both the experiments and the
mechanistic models. However, well-trained MLP models possess
the capability of providing high-quality meshless results—that is,
any arbitrary input can be addressed efficiently to yield a corre-
sponding output for both the forward and inverse predictions.

2.3.2. Dataset allocation
The source data of the process parameters and the molten pool

dimensions are the basis of the deep learning training for the MLP
model, and the allocation of the dataset affects the resultant pre-
diction performance [45]. The dataset used in this research was
composed of 103 sets of process parameters and molten pool
dimensions from both the experiment and mechanistic model,
which included 16 sets of experimental data and 87 sets of
mechanistic modeling data. The dataset was divided into three
portions, as presented in Table 4. The training, validation, and inde-
pendent test datasets were distributed in a ratio of 70:20:13.



Table 3
Process parameters used for the mechanistic model of laser PBF.

Scanning speed (mm�s�1) Laser power (W)

100 125 150 175 200 225 250 275 300 325 350

300 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
450 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22
600 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33
750 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44
900 S45 S46 S47 S48 S49 S50 S51 S52 S53 S54 S55
1050 S56 S57 S58 S59 S60 S61 S62 S63 S64 S65 S66
1200 S67 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77
1350 S78 S79 S80 S81 S82 S83 S84 S85 S86 S87 S88
1500 S89 S90 S91 S92 S93 S94 S95 S96 S97 S98 S99

Bold font refers to the mechanistic model data deleted for MLP model training.
S: Sample.

Fig. 1. Validation of the mechanistic model. (a) Comparison of molten pool widths under different process parameters obtained by the experiment and the mechanistic
model; (b) molten pool widths obtained by the experiment and the mechanistic model under specific process parameters (the color diagram is based on the data of 16 groups
of experimental cases, and the red dots are the molten pool widths obtained by the mechanistic model); (c) comparison of molten pool depths under different process
parameters obtained by the experiment and the mechanistic model; (d) transverse sections of the AA2024 samples printed by laser PBF.
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Among the three datasets, the training dataset was used to train
the MLP model, and the validation dataset was used to check the
prediction accuracy of the MLP model during the iterative opti-
mization processes. It should be noted that both the training and
validation datasets were used repeatedly during the optimization
processes. In contrast, the independent test dataset was reserved
beforehand and was only used to examine the prediction accuracy
of the optimal MLP model in the final application stage.
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In order to avoid potential data accumulation and a resultant
prediction bias for the MLP model, close laser powers and scanning
speeds were scattered evenly into the three datasets. In addition,
all data were normalized before being imported into the MLP
model, considering the varieties in the dimensions, values of
process parameters, and molten pool dimensions [46]. Thus, the
input data were concentrated in the range of 0–1, and the standard
deviation was 1. The specific operation can be expressed as follows



Fig. 2. Schematic diagram of the forward and inverse predictions using MLP,
supported by data from the experiment and the mechanistic model.

Fig. 3. Illustration of the bidirectional predictions. (a) Forward prediction from
process parameters to molten pool dimensions; (b) Scheme 1 of the inverse
prediction, frommolten pool dimensions to process parameters; (c) Scheme 2 of the
inverse prediction, where the input has three variables (i.e., one process variable
and two molten pool dimensions).

Table 4
Compositions of different datasets.

Dataset Amount of data

Training dataset 70 groups (7:63)
Validation dataset 20 groups (4:16)
Independent test dataset 13 groups (5:8)

The numbers in the brackets refer to the data obtained via the experiment and the
mechanistic model, respectively.

Table 5
Neuron numbers for the MLP models with a single hidden layer.

Model number Neurons of the hidden layers
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x̂i ¼ xi � E xi½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xi½ �p ð1Þ

where x
^

i is the normalized data; xi is the original data, E[xi] is the
average value of the dataset,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xi½ �p

is the standard deviation of
the dataset, and i is the order of the data.
Model 1 10
Model 2 32
Model 3 48
Model 4 64
Model 5 80
2.3.3. MLP model
For the deep learning model, the MLP algorithm was imple-

mented using Python 3.7 with the TensorFlow and Keras modules
185
[47]. The weight and bias of the MLP model were initialized by the
Keras internal random initialization method. The rectified linear
unit (ReLU) function—one of the most commonly used activation
functions of regression neural networks—was applied in this work
to avoid the vanishing gradient problem from the logical function
(Sigmoid) and hyperbolic tangent function (Tanh) [48].

The prediction performance of the MLP model mainly depends
on three factors: the selection of sample features for the training
of the neural network [49], the optimization algorithm of the neu-
ral network, and the determination of hidden layers and neurons.
In this study, the sample features were naturally the process
parameters and molten pool dimensions. Among the common opti-
mization algorithms, which include root mean square prop
(RMSprop), stochastic gradient descent (SGD), adaptive gradient
(AdaGrad), and adaptive moment estimation (Adam) [50],
RMSprop was used in the current research, as it can meet the opti-
mization prerequisite of the MLP model. For the selection of hidden
layers and neurons, a number of combinations were proposed and
examined, with the parameters shown in Tables 5 and 6. By grad-
ually adding neural nodes and hidden layers, the performance of
the machine learning model was improved until the optimal per-
formance was obtained [51]. The optimization route of the MLP
deep learning model is illustrated in Fig. 4. The learnability of a
specific dataset for the MLP model can be assessed through the
prediction performance.

In the training process of the MLP models, the K-fold cross-
validation method was used to assess the overfitting and selection
bias [48], where the K value was 5. The prediction results of the
MLP must be analyzed during the training process to provide feed-
back for the subsequent optimization procedures. The mean
squared error (MSE) loss function is commonly used for regression
prediction, but it is difficult to intuitively obtain the degree of devi-
ation of the error from the actual value from the MSE value. There-
fore, the absolute percentage error (APE) and accuracy rate (AR)
were used in this work to represent the model prediction perfor-
mance; these can be expressed as Eqs. (2) and (3). The goodness
of fit index (R2) was also discussed. R2 is determined by Eq. (4).

APE ¼ byi � yi
� ��� ��

yi
� 100% ð2Þ

AR ¼ 1� APEð Þ ð3Þ

R2 ¼ 1�
P

i
byi � yi
� �2

P
i
�yi � yið Þ2

ð4Þ



Table 6
Neuron numbers for the MLP models with multiple hidden layers.

Model number The number of neurons in the hidden layer

First layer Second layer Third layer Forth layer Fifth layer

Model 6 48 32 — — —
Model 7 48 32 16 — —
Model 8 64 48 32 16 —
Model 9 64 48 32 16 8
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where byi indicates the predicted value of the MLP; yi is the actual
value; and �yi is the mean value.

3. Results and discussion

This section first presents the optimization of the deep learning
MLP models for both forward and inverse predictions, considering
different numbers of hidden layers and neurons. Subsequently, the
application of the optimal MLP models under two typical condi-
tions—that is, using the reserved source data and exterior fresh
data—is examined. Finally, the learnability of various data and
the mechanisms for various prediction accuracies of the MLP mod-
els are assessed.

3.1. Optimization of the deep learning model

3.1.1. Forward prediction
Fig. 5 shows the prediction results of molten pool width and

depth during the optimization process of the MLP models. The
training and validation datasets presented in Table 4 were used
for the optimization. The parameters of the MLP models are shown
in Tables 5 and 6. The prediction ARs in Fig. 5 are calculated by Eq.
(3). Fig. 5(a) shows the prediction results of molten pool width
using a single hidden layer with different neurons, referring to
Models 1–5. In these cases, the mean prediction ARs of the molten
pool widths increased with the neuron number. Models 6–9 show
that the mean prediction ARs of the molten pool widths were
approximately 95% and exhibited a weak dependency on the num-
ber of hidden layers. The highest prediction accuracy was close to
100% and the lowest accuracy was above 80% for all cases shown in
Fig. 5(a). Considering the lowest and mean prediction accuracies,
the optimal MLP model for the molten pool width prediction was
determined to be Model 6.

Fig. 5(b) shows that the lowest prediction accuracy of molten
pool depth increased initially but then decreased with the number
of neurons, with the same trend occurring for hidden layers. The
highest prediction accuracy was 100%, and the lowest was 80%.
Overall, the optimal MLP model for molten pool depth prediction
was Model 8. The mean and the lowest prediction accuracies pre-
sented in Figs. 5(a) and (b) imply that the predictions of molten
pool width were more accurate than those of molten pool depth.
The underlying mechanism will be explored in Section 3.3.

3.1.2. Inverse prediction
Fig. 6 depicts the results of two inverse prediction schemes for

laser power and scanning speed with different MLP models. The
data used were the training and validation datasets presented in
Table 4, and the APEs were calculated by Eq. (2). It can be seen
from Fig. 6 that, regardless of the laser power or scanning speed,
the prediction errors of Scheme 1 are generally higher than those
of Scheme 2. Comparing the prediction results using Scheme 1
and Scheme 2, it can be inferred that the dependences of the pro-
cess parameters must be considered during the inverse prediction.
Therefore, the inverse prediction approach refers to Scheme 2 in
subsequent sections.
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Fig. 7 illustrates the variations in prediction accuracies with dif-
ferent MLP models for the inverse prediction of process parame-
ters, corresponding to Scheme 2 in Fig. 6. In the figure, the
prediction accuracies of Models 1–5 are shown using a single hid-
den layer with different neurons for laser power and scanning
speed, respectively. In these cases, the mean prediction accuracies
of the laser power and scanning speed both increased with the
number of neurons. For Models 6–9, the prediction results for laser
power and scanning speed are shown using different numbers of
hidden layers. It can be observed from Fig. 7(b) that the lowest pre-
diction accuracy for scanning speed increased with the number of
hidden layers for Models 6 and 7. This accuracy decreased for Mod-
els 8 and 9, however, which may result from overfitting of the laser
PBF data.

As illustrated in Fig. 7, the mean prediction accuracies for laser
power and scanning speed are both approximately 90%. In general,
the prediction of laser power is more accurate than that of scan-
ning speed. Among the nine groups of MLP models in Fig. 7(a),
the highest prediction accuracy for laser power is 99.9% and the
lowest is 41.0%. Considering the lowest and mean accuracies, the
optimal model for laser power prediction is Model 8. The highest
prediction accuracy for scanning speed is 99.9% and the lowest is
17.0%, as shown in Fig. 7(b). Considering the lowest and mean
accuracies of the nine MLP models, the optimal model for scanning
speed prediction is Model 8.
3.2. Applications of the deep learning model

3.2.1. Forward prediction
After optimization using the training and validation datasets,

the performance of the MLP models in the prediction for the
originally reserved and exterior datasets is examined in this sec-
tion. As listed in Table 7, the reserved dataset—that is, the indepen-
dent test dataset—came from the source data composed of the
experimental and mechanistic modeling results presented in
Table 4. The exterior dataset was generated via interpolation and
extrapolation of the source dataset presented in Table 4. The inter-
polation dataset was constructed considering the same range of
process parameters as the training and validation datasets, but
without identical values against the source data. In contrast, the
extrapolation dataset was constructed beyond the range of the
process parameters of the source data.

(1) Prediction for the independent test dataset. The perfor-
mance of the optimal MLP model was first examined through the
forward prediction of the molten pool dimensions using laser PBF
cases in the independent test dataset. Figs. 8(a) and (b) present
comparisons of the targeted and predicted molten pool widths.
The targeted molten pool widths are the source data from the
experimental and mechanistic modeling results, while the
predicted widths are from the MLP model for identical process
parameters. Both the data points and the rendered color graphs
demonstrate approximate values of the targeted and predicted
results. The prediction accuracies are further presented in Fig. 8
(c). It can be observed that the highest prediction accuracy for
molten pool width is close to 100.0%; the mean is 96.6%, and the



Fig. 4. Optimization of the MLP deep learning model. a1, a2: input; b1, bn, d1, dn: input values received by each neuron in the hidden layer from previous layers; c1, cn, e1, en: the
output of different neurons processed by the activation function in the hidden layer; f1: the final output.

Fig. 5. Prediction accuracies of the molten pool dimensions using different MLP deep learning models. (a) Molten pool width; (b) molten pool depth. The numbers 1–9 refer to
the MLP models presented in Tables 5 and 6. The data used include the training dataset and the validation dataset in Table 4. The presented accuracies were obtained via the
validation dataset.

Fig. 6. Prediction errors of the two inverse prediction schemes using different MLP deep learning models. (a) Laser power as the prediction output; (b) scanning speed as the
prediction output. The model number refers to the MLP models presented in Tables 5 and 6.
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Fig. 7. Prediction accuracies of process parameters with different MLP deep learning models. (a) Laser power as the prediction output; (b) scanning speed as the prediction
output.
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lowest is higher than 90.0%. The calculated R2 value is correspond-
ingly 0.97.

Figs. 9(a) and (b) show the targeted and predicted molten pool
depths under the same process parameters for the independent
test dataset. Both the data points and the rendered color distribu-
tions are close, as shown in Figs. 9(a) and (b), indicating a decent
agreement of the predicted results using the MLP model with the
source data. In addition, Fig. 9(c) shows the highest prediction
accuracy of 98.4% and the lowest accuracy of 89.0%, corresponding
to the fifth and the twelfth cases, respectively. The mean prediction
accuracy for the molten pool depth is 94.5%, and the R2 value is
0.97. Thus, all cases with the independent test dataset indicate
the high prediction accuracy of the MLP model for the reserved
laser PBF cases.

(2) Prediction for the interpolation and extrapolation
datasets. In addition to applying the MLP model to cases with
Table 7
Application of the MLP model for process parameters from various datasets.

Dataset Dataset
number

Laser power
(W)

Scanning speed
(mm�s�1)

Independent test
dataset

1 125 1350
2 150 600
3 100 600
4 325 450
5 300 750
6 250 450
7 200 900
8 350 1200
9 220 1100
10 300 300
11 270 900
12 270 300
13 270 600

Interpolation
dataset

14 180 700
15 130 400
16 310 800
17 210 500
18 330 660
19 260 430

Extrapolation
dataset

20 390 1500
21 400 1350
22 375 1200
23 360 1050
24 390 900
25 400 750
26 375 600
27 360 450
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reserved source data, the MLP model was further examined using
various laser PBF cases with interpolation and extrapolation data.
The former was done to assess the performance of the MLP models
for process parameters within the same range of the source data,
and the latter was done to test the applicability of the MLP model
for conditions beyond the range of the source data. The prediction
results of molten pool width under the process parameters from
interpolation and extrapolation are shown in Fig. 10. In Figs. 10
(a) and (b), the laser powers corresponding to the extrapolated
process parameters are between 350–400 W. This range ensures
the basic requirements of extrapolation and further prevents errors
caused by process parameters beyond the maximum laser power
range of the processing equipment. Fig. 10(c) shows that the
prediction accuracies for molten pool width are all above 90%,
and that the results for the interpolation cases are better than
those for the extrapolation cases. This is also illustrated by the
R2 values, which are 0.95 and 0.93 for the interpolation and
extrapolation cases, respectively. Under the process parameters
from extrapolation, the highest, the mean, and the lowest predic-
tion accuracies of the molten pool widths are 98.0%, 97.3%, and
96.6%, respectively.

Fig. 11 shows the prediction results of molten pool depth under
the process parameters from interpolation and extrapolation. As
shown in Figs. 11(a) and (b), the predicted molten pool depths
are close to the target molten pool depths. In Fig. 11(c), the mean
prediction accuracy of the molten pool depths for the interpolation
cases is 94.66%. The mean prediction accuracy indicates that the
depth can be predicted accurately within the same parameter
range, even if different intervals are taken. Under the process
parameters from extrapolation, the highest accuracy is approxi-
mately 100%, and the mean prediction accuracy of the molten pool
depths is 95.99%. The R2 values in both cases are 0.95.

3.2.2. Inverse prediction
After optimization using the training and validation datasets via

the method described in Section 2.3.2, the performance of the MLP
models in the inverse predictions for the independent test, interpo-
lation, and extrapolation datasets presented in Table 7 are exam-
ined in this section.

(1) Prediction of laser power. Fig. 12 shows the prediction
results of laser power using three different types of datasets. It
should be noted that the model inputs are scanning speeds and
the corresponding molten pool widths and depths, while the
predicted outputs are laser powers. As shown in Fig. 12(b), when
predicting laser power using independent process parameters,
the highest prediction accuracy is 99.9% and the lowest is 84.0%,



Fig. 8. Prediction results of molten pool width using independent process parameters. (a) Targeted molten pool width; (b) molten pool width predicted by the MLP model;
(c) prediction accuracy for all cases in the independent test dataset. The numbers 1–13 refer to the cases of the independent test dataset in Table 7.

Fig. 9. Prediction results of molten pool depth using independent process parameters. (a) Targeted molten pool depth; (b) molten pool depth predicted by the MLP model;
(c) prediction accuracy for all cases in the independent test dataset.

Fig. 10. Prediction results of molten pool width for the interpolation and extrapolation datasets. (a) Targeted molten pool width obtained via the mechanistic model; (b)
molten pool width predicted by the MLP model; (c) prediction accuracies for all cases in the interpolation and extrapolation dataset. The numbers 14–27 refer to the
interpolation and extrapolation datasets in Table 7.
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corresponding to the first and ninth cases, respectively. The corre-
sponding R2 value is 0.96. The mean AR is over 90% for all cases.
The prediction results of laser power under the three types of
inputs demonstrate the decent accuracy of the well-trained MLP
model for inverse predictions.
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(2) Prediction of scanning speed. Fig. 13 shows the prediction
results of scanning speed under three different types of data. It
should be noted that the model inputs are laser powers and corre-
sponding molten pool widths and depths, while the predicted out-
puts are scanning speeds. Fig. 13 shows that the prediction



Fig. 11. Prediction results of molten pool depth for the interpolation and extrapolation datasets. (a) Targeted molten pool depth obtained via the mechanistic model; (b)
molten pool depth predicted by the MLP model; (c) prediction accuracies for all cases in the interpolation and extrapolation dataset.

Fig. 12. Predicted laser powers using various datasets presented in Table 7. (a) Targeted and predicted laser powers; (b) prediction accuracies of the MLP model. Model inputs
are molten pool widths, depths, and scanning speeds; predicted outputs are laser powers.

Fig. 13. Predicted scanning speeds using various datasets presented in Table 7. (a) Targeted and predicted scanning speeds; (b) prediction accuracies of the MLP model.
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accuracy of scanning speed fluctuates more severely than that of
laser power. As evaluated by the mean accuracies, the prediction
accuracies for the interpolation and extrapolation cases are lower
than those for the independent test cases. The R2 values of the
independent test cases, interpolation cases, and extrapolation
cases are 0.97, 0.86, and 0.93, respectively. As shown in Fig.
13(b), the highest and the mean prediction accuracies are 98.8%
and 93.0% for the independent test dataset, respectively. For the
interpolation and extrapolation datasets, the highest prediction
accuracy for scanning speed exceeds 99%, and the mean accuracies
190
are 91% and 90%, respectively. It can be observed that the lowest
prediction accuracy of scanning speed occurs with a slow scanning
speed, corresponding to a high line energy density. The mecha-
nisms behind the low prediction accuracy with a slow scanning
speed will be explained in Section 3.3.

In brief, the above results demonstrate the decent prediction
accuracy of the proposed model for the process parameters and
molten pool dimensions, covering the independent test,
interpolation conditions, and extrapolation conditions. These
forward and inverse prediction performances demonstrate the



M. Zhao, H. Wei, Y. Mao et al. Engineering 23 (2023) 181–195
reliable capabilities of the well-trained MLP models for various
laser PBF conditions.
3.3. Learnability of the data

As a data-driven approach, the performance of the MLP model
largely depends on the characteristics of the dataset. It should be
noted that not all data are well-suited for the training and predic-
tion of deep learning models [52]. Although the ability to quickly
learn and adapt from a small amount of data is desirable [53],
qualified candidates for deep learning models often comprise suf-
ficient data featuring physical meanings or statistical orders. In this
section, the learnability of the data—including the volume and the
quality of the dataset—is examined for the laser PBF processes.
3.3.1. Dataset volume and prediction accuracies
The volume of the dataset is a critical factor for the training of

MLP models, considering the data-driven nature of deep learning.
In this subsection, the prediction performances of the MLP models
are compared for laser PBF cases using different datasets—namely,
one for only the experimental data and the other for the hybrid
experimental and mechanistic modeling data. The prediction accu-
racy of molten pool width is taken as an example for comparison,
supported by the identical optimization method used for the MLP
models. For the experimental data, the cases listed in Table 1 are
used for training, validation, and independent testing. The interpo-
lation and extrapolation datasets listed in Table 7 are further used
to verify the actual performance of the trained optimal model. In
contrast, the cases listed in Table 4 are used for the hybrid
experimental and mechanistic modeling data. The prediction
results are presented in Table 8.

As shown in Table 8, the mean prediction accuracies of the mol-
ten pool widths are significantly lower when only the experimen-
tal data are used. For example, the mean prediction accuracy for
the independent test dataset is only 59.0% when pure experimental
data are used for the training and validation of the MLP model. In
contrast, the mean accuracy is 96.6% when hybrid data are used.
Table 8
Prediction results of molten pool width with different data.

Dataset Training:validation:
independent test

Mean prediction accuracy for
independent test dataset

Experimental data 11:3:2 59.0%
Experimental and

modeling data
70:20:13 96.6%

Fig. 14. Variations of prediction accuracies and molten pool dimensions with linear energ
prediction accuracies for process parameters; (c) variations of molten pool dimensions
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Thus, a larger volume of data should be generated for a decent pre-
diction accuracy. Testing cases from 16 to over 100 groups of data
were explored during this study, and the volume indicated in
Table 4 was determined considering both the prediction accuracy
and the preparation efficiency. In brief, it can be concluded that
adequate data are a prerequisite for the accurate prediction of
the MLP deep learning models for laser PBF, and mechanistic mod-
els can serve as a powerful tool for the augmentation of the
dataset.
3.3.2. Dataset quality and prediction accuracies
Apart from the volume, the quality of the dataset may also

affect the prediction accuracy of the MLP model. Fig. 14(a) shows
that the prediction accuracies of the molten pool widths are higher
overall than those of the molten pool depths during forward pre-
dictions. Moreover, the prediction accuracies of depths decrease
when higher energy densities are used. Fig. 14(b) shows the varia-
tion of inverse prediction accuracy with linear energy density. It
can be observed that the prediction accuracy of scanning speed is
significantly lower when a higher linear energy density is used.
Fig. 14(c) shows the variation of molten pool dimensions with lin-
ear energy density. It can be observed that the variation of the
molten pool depths scattered significantly when the linear energy
density was over 0.5 J�mm�1. The standard deviations were 67.09
and 49.46 for the molten pool depth and width, respectively. The
differences in these deviations originated from the physical nature
of the molten pool during laser PBF.

Fig. 15 compares the molten pool and deposited track features
obtained under different linear energy densities of laser PBF. The
3D temperature fields and deposit profiles are presented in Figs. 15
(a) and (b). It can be observed from Fig. 15(f) that the molten pool
depth varies significantly along the scanning direction. In contrast,
the bottom of the printed track in Fig. 15(e) fluctuates less when
using a linear energy density of 0.2 J�mm�1. Moreover, the varia-
tions of the track widths are both trivial, as shown in Figs. 15(c)
and (d). These differences may originate from the mechanisms of
heat transfer and fluid flow during laser PBF. A deep and volatile
Mean prediction accuracy for
interpolation dataset

Mean prediction accuracy for
extrapolation dataset

48.5% 68.3%
97.3% 96.3%

y density. (a) Forward prediction accuracies for molten pool dimensions; (b) inverse
with linear energy density.



Fig. 15. Molten pool and deposited track features obtained under different process conditions. (a), (c), and (e) 220 W and 1100 mm�s�1 with a linear energy density of
0.2 J�mm�1; (b), (d), and (f) 300 W and 600 mm�s�1 with a linear energy density of 0.5 J�mm�1. Parts (a) and (b) provide a 3D view of the build, (c) and (d) provide a top view,
and (e) and (f) provide a longitudinal view of the printed zone and the molten pool.

M. Zhao, H. Wei, Y. Mao et al. Engineering 23 (2023) 181–195
keyhole was generated, and the keyhole largely determined the
penetration depth of the molten pool during printing [54,55]. It
is notable that the shape and size of the keyhole depend on the
dramatic flow of the liquid metal and the spatter of powder parti-
cles, which would be more severe under high energy density con-
Fig. 16. Correlation analysis of parameters. (a) PCC be
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ditions [2,56,57]. The fluctuation of the molten pool depth is
greater than that of the width due to the greater sensitivity of
the molten pool along the keyhole depth direction. Therefore, the
prediction accuracies of the molten pool depths are lower than
those of the widths when using the MLP models.
tween parameters; (b) MIC between parameters.



Fig. 17. Variations of the inverse prediction accuracy with different MLP model input variables. (a) Mean prediction accuracy of laser power; (b) mean prediction accuracy of
scanning speed.
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3.3.3. Dependence assessment for input and output variables
To reveal the correlations between the process parameters and

molten pool dimensions, the Pearson correlation coefficient (PCC)
and maximal information coefficient (MIC) were used. Data analy-
sis was done for the 99 cases presented in Table 3. The PCC can be
used to measure the degree of linear correlation between variables,
where the correlation degree is proportional to the absolute values
of the coefficients. The MIC can be used for seeking linear or non-
linear correlations between variables [58]. A higher value of the
MIC between 0 and 1 indicates a closer correlation. As presented
in Fig. 16, scanning speed exhibited a closer correlation with mol-
ten pool width, while laser power had a closer correlation with
molten pool depth. In addition, the significance level of the
correlation analysis between the process parameters and the
molten pool dimensions was calculated. It was found that the
significance values of the laser power between the width and
depth of the molten pool were 6.46 � 10�9 and 1.86 � 10�17,
respectively. The significance values of the scanning speed
between the width and depth of the molten pool were
1.78 � 10�19 and 1.84 � 10�10, respectively. Therefore, the results
of the correlation analysis of the process parameters and the mol-
ten pool dimensions are significant.

To further explore the correlations between the molten pool
dimensions and the process parameters, four new sets of input
variables were used, as shown in Fig. 17. Only a single molten pool
dimension and a single process parameter were used for the MLP
model input. It should be noted that, in Fig. 3, both the molten pool
width and depth were used for the input of the MLP model in
Schemes 1 and 2 of the inverse prediction. Fig. 17(a) shows that
the mean prediction accuracy of the laser powers was higher when
the molten pool depths were included in the MLP input. In con-
trast, Fig. 17(b) shows that the mean prediction accuracy of the
scanning speeds was higher when the molten pool widths were
included in the MLP input. The comparisons indicate that molten
pool depth is more relevant to laser power than molten pool
width.
4. Conclusions

The molten pool characteristics have a significant effect on the
build quality of laser PBF, given the multidimensional printing
works. This research combined an experiment, a high-fidelity
mechanistic model, and an MLP deep learning model to carry out
the bidirectional prediction of critical process parameters and mol-
ten pool characteristics during laser PBF. The dependences of the
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prediction accuracy on the learnability of the dataset were evalu-
ated. The following conclusions can be drawn from this work:

(1) Both forward and inverse predictions of the molten pool
dimensions and key process parameters can be realized for laser
PBF, with a prediction accuracy approaching 99.9%. Forward pre-
diction from the laser PBF process parameters—particularly the
interpolated and extrapolated values—to molten pool dimensions
can help in forecasting molten pool characteristics before experi-
ments, whereas inverse prediction from molten pool dimensions
to process parameters is useful when specific molten pool dimen-
sions are desired.

(2) The prediction accuracy of the MLP model is closely related
to the volume of the dataset. The highest prediction accuracy was
97.3% with augmentation of the dataset via the mechanistic
model. In contrast, the highest prediction accuracy was 68.3%
and the lowest was 48.5% when using only the experimental data
for MLP model training. Thus, a well-tested mechanistic model
can effectively address the issue of insufficient data from
experiments.

(3) The prediction accuracy of the MLP model largely depends
on the quality of the dataset. For example, it was found that the
forward prediction accuracy of the process parameters to the mol-
ten pool depth was lower than that for the molten pool width. The
reason is that the molten pool depth exhibits poor data regularity
due to the complex transient keyhole characteristics.

(4) The parameters of the MLP models are important compo-
nents of the prediction accuracy. Accurate predictions require an
appropriate optimization method, activation function, and hidden
layers and neurons.

This study provides an insightful path for explorations of the
highly nonlinear correlations in laser PBF. Although the predictions
are exemplified through process parameters and molten pool char-
acteristics, the proposed methodologies are expected to be feasible
for other conditions requiring forward and inverse predictions of
variables with complex interdependences. Moreover, the proposed
framework can serve as a critical building block for digital twins of
AM, and thus promotes the future development of intelligent AM
equipment and processes [2,6,59–61].
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