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In this article, we propose a communicative learning (CL) formalism that unifies existing machine learn-
ing paradigms, such as passive learning, active learning, algorithmic teaching, and so forth, and facilitates
the development of new learning methods. Arising from human cooperative communication, this formal-
ism poses learning as a communicative process and combines pedagogy with the burgeoning field of
machine learning. The pedagogical insight facilitates the adoption of alternative information sources in
machine learning besides randomly sampled data, such as intentional messages given by a helpful tea-
cher. More specifically, in CL, a teacher and a student exchange information with each other collabora-
tively to transmit and acquire certain knowledge. Each agent has a mind, which includes the agent’s
knowledge, utility, and mental dynamics. To establish effective communication, each agent also needs
an estimation of its partner’s mind. We define expressive mental representations and learning formula-
tion sufficient for such recursive modeling, which endows CL with human-comparable learning effi-
ciency. We demonstrate the application of CL to several prototypical collaboration tasks and illustrate
that this formalism allows learning protocols to go beyond Shannon’s communication limit. Finally, we
present our contribution to the foundations of learning by putting forth hierarchies in learning and defin-
ing the halting problem of learning.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Better than a thousand days of diligent study is one day with a

great teacher.

听君一席话胜读十年书。 —Chinese proverb

When I walk along with two others, they may serve me as my
teachers.

三人行, 必有我师焉。 —Confucius

1.1. Objective: A unifying formalism

The recent surge of statistical and machine learning has enabled
artificial intelligence (AI) to achieve impressive performance in
certain specific and well-defined tasks. However, current machine
learning paradigms also demonstrate several shortcomings: a
demand for large quantities of training data, uninterpretable and
noncommunicable representations, and deficient generality to
novel tasks and unknown situations. These machine learning
methods belong to a ‘‘big data for small tasks” paradigm [1] dras-
tically different from human learning, which communicates a wide
range of daily tasks effectively using small data, namely, ‘‘small
data for big tasks.” Human learning, taking place in pedagogical
environments, also entails many layers of cognitive infrastructures
and diverse protocols between multiple participants. Yet, such
complexity and sophistication are usually simplified in common
machine learning methods. To fill in the gap between prevailing
machine learning approaches and human learning, in this article,
we propose the concept of communicative learning (CL). As a uni-
fying formalism, CL involves multiple agents: A teacher and a stu-
dent communicate with each other in the process of teaching and
learning. In CL, an agent’s mental representation includes a set of
minds:
� An egocentric mind that consists of the agent’s current belief

of the knowledge of interest, its utility, and its dynamic
functions;

� A mind that estimates its partner’s egocentric mind;
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Fig. 1. Key representations of CL include six minds that evolve over t time steps or
messages. G: the oracle in ‘‘God’s mind;” Pt: the mind of the teacher A; Qt: the mind
of the student B; bPt : what B thinks A knows; bQ t: what A thinks B knows; Ct: the
common mind that both A and B know, and know that each other knows, and know
that each other knows they know, and so forth.
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� A common mind holding the common ground established
within the group;

� A ‘‘God’s mind” bearing the actual fact of the world.
These mental components then jointly drive learning and com-

munication. With CL, we pose learning as a communication process
and demonstrate its advantage over non-CL methods. Furthermore,
we show that this learning formalism encompasses and goes
beyond existing learning methods. We use the perspective of
mutual reasoning between a teacher and student to survey prior
works on various kinds of machine learning algorithms. We illus-
trate that, despite their diversity, many types of teachers and stu-
dents proposed thus far can be characterized as special cases of CL.
This offers a unifying lens for the integration of cooperative peda-
gogy [2] and machine learning, helping readers to better under-
stand and compare prior methods.

1.2. Cognitive infrastructure for CL

Communicative behaviors are so prevailing in human societies
that most of us take them for granted, without realizing the com-
plexity of the cognitive infrastructure that permits even the sim-
plest communications to occur. Even intentional signals, which
are considered to be a rudimentary form of human communica-
tion, are extremely rare in the biological world, perhaps confined
to primates or even great apes (see Chapter 2 in Ref. [3]). Far
beyond simple signaling or deliberately informing others, human
communication is a complicated system that aims to establish
joint attention and common ground for the completion of shared
goals; it is motivated by cooperation norms among people and
enabled by communicative conventions and cognitive infrastruc-
ture supporting recursive cooperative reasoning (see Chapter 3 in
Ref. [3]). Human learning, as a lifelong cognitive process of com-
municating with the physical and social world, also operates in
such a cooperative framework. Its sophistication, effectiveness,
and complexity give rise to human intelligence—a phenomenon
that AI is inspired to replicate.

Decades of studies in cognitive psychology [4,5] and anthropol-
ogy and communications [3] have revealed that human communi-
cation and learning are built on many layers of cognitive
infrastructure and protocols. To account for their complexity and
sophistication, we formulate the mental representation of CL and
show the key components between two agents in Fig. 1. Both of
the agents can be human or machine, teacher or student in an
equal and symmetric setting—that is, they can exchange roles by
turns. This representation has the following properties:

(1) Theory of mind (ToM)y [6] representations, which engage six
minds between the teacher and the student:
� G: the oracle in ‘‘God’s mind;” this mind holds the actual state

of the world and evolves according to the world transition
model.

� Pt: the mind of the teacher A; this mind holds what the tea-
cher, A, knows about the world, including the state, the
model, A’s utility and policy, and so forth.

� Qt: the mind of the student B; this mind holds what the stu-
dent, B, knows about the world, and is a counterpart of Pt .

� bQ t: what A thinks B knows; this mind helps the teacher to
conduct cooperative pedagogy.

� bPt : what B thinks A knows; this mind helps the student to
better capture the teacher’s instructions.

� Ct: the commonmind that both A and B know, and know that
each other knows, and know that each other knows they
know, and so forth (see Chapter 4 in Ref. [7]).
y The ability to attribute mental states such as beliefs, intents, desires, emotions,
and knowledge to others.
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The discrepancy between the six minds drives the communica-
tion and learning process through deliberated messages instead of
randomly sampled examples.

(2) An adaptive common mind and learning protocol: The com-
mon mind, Ct is the basis for future communication and learning.
The more they share in the common mind, Ct , the more effectively
the two agents communicate. For example, they can teach new
concepts based on analogy [4] and modifications of existing con-
cepts in their common knowledge. Suppose that both agents know
what a dog looks like; then A can teach the concept of wolves to B
by saying that a wolf is like a dog (i.e., copying its graphical struc-
ture and attributes) except for some features of appearance and
behavior. Thus, CL allows the common knowledge to grow and
integrates it into the learning protocol.

Our insight is that, armed with appropriate infrastructure suffi-
cient for these properties, CL makes the following contributions to
the field of machine learning:
� It provides a unifying framework for learning, which

embraces existing machine learning methods as its special
cases in several axes—including supervised versus unsuper-
vised, passive versus active, and observational versus causal
experimentation—and eases the development of new learn-
ing protocols under novel conditions.

� It integrates pedagogy into machine learning, which facili-
tates the learning through a helpful teacher and cooperative
communication.

� It generalizes existing communication theories, such as Shan-
non’s communication limit [8], Valiant and Vapnik’s statisti-
cal learning framework [9], and so forth, to a machine
learning process and proposes more efficient learning
protocols.

� It studies the fundamental limits and the halting problem of
learning, which determine the stopping conditions of a learn-
ing process at various equilibria among different minds.

To summarize, the CL representations enable the teacher to
choose messages for the student according to various criteria
[10–12], given her intended teaching content, and the student
can update his belief according to his estimation of the teacher’s
message selection mechanism [13–15]. With distinctive teaching
criteria, we can unify diverse teachers, from the passive oracle to
the cooperative pedagogue. The latter delivers significantly more
efficient learning protocols than those described by conventional
communication and learning theories, whose fundamental
assumption is random sampled data. In Section 3, we elaborate
the CL representation and rigorously define the components of
each mind.



Fig. 2. A comparison of different learning/teaching protocols. Blue characters
represent teachers and red characters are students. The bubble refers to modeling
one’s partner.
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1.3. A unifying framework for machine learning

CL is proposed as a unifying framework, where existing
machine learning algorithms can be shown as its special cases.
Dating back to the 1960s, machine learning was put forth to enable
computers to recognize and capture patterns from data [16–18].
These days, with the availability of extensive data and computa-
tional power, machine learning algorithms are fulfilling their orig-
inal goal of data understanding better and better. Complicated
models can be exploited for various tasks, from image classification
[19,20], object detection [21–23], and sentence generation [24] to
exceeding human-level game playing [25,26], and so on.

However, most of the prevailing machine learning methods
focus on the optimization of individual learners, relying purely
on unilateral experiences—either passive interaction history from
a Markov decision process (MDP) [25,26], labeled training exam-
ples from a data distribution [19,27], answers to active queries pro-
vided by an oracle [28,29], or demonstrations from an expert [30].
Only recently has the advantage of pedagogical teachers over ran-
domly sampled data or optimal task completion trajectories from
experts been shown in Bayesian concept learning [13,31–35] and
in learning from demonstration (LfD) [15,36,37]. Meanwhile,
machine teaching algorithms are starting to model cooperative
teachers giving instructions in a continuous parameter space and
large datasets to enhance learning efficiency [38–42] or robustify
the model against noisy labels [43,44], albeit only with simple lear-
ner models. In Fig. 2, we compare some typical learning paradigms.
1.4. Integrating pedagogical reasoning

Another merit of CL is that it enables the integration of human
pedagogy into machine learning. When one pictures human learn-
ing—whether the learning of a toddler at home or a student at
school—the scenario often involves two parties: a teacher and a
student. The teacher tries to impart her knowledge to the student
using the most helpful teaching material, while the student
actively absorbs the information to achieve the learning goal as
efficiently as possible. Taking place in a multiagent system, this
type of learning is a communicative process, which is referred to
as pedagogy [2]. In machine learning, however, the role of the help-
ful teacher is usually replaced by training data (in the form of a
dataset or interaction experience) sampled from some random
process [18]. Suppose that we draw an analogy:Without a coopera-
tive teacher, machine learning algorithms act like scientists that
endeavor to detect, explain, and utilize the pattern of the world
from their observations of randomly occurring phenomena, such
as apples dropping from trees, stars shining, and rain falling. The
most common type of learning in human society is not scientific
discovery but cooperative pedagogy, which is invoked across lan-
guage, cognitive development, and cultural anthropology to
explain people’s ability to effectively transmit information and
accumulate knowledge [42,45].

There has been sufficient experimental evidence in cognitive
science to justify people’s ability and tendency to teach and learn
differently in pedagogical situations. From infants’ and toddlers’
ability to distinguish different sampling processes [46] and their
awareness of pedagogical behavior [47–49] to the application of
pedagogical inference in word learning for both children and
adults [50], these studies illustrate that human learners are sensi-
tive to the distinction between pedagogical teaching material and
random examples. From a very young age, humans can capture
additional information when they are in pedagogical settings
[31]. Furthermore, besides being capable learners, children can also
learn how to be a good teacher and generate helpful evidence for
others when trying to reveal the mechanism of toys [51].
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The main difference between a scientist analyzing data and a
student in a pedagogical situation is the existence of a cooperative
teacher, who can maximize communication efficiency by interact-
ing adaptively with the student. More specifically, the teacher
adjusts her teaching method for different students, and the stu-
dent—after becoming familiar with the teacher’s instruction mecha-
nism—can infer the teacher’s intention and learn faster
[10,18,48,52,53]. Recently, realizing the conundrum of data hunger
and ‘‘big data for small tasks” [1] for conventional machine learn-
ing algorithms (especially compared with the efficiency of human
learning, which can be quickly consummated with very limited
examples [31,48,54]), researchers have begun to integrate peda-
gogy into machine learning algorithms [13,15,31–42]. Nonetheless,
compared with human pedagogy, these works lack a sophisticated
student model that can accommodate the teacher’s cooperation
into his learning and whose learning differs from learning from
passive data. Recursive cooperative inference models are proposed
in Refs. [45,55], with both the teacher and the student having ToM
[6]. Yet, the analysis of these works is confined to Bayesian concept
learning with a finite and relatively small dataset and hypothesis
space. In Section 3.3, we illustrate how CL facilitates the combina-
tion of human pedagogy and machine learning, as well as the
development of more advanced learning algorithms. The remain-
der of this paper is structured as follows: In Section 2, we clarify
the relationship between learning and communication and moti-
vate a CL paradigm. In Section 3, we introduce the CL formalism,
starting with agent modeling and agents’ necessary mental repre-
sentations, which are followed by mathematical definitions of the
learning dynamics. We also show how existing learning algorithms
are special cases of CL and their CL grounding in Section 3.4 (with
more details in Sections S1 and S3 in Appendix A). Then, we
demonstrate the applicability and necessity of the CL formalism
with a few concrete examples in Section 4, including a referential
game and a real-time human–robot interaction (HRI) task example.
Afterward, Section 5 illustrates the theoretical contributions of the
CL formalism. We put forth a new representation of learning and
give a learning protocol beyond the Shannon communication limit
in Section 5.1. In Section 5.2, we tease out the three hierarchies of
machine learning and define the fundamental halting problem of
learning. Finally, we conclude by describing the implications of CL.

2. Inspect learning in a communication framework

Let us return to the scientists versus students analogy. It does
not take much argument to convince people that learning is a com-
munication process, because most of us were once (or still are) stu-
dents and experienced learning in academic settings, by which we



Fig. 3. Shannon’s diagram of a communication system. The shared codebook fulfills
the purpose of a common ground and acts as the norm of communication in the
cooperative communication model.w: world state, represented by parse graph (pg).

Fig. 4. Diagram for statistical learning theory. The learner passively receives the
examples from the physical world. There are only egocentric mental components in
the learner’s mind. Here X represents the state space and c is a concept defined as a
set in a state space. I; cð Þ is a random sample complying with the concept. Given the
received samples, the learner can form a belief, p, of the concept. The hypothesis
2 H, in the hypothesis space H, determines the belief and the predefined utility
function, u, drives the learning process.
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acquired knowledge, skills, and values through communicative
interactions with teachers. Within Western culture, this form of
learning is said to originate from Socrates, who exposed the idea
of using dialogues between individuals to elicit and impart wisdom
and to transfer knowledge from the teacher’s mind to the student’s.
In fact, the one-way communication from nature to a scientist—if
we are willing to assume the existence of an omniscient being such
as God—can also be viewed as transferring knowledge from God’s
mind to the scientist’s mind; it is just that the messages from
God are not as decipherable as those from Socrates (at least to most
people). More generally, we can thus broadly interpret learning as
having information delivered from one mind to another. Interest-
ingly, a textbook definition of communication is exactly that: the
act of delivering. Communication and learning are clearly con-
nected, but what is the relationship between communication and
learning? An obvious way to answer this question is to look at
information theory [8] and statistical learning theory [56]—two
well-developed disciplines that formally study communication
and learning from a mathematical viewpoint. As we will see, they
have a great deal in common.

2.1. The connection between communication and learning

Information theory was established by Claude Shannon in 1948
[8] as a framework to account for communication over, say, a tele-
phone wire. As shown in Fig. 3, in this framework, the sender and
receiver share a codebook, and the messages refer to some world
state w, such as a parse graph of an indoor scene or a semantic
of a paragraph. Such a communication system is for reproduc-
ing—either exactly or approximately—a message selected at other
points. Loosely speaking, it involves an information source that
selects a message from a set of possible messages and then encodes
it into a sequence of communication symbols suitable for transmis-
sion. This sequence is subsequently sent over a possibly noisy med-
ium to a receiver that decodes and reconstructs the original
message according to a predefined coding scheme. Significantly,
Shannon showed that, depending on the characteristics of the
transmission medium, there is an upper limit on the rate (e.g., bits
per second) at which messages can be reliably transmitted through
such a system. This limit is termed the channel capacity. Every
time a message is received from the channel, the receiver’s uncer-
tainty about the possible worlds will decrease by an amount
bounded by the channel capacity. Suppose that we denote the
set of possible worlds at time t as Wt . Then, the information gain,
IGtþ1, brought by a message at time t þ 1 can be represented as
follows:

IGtþ1 ¼ log2
1

Wtþ1�� ��� log2
1
Wt
�� �� ¼ log2

Wt
�� ��
Wtþ1�� �� ð1Þ

One drawback of Shannon’s theory is that it intentionally leaves
out the ‘‘semantics” or ‘‘meanings” of messages. The sender and
receiver are assumed to share common ground to make sense of
the messages outside of this framework. The limits of coding effi-
ciency and channel capacity are based on a protocol that does
not model the mental states and motives of the agents sending
messages.

2.2. Statistical machine learning

Compared with information theory, statistical learning theory—
although it is relatively young—goes one step further. As per the
most well-known probably approximately correct (PAC) model
proposed by Valiant [9], learning seeks to accurately acquire a con-
cept selected randomly by looking at some training data. Fig. 4
shows the setting of PAC learning. Formally, the learner tries to
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learn a concept c, which is defined as a set in a state space X [9]
or a probability model h in a hypothesis spaceH (h 2 HÞ [57], using
M samples, Ii; cið Þ; i ¼ 1; :::; Mf g that are drawn randomly from an
external world. Here Ii; cið Þ are observations of certain form, such as
images, labeled class ci. Learning is driven by a predefined utility or
loss function u. The PAC learning theory bounds the number of
training data, n �; dð Þ, needed to learn the concept with error � �
and confidence > 1 � d:

Therefore, by equating a concept with a message and training
data with communication symbols, we find a strong parallel
between Shannon’s communication model and PAC learning. To
continue the previous metaphor, learning describes the communi-
cation of concepts from one mind to another. More specifically,
� Acting like an information source, nature selects a concept

from a class according to a certain probability. It then uses
a sequence of instances to encode the concept with binary
labels to form consistent training examples.

� Like signals transported over a transmission medium, labels
may then be subject to noise and bit-flip.

� Upon seeing possibly noisy training examples, a machine
runs a learning algorithm to decode and reconstruct the tar-
get concept [58].

� Analogous to channel capacity, in learning, there is an upper
bound on how quickly concepts can be transmitted with
training examples. This is measured by sample complex-
ity—that is, the minimum number of training examples a
machine needs to see before it can reliably identify any
intended concept.

In summary, statistical learning resembles a communication
framework that emphasizes decoding. Hence, when modeling a
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learning process, it shares the same drawback as Shannon’s
communication channel. Can we go beyond Shannon’s communi-
cation limit in machine learning if we are to overcome the lack
of mental modeling? The CL formalism sheds light on this question,
where messages are selected after deliberations and reflection
using ToM representations and carry extra information that is
recoverable in a more effective communication protocol; that is,
agents are capable of ‘‘reading between the lines.”
Fig. 5. The student’s belief-update processes when learning from random sampling
(blue trajectory) and from a cooperative teacher (red trajectory). It is possible to
transmit the target set 4;5f g with a single message, because the recursive teaching
dimension (RTD) [59] of this concept space is the number 1, which lower bounds
the regular teaching dimension (TD). Concretely, the student knows that the
teacher will send the number 3 for S1; thus, the number 1 or 2 indicates S4.
Similarly, the number 6 can only mean S2, making 5 a unique identifier for S3. The
prerequisite of such a recursive protocol is that the teacher is pedagogical, and that
the student is aware of her helpfulness. Here m1; m2; and m3 denotes the first,
second, and third random message. m� represents the message from the cooper-
ative teacher. More concept classes with different TDs can be found in Table S1 in
Appendix A.
2.3. Going beyond Shannon’s and Valiant’s frameworks

Now that we have reviewed the connection between founda-
tions of information theory and statistical learning especially PAC
learning, keen readers must have realized that Valiant’s learning
model, despite its theoretical appeal, has rather limited explana-
tory power outside of the scientist’s learning scenario. This model
makes an inefficient assumption that examples in learning are ran-
dom samples, whereas—in most real-life cases—learning is a com-
munication process in which examples are deliberate messages
uttered that reflect the mental states of the student and the tea-
cher. In addition, the lack of pedagogy at the teacher’s end elimi-
nates the possibility of having a student that is anything other
than a completely passive learner, whose model is much more
rudimentary than our learning experience as human beings. Since
we have agency and are guided by purposes, we not only engage in
the interpretation of received information but also actively ask
questions to dispel doubts. Furthermore, assuming that other peo-
ple are similarly endowed and motivated, we often question why
others behave in a certain way and take into account their possible
reactions to our moves before we act. These crucial elements are
missing from Valiant’s model.

Here, we can show a toy example to illustrate the advantage of
deliberate messages over random sampling. Suppose that there are
four sets of numbers, 1;2;3f g; 4;5;6f g; 4;5f g; and 1;2;4;6f g,
and the teacher can inform the student which one of the four is
the target set by sending numbers that belong to the target set.
Let us consider the case when the third set 4;5f g is the target.
For a student learning from random sampling, it takes many
repetitive numbers to shape his belief and eliminate the second
set, which happens to be the superset of the target. The learner
is only able to probabilistically eliminate the second set after
constantly not receiving the number 6.

However, if the student is learning from a cooperative teacher,
more efficient protocols can be established between the agents; in
fact, some can even accomplish the deterministic identification of
the target with only one message. For example, a cooperative tea-
cher will use the number 3 to uniquely identify the first set,
because no other sets include 3. Thus, the numbers 1 and 2 become
available to identify the fourth set, since the teacher would choose
3 if the target was the first set. Similarly, the number 6 is freed
from the fourth set and can be used to indicate the second set, leav-
ing 4 and 5 as unique identifiers of the third set (see Fig. 5 [59] for a
comparison between statistical learning from random data and
this pedagogical learning). Such a learning protocol is only possible
between cooperative and pedagogical agents.

Therefore, a model for Socratic learning via dialogue goes
beyond just PAC learning—that is, the one-way communication of
concepts: It involves meaning and intention. This observation is
not new. As Shannon himself acknowledged [8], ‘‘the messages fre-
quently have meaning; that is, they refer to or are correlated
according to some system with certain physical or conceptual enti-
ties. These semantic aspects of communication are irrelevant to the
engineering problem.” In a follow-up work [60], Weaver also
pointed out that a broader understanding of communication
should include all the procedures by which one mind may affect
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another. More specifically, he suggested that general communica-
tion problems be considered at three levels:

(1) How accurately can the symbols of communication be trans-
mitted? (the technical problem);

(2) How precisely do the transmitted symbols convey the
desired meaning? (the semantic problem);

(3) How effectively does the received meaning affect conduct in
the desired way? (the effectiveness problem).

Although it lies at the lowest level, the technical problem of
transmitting symbols—or concepts for that matter—leads to insight
in that it helps identify several key ingredients to enable successful
communication, at all levels. However, symbol transmission only
provides the necessary postal infrastructure for participants of a
general communication process to convey meaning and express
desire. Indeed, human communication is far more complex. As an
illustration of how meaning construction (level 2) can be decou-
pled from transmitted symbols (level 1), it suffices to imagine
the different reactions to the same television images of a football
match by the fans of opposing sides. Furthermore, even if there
is only one possible interpretation of a particular message, in
human communication, the receiver need not simply accept but
may alternatively ignore or oppose a message (level 3). The heated
political discourses in the United States on climate change are a
prime example of this phenomenon.

Since our goal is to model learning through communication in
the broad sense, in light of the prior work, we must account for
the two higher levels—and primarily the semantic problem
level—of communication. To understand how level-2 communica-
tion (in semantics) is conducted among human beings, we refer to
an account by Michael Tomasello from an evolutionary and cogni-
tive perspective [3]. According to Tomasello, the key to the success
of human communication is a common ground shared by its par-
ticipants, which includes joint attention, shared experience, and
common cultural knowledge. A common ground provides the crit-
ical situational, social, political, cultural, and historical context for
people to construct meaning based on their received communica-
tion symbols.

To illustrate this point, consider an example given in Ref. [3].
Imagine that you and I are walking toward the library and, out of
the blue, I point in the direction of some bicycles leaning against
the library wall. Your reaction will very likely be ‘‘Huh?”, because
it is difficult for you to know which aspect of the situation I am



Fig. 6. State w ¼ pg unfolding over time. Here t0 denotes current time, td and tD
represent a short and a long elapse of time, respectively. pg 0;t0½ �: current situation;
pg t0 ;t0þtd½ �:current attention; pg t0 ;t0þtD½ �: intentions and plans.
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indicating or why I am doing so, since pointing on its own means
nothing. However, if you just broke up with your boyfriend in a
particularly nasty way, we both know this mutually, and one of
the bicycles is his, which we also both know mutually, then the
same pointing gesture in the same physical situation might mean
something very complex, such as, ‘‘Your boyfriend’s already at
the library (so perhaps we should skip it).” On the other hand, if
one of the bicycles is the one that we both know mutually was sto-
len from you recently, then the exact same pointing gesture will
mean something completely different. Or perhaps we have been
wondering together whether the library is open at this late hour;
then, indicating the presence of many bicycles outside can be a
sign that the library is open.

It is important to point out that the common ground is not a
new notion, because it already existed in Shannon’s communica-
tion model and Valiant’s PAC learning model. In traditional com-
munication, the common ground is represented by the common
codebook shared by the sender and receiver, whereas in PAC learn-
ing, the common ground is the common class of concepts. How-
ever, what appears to be novel in human communication is that
the common ground is jointly created and selected by the partici-
pants, rather than by a third person that sets up a communication
system or a learning algorithm.

These observations highlight the connection between learn-
ing and communication. The resemblance between machine
learning algorithms and the scientist’s way of learning—that
is, one-way communication—identifies the need for cooperative
pedagogy and motivates our CL formalism. In the next section,
we will show the mental representation of the teacher and the
student, who communicate with each other to achieve efficient
pedagogy.
3. Communicative learning

In this section, we define the CL formalism. We start with the
infrastructure of CL and the mental representation of the teacher
and the student. As discussed in Section 1.2, the infrastructure
must have sufficient expressiveness to accommodate the common
mind and ToM. Then, we present the dynamics of learning in Sec-
tion 3.3 to illustrate how the learning proceeds with cooperative
reasoning and pedagogy integrated.
3.1. A full-blown teacher–student mental representation

In previous sections, we mentioned that ToM is the prerequisite
of CL but did not rigorously define what a mind is. Now, we elabo-
rate on the mental representations in the CL framework. In the CL
framework between two agents, the teacher and the student, there
are six minds. The first pair of minds comprises the egocentric
minds of the agents. The second pair comprises the agents’ estima-
tion of their partner’s mind. These four minds, together with a
common mind shared by the agents and the mind of an oracle
(God)y, make up six minds in total. Theoretically, the mutual reason-
ing in multiagent systems is recursive and can be infinite if no con-
vergence exists [7,61–64]. For example, A knows fact e; B knows that
A knows fact e; A knows that B knows that A knows fact e, and so on
and so forth, ad infinitum. To avoid computational intractability, we
only model one level of recursion, which is corroborated by the cog-
nitive ability revealed in multiple human studies [65,66]. Another
caveat is that the representation in this section does not include
the dynamics of the minds—that is, how a mind updates during
y This mind is also considered to be the objective world or nature, whose dynamic
is attributed to two factors: The first is a set of physical rules, either deterministic or
stochastic, which is inherent to the world, and the second is agent actions.
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the interaction between agents. We defer that part of the discussion
to Section 3.3. For now, let us just assume that they have a way to
evolve given the inputs from the world and the partner. An agent’s
mind includes the following components:

(1) A state w representing a situation. Here, w stands for the
world and is often structured as a mental state. For example, a
state w ¼ pg is a parse graph and, in a more general case, w is a
spatial, temporal, and causal (STC) parse graph, STC-pg that we
have developed for vision [67,68], language [69,70], robotics [71],
and commonsense reasoning [72–75]. The CL messages will be
exchanged in a so-called situated communication—that is, the
parse graph represents the composition of a scene, such as a living
room, objects inside the scene, and actions happening together
with causal changes of fluent (also known as the time-varying
states of objects). The situation is unfolding over time; as Fig. 6
shows, a parse graph pg consists of three parts:
� pg 0;t0½ � summarizes the current situation (shown in blue in

Fig. 6);
� pg t0 ;t0þtD½ � predicts intensions and plans (shown in green);
� pg t0 ;t0þtd½ � depicts the current attention (shown as a red

triangle).
As CL is an iterative process, the parse graph will be communi-

cated via messages over time at multiple semantic levels. CL agents
have a common mind, whose state wc ¼ pgc (Fig. 7) also contains:
① the shared situation pgc 0;t½ �; ② shared goal/intents pgc t;tþtD½ �; and
③ shared attention pgc t;tþtd½ �. Such representation is key to human
communication, as suggested by anthropology and cognitive stud-
ies [3], so that CL agents can ‘‘get to the point” rapidly at the right
level of detail. Thus, in order to deal with complex situations, CL is
a situated learning and communication process, which is more
general than existing learning methods. Some prototype CL learn-
ing has been demonstrated in HRI and teaming [70,71,75].

(2) A model h 2 H in a hypothesis/model space H. In a deter-
ministic setting, such as Valiant’s PAC learning, a model is a con-
cept represented by a set, such as an object category, which is
equivalent to a uniform distribution over this set. In a probabilistic
setting, a model defines a probability distribution p s; hð Þ on the
state space, usually referring to the parameters of the distribution.
It can be the hyperplane of a support vector machine (SVM), the
weights of a deep neural network (DNN), or the rules of a stochas-
tic grammar. When state w ¼ pg is a structured parse graph with
varying configurations, we represent model p w; hð Þ with an and–
or graph (AOG) [67], whose language is a set of all valid configura-
tions associated with probability. A parse graph pg is an instance
and realization of the grammar or AOG. In its full-blown complex-
ity, a model is represented by an STC–AOG integrating three
hierarchies:
� Spatial hierarchy: scenes–objects–parts–primitive, for pars-

ing scenes and objects;



Fig. 7. A zoomed-in view of CL representations: unifying all existing learning protocols and beyond. Each mind contains four spaces: ① a pentagon representing the
hypothesis/model space H; ② an ellipse representing the situation w ¼ pg in the state space W , where the beliefs are denoted by b and represented by clouds; ③ diamonds
representing policy p, distributions over action a; and ④ squares representing utility function u. Arrows illustrate the dynamics: observation (I), intervention, and messages;
shaded shapes represent belief over belief (BoB). Subscripts are used to indicate the teacher (A), the student (B), and their common knowledge (C). For recursive subscripts,
the owner of the component comes after in. For example, pBinA is in A, the teacher’s mind. The parameters and variables in the figure are defined in Sections 3.1 and 3.2.

y We use � Xð Þ here and in the rest of the article to represent the space of
distributions over X.
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� Temporal hierarchy and compositions: events–actions–
movements for parsing events;

� Causal hierarchy: actions and fluents for causal reasoning
and task planning.

STC–AOG can be viewed as a unified representation for image
parsing in computer vision, language parsing in natural language
understanding (NLU), task planning in robotics, and cognitive rea-
soning in commonsense AI.

(3) Belief and belief over belief (BoB). We denote the tea-
cher’s observations and input by IA, and the student’s input by
IB. IA and IB can be an input image or video. We also denote the
messages from the teacher at time t as dt and those from the stu-
dent as mt . Also, let aA=B be the action of agent A=B . As neither
the physical world nor the other agent’s mind is fully observable
to an agent, most of the time, agents need to form beliefs over the
structure of interest. We denote the history for the student B up
to time t as

ht
B ¼ I1:tB ;d1:t

;m1:t ; a1:tB

h i
ð2Þ

where d1:t means d1
;d2

; :::; dt
n o

and m1:t means m1;m2; :::; mt
� �

:

Then, B’s belief of the state and the model are bt
B;w wð Þ ¼ p wjht

B

� �
and bt

B;h hð Þ ¼ p hjht
B

� �
: We do the same for agent A, except that we

usually assume that bt
A;h hð Þ ¼ b0

A;h hð Þ; that is, we assume that the
teacher has a correct and static model at the beginning. For the
ToM structures, uncertainty also exists. Thus, BoB is defined as
follows:
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bobt
AinB;h bA;hð Þ ¼ p bA;hjht

B

� �
ð3Þ
bobt
AinB;w bA;wð Þ ¼ p bA;wjht

B

� �
ð4Þ

where bt
A;w and bt

A;h are A’s belief of the state and the model at time t.

bobt
AinB;w and bobt

AinB;h, are B’s estimation of teacher’s beliefs at time
t. Same definitions can be applied to the teacher’s mental structures.

It might be noticed that the history increases exponentially as
time goes by, and the model of BoB is theoretically intractable in
general cases. In practice, for the history, multiple independence
assumptions and inductive biases are indeed required to simplify
the computation of the posteriors. For the nested belief, due to
the deterministic belief update of Bayesian filters, if the state space
is not too big, approximation techniques such as particle filters
[62] can handle the calculation of BoB most of the time. However,
a particle filter can reach its limitation when the state space is
large or even uncountably infinite, a usual case for bobh. In those
scenarios, one can continue the learning by taking the maximum
a posteriori (MAP) estimation as the approximation of the distribu-
tion [53,76].

(4) A decision policy p :W # D Að Þy mapping the current state,
wt , to a distribution of actions a 2A, where A is the action space.
In more general cases, action can be composed into structured plans,
such as in the form of T-pg. It should be noted that this action a
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refers to actions in executing real-world tasks, not how an agent
sends messages in CL. The latter is a CL protocol, which we will elab-
orate later in Section 3.3. pA and pB denote the policy of two agents A
and B. In practice, to represent such a mapping from states to
actions, we usually assume that the policy has a certain form and
only track its parameterization. Moreover, policies are usually deter-
mined by the agent’s value, which is defined as the utility function.

(5) A utility function u :W # R represents the value of the
agent—that is, what the agent cares about, the loss of mistakes,
and the cost of actions. In combination with the model—that is,
how the world transits given actions—utility functions can be used
for task planning [71]. uA and uB denote the utility functions of two
agents A and B. The agents A and B in CL must also estimate and
learn the utility function of other agents, which we denote by
uBinA and uAinB, respectively. As we will discuss later, uBinA and
uAinB influence the CL protocol and equilibria of the learning pro-
cess, resulting in different limits of learning.
3.2. A unifying framework of learning

To summarize the representation discussed in the previous sec-
tion, Fig. 7 shows a zoomed-in view of the CL representations.
There are six minds in total. Each agent has two minds colored dif-
ferently—one for itself, and one for its partner. Each of these four
minds has four components w; h;p;uð Þ, represented by different
shapes. We model the uncertainty of w and h by maintaining
beliefs and BoB for them. The other two minds are the common
mind and the physical world—that is, God’s mind.

The arrows in Fig. 7 show the various dynamics and information
flows, which include three types:
� Observations IA and IB from the physical state to the per-

ceived state space W;
� Actions or interventions that cause changes in the physical

state;
� Messages between the two agents to exchange information.

Depending on the learning modes, these messages are for
inference, learning, demonstration, confirmation, and so
forth.

For clarity, we omit arrows for other dynamics; for example,
some messages may be generated from a BoB space to probe what
the other agent is thinking, such as, ‘‘I think your state estimate w
is . . .” or ‘‘what do you know about the state w?” Some arrows are
second order; for example, the teacher learns the policy pBinA from
observing how the student conducts a task, that is, LfD [30,75], or
learns the utility uBinA by watching the student’s decision or choice
[71].

In CL, the communication between the teacher and the student
converges at three levels (see the curved arrows in Fig. 7):
� When the inference process converges, they reach a common

ground or situation w�c .
� When the learning process converges, they reach a common

model knowledge h�c .
� When their policy and utility converge, they reach a common

social norm p�c and ethics u�c .
Depending on the learning protocols and characteristics (i.e.,

capacity for generating and interpreting messages) of the agents,
the convergences may have different equilibria that decide the lim-
its of learning. In CL, we assume that the agents are cooperative
and not deceptive, and that their utility functions are aligned
through learning. In most learning setups, convergence is consid-
ered in the second and the third level, and we will use them as
the convergence criteria for most of this article. We will discuss
multiple levels of convergence in Section 5.2.

The motivation of CL is to integrate the essence of human ped-
agogy into machine learning and thereby overcome the limitation
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of existing algorithms. In fact, with current representations, we can
see that CL does unify the existing learning methods, with the fol-
lowing relations:
� Shannon’s communication diagram in Fig. 3 is a message-

passing channel between two agents. CL extends this com-
munication setting by including the mental states, the BoB
space, utility functions, and a common mind, all of which
evolve over time. This allows more sophisticated messages
and enables agents to ‘‘read between the lines.”

� Valiant/Vapnik’s theory is passive inductive statistical learn-
ing, supervised or unsupervised, from randomly sampled
examples. This is shown by arrow 1B in Fig. 7. In contrast,
in CL, messages are deliberated based on a reflection of the
mental states and utility functions.

� Active learning is represented by arrow 2: B can ask A to label
certain examples selected by B. The example is selected to
gain the most information in optimizing B’s utility/loss
function.

� Algorithmic teaching [77,78], shown as arrow 3, is a protocol
complementary to active learning. Teacher A chooses the best
examples to teach a student B for efficiency. A must consider
what B knows and select critical examples to B, such as sup-
port vectors for classification.

� LfD [15,30,75] is a typical learning protocol in robotics and is
an important component for commonsense acquisition. This
learning method is shown by arrows 4 and 5 in Fig. 7. Agent
A teaches a task by performing a sequence of actions on
objects. The student observes the actions and their outcomes
directly and learns the action policy from the teacher.

� Causal learning is represented by arrows 1B and 5, where an
agent applies actions to change the fluents of objects and sce-
nes, and learns the causal effects of its action in terms of
changed object fluents, including appearance changes (e.g.,
painting a wall, mopping a floor), geometry changes (e.g.,
blowing up a balloon), and topology changes (e.g., cutting a
fruit).

The CL can also create new learning methods or protocols that
are not well known. For example:
� Perceptual causality learning. This is in contrast to causal

learning [79], where the experiment/intervention requests
A to perform actions (arrow 4) and observes the effects of
her actions (arrow 1B and 5). In Ref. [73], a new protocol
called perceptual causality learning is proposed. Here, the
student can learn causality by watching (arrows 1B and 5)
the actions of the teacher (arrow 4). Under the assumption
that she is not performing magic (i.e., no cheating), the stu-
dent will infer and mirror the actions of the teacher in what
is called ‘‘perceived causality.” As shown in Ref. [73], this pro-
tocol is far more effective for learning causality and opens the
door for learning causality from observations—a key aspect of
human intelligence.

� Utility learning is shown by arrows 4 and 6. The student
infers the utility function of A by observing her decisions
and choices in actions. Economics theory says that rational
agents make decisions and take action for utility maximiza-
tion. By observing the actions taken by A, the student can
infer A’s utility, denoted by uAinB in CL. For example, in
the example about folding a T-shirt demonstrated in Ref.
[71], by watching the teacher folding T-shirts, the student
can not only learn the causality and policy pA but also
learn a utility function uAinB for aesthetics—that is, what
states of the T-shirt have a relatively high value to the tea-
cher. B may choose to adopt a similar utility function
uB  uAinB. In CL, agents will update and align to a common
utility. We will later show another value alignment exam-
ple in Section 4.3.
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� Learning by analogy (LbA) is a powerful learning mode that is
used by humans [4] but is missing in current popular
machine learning methods. It requests shared knowledge
wc; hcð Þ between two agents and the capabilities of abstrac-
tion and projection to transfer knowledge across domains
using an abstract graphical representation. Abstraction and
projection are key intelligent capabilities in classic Raven’s
intelligence quotient (IQ) tests but are missing in current sta-
tistical learning. The shared mind will facilitate LbA. As the
common mind grows, the two agents will be more and more
synced and the student will become as capable as the
teacher.

To summarize, all learning paradigms above having their most
suitable using scenarios, and meanwhile, they illustrate the usage
of various special cases of the CL framework. Nevertheless, the
deployment of general human-like AI usually involves much more
complicated and comprehensive settings, in which multiple com-
ponents of the full CL framework become indispensable. In Sec-
tion 4.3, we show an example scenario bearing adequate
complexity to summon the full structure. Now that we have
wrapped up the introduction of the CL representation, we can
move on to the specific formalism that drives the learning and
models the mind update dynamics.

3.3. Formalism of CL

In Section 3.1, we introduced the representation of the CL
framework, with which the integration of human pedagogy and
ToM with machine learning becomes possible. In this section, we
show the dynamics of the teacher’s and the student’s minds. This
completes the CL formalism and enables us to scrutinize prior
machine learning algorithms by instantiating this generic
formalism.

3.3.1. Overall setting
First, let us recall that a standard machine learning algorithm

is a mapping from training data to a model space [18,40], where a
model can be, for example, a specific hyperplane in SVM, the
location of the kth centroids in K-means, or the parameters of a
neural network. In CL, we generalize learning into a pedagogy
process involving two agents—a teacher and a student. Each agent
has its model; or, in cases where uncertainty must be considered,
a belief of the model. In Section 3.1, we differentiate an agent’s
model with its policy and utility to better specify various types
of learning in a situated communication scenario. Nevertheless,
for modeling the learning dynamics, we do not need to differen-
tiate them explicitly. That is, the model that we are referring to
here is a representation with broader meanings than the model
in Section 3.1. The only purpose of the latter is to interpret the
physical world. In Section 3.4 and Section S3, we show how con-
cept, policy, value, and utility can all be learned as the model
with the same CL formalism.

Let us rigorously denote the teacher’s model space as H and
bh 2 D hð Þ as the teacher’s belief of the modely. We assume that bh

stays constant across the pedagogy process, because the teacher will
not receive any new information helping her to refine the model.
Moreover, in most cases, we assume that the teacher knows the true
model h�. That is, bh hð Þ becomes 1 h ¼ h�ð Þ. Similarly, we have the
student’s model space X and the student’s belief of the model as
bx 2 D Xð Þ. Notice that we do not assume that the teacher and the
student have the same model space; that is, X may or may not be
the same as H. Having two separate model spaces of the agents
y In the rest of the article, the subscripts of beliefs are used as labels to differentiate
different beliefs and are not to be confused with parameters, which present inside
parentheses, unless explicitly defined.
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allows CL to deal with the teacher and student pairs having distinc-
tive world representations. For example, suppose that the model is a
policy network mapping from the robot’s camera inputs to motion
commands. Then, robots with different camera configurations are
still able to teach and learn from each other. Since the student will
update his belief of the model, we use bt

x to represent his belief at
time t. The same superscript will be applied to other time-variant
variables.

The goal of the CL is for the student to have an accurate enough
belief of the model so that he can achieve a certain level of perfor-
mance for a given task compared with the teacher. We can define

this metric as minimizing a loss function L bh; b
T
x

� �
, where T is the

moment where the learning process terminates, and L measures
the difference between the teacher’s performance and the stu-
dent’s performance of a task. The smaller the performance gap is,
the smaller L will be. At this moment, to define the framework of
CL, we do not specify L in too much detail. In Section S3, we
describe how different machine learning paradigms are special
cases of CL and further concretize L.

3.3.2. Teacher setting
CL is a pedagogy process in which the student’s belief of the

model is refined, given messages from the teacher. At time t, the
teacher chooses message dt from her message space, D. The mes-
sage selection criteria at each time depend on the student’s learn-
ing state at that moment, which is denoted as st 2 S. The learning
status is a variable maintained by the teacher to keep track of
the student’s progress at a particular time. For example, st can be
the validation error at the time t. When the exact learning state
is not directly available to the teacher, she needs to have a belief,
bs 2 D Sð Þ, over the learning states. Just like L, we do not further
restrain the representation of D and S until we examine specific
learning paradigms.

In general, when the teacher has an accurate estimation of the
student’s learning state, the pedagogy can be more effective.
Hence, the teacher has a transition model for the learning states:
Namely, how the student will make progress after receiving a mes-
sage. Assuming Markovian learning states, the transition model
can be mathematically defined as follows:

w : S�D # D Sð Þ ð5Þ
That is, w takes in the student’s current learning states and the

teacher’s message and returns the distribution of the student’s new
learning states. In situations such as active learning [29], the tea-
cher also receives messages (query data) from the student. We
can denote the student’s message at time t asmt 2M. Without loss
of generality, for the rest of the paper, we assume that mt comes
after dt for every time t. Messages from the student can also help
the teacher to estimate the student’s current learning state. To
accommodate these messages, the teacher has a message model
for the student, mapping learning states to a distribution over
the student’s messages:

/ : S # D Mð Þ ð6Þ
With w and /, the teacher can update her bs condition on her

outgoing and incoming messages using the Bayesian filter:

bt
s sð Þ ¼ p sjd1:t

;m1:t
� �

/ / mt js� � Z
s02S

w sjs0;dt
� �

bt�1
s s0ð Þds0 ð7Þ

In general, this belief cannot be calculated exactly, especially
when jSj is large or infinite. However, in practice, w and / are usu-
ally modeled as indicator functions, effectively simplifying the com-
putation. With the student’s current learning state and the teacher’s
belief of the model bh, we can have a teaching policy for the teacher:
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p dtjbh; b
t�1
s

� �
¼ softmaxb Qw bh; b

t�1
s ; dt

� �� �
ð8Þ

where softmaxb xð Þ ¼ exp bxð ÞP
x02X exp bx0ð Þ is the Boltzmann rationality [80–

82] and Qw bh; b
t�1
s ;dt

� �
is a value function that takes in the teacher’s

belief of the student’s current learning state, the teacher’s model,
and a teacher’s message. Usually, it can be further expanded into
an integral form with a simpler defined Qw h; s; dð Þ weighted by

bh hð Þ and bt�1
s sð Þ. As this function can depend on the teacher’s tran-

sition model of the student’s learning state, it is parameterized by w.
Q can either be learned from data or defined by experts [12,83]; in
Section S3, we provide examples of both.

3.3.3. Student setting
In this section, we define the student in CL. Unlike standard

machine learning algorithm mapping from data to a model, the
student in CL is aware of the cooperative teacher in the pedagogy.
That is, the student knows that he receives selected messages
instead of random examples from the teacher. To model the
teacher-aware student, we start with a teacher-unaware student,
whose belief update rule given a new message dt is simply:

bt
x xð Þ ¼ p xjd1:t

� �
/ bt�1

x xð Þp dt jx
� �

ð9Þ

where p:X# D Dð Þ is the teaching likelihood function in the stu-
dent’s mind. In general cases, such an estimation of the teaching
function does not match the exact pedagogy policy of the teacher
defined in Eq. (8). However, as we will see in the coming sections,
most of the time, when the student has a reasonable approximation,
learning is effective.

Next, for a teacher-aware student, messages are conditioned on
more than just the teacher’s model. Using all the information avail-
able to him, a teacher-aware student has

bt
x xð Þ / bt�1

x xð Þp dtjx;d1:t�1
;m1:t�1

� �
ð10Þ

The disadvantage of using the entire history in p is the expo-
nential growth of the history with respect to time. Recall that the
teacher relies on two things when teaching: One is her model, h�,
and the other is her estimation of the learning state of the student,

s. Thus, we define ŝ 2 bS as the student’s estimation of his learning

state in the teacher’s mind. Then, the full history, d1:t�1, m1:t�1 can

be condensed into bt�1
ŝ ; and Eq. (10) becomes

bt
x xð Þ / bt�1

x xð Þp dtjx; bt�1
ŝ

� �
ð11Þ

where p : X� D bS� �
# D Dð Þ is the teaching likelihood function

accommodating the student’s learning state in the teacher’s mind.
That being said, in every time step, the student maintains two
beliefs: one for the model and one for the estimation of the tea-
cher’s impression of him. Theoretically, the nested mutual reason-
ing between the teacher and the student can be infinitely
recursive [62]. To avoid this intractability and complexity, in CL,
we stop at a teacher-aware student and do not go deeper into the
recursion. To update bŝ, the student needs two more functions to
model the transition of ŝ after two types of messages. We define

f : bS �D # D bS� �
ð12Þ

n : bS �M# D bS� �
ð13Þ

As the student’s transition functions for ŝ—namely, how the tea-
cher’s impression of him will change after she sends (f) and
receives (n), a message. The student’s counterpart of / should be
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a function mapping from ŝ�X to D Dð Þ as his estimation of how
the teacher will teach given a model when she has learning state
ŝ. This can be accomplished by p, because any ŝ0 can be written
as a Dirac-delta distribution, dŝ0 ŝð Þ ¼ 1 (ŝ ¼ ŝ0). Notice that f; n,
and p are all approximations of the teacher’s mental change in

the student’s mind, so X and bS are used instead of H and S.
Now, we can write down the belief update function for bt

ŝ.
Unlike Eq. (7), we want to have an intermediate variable, after
the student receives dt and before mt is sent out, whose purpose
is to determine the best mt to send out. Let us denote

ebt
ŝ ¼ p ŝt jd1:t

;m1:t�1
� �

� 1
Z

Z
x2X; ŝ2bSf ŝt ĵst�1;dt

� �
� p dt jdŝt�1 ;x

� �
bt�1
ŝ ŝð Þbt

x xð Þdxdŝ
ð14Þ

as the student’s belief of the teacher’s estimation of his learning
state after he receives dt , where Z is a normalizing factor. A detailed

derivation can be found in Section S1. Using ebt

ŝ, the student comes
up with the message to send to the teacher, with

p mt jebt

ŝ; b
t
x

� �
¼ softmaxk Vn

ebt

ŝ; b
t
x;m

t
� �� �

ð15Þ

where Vn
ebt

ŝ; b
t
x;m

t
� �

is a value function for the student. Here, V

takes the belief as its argument, because the student usually needs
to take the attributes of the distribution, such as the entropy, into
consideration for message selection. Just like the value function,
Q , to the teacher, V can either be learned from data or defined.

After the student gives his message mt to the teacher, he final-
izes his belief of ŝ for time t using

bt
ŝ ŝð Þ ¼ p ŝjd1:t

;m1:t
� �

/
Z

ŝ02bSn ŝĵs0;mt
� �ebt

ŝ ŝ0ð Þdŝ0 ð16Þ

Eq. (16) concludes all the belief updates in CL. As it involves
many components and nested inferences between agents, we sum-
marize the CL framework with Fig. 8 and specify it in Algorithm 1.
In the next section, we demonstrate how various learning para-
digms can be expressed as special cases of CL.

Algorithm 1: Communicative learning.

Input-teacher: H; bh; b
0
s ; Q ; w; /; D

Input-student: X; b0x; b
0
ŝ ; V ; f; n; p; M

Input-world: T; L

Output: bTx

1
 For t ¼ 1:T do

2
 Teacher selects dt using Eq. (8)

3
 Student updates ebt

ŝ and btx using Eqs. (14) and (11)

4
 Student selects mt using Eq. (15)

5
 Teacher updates bts using Eq. (7)

6
 Student updates btŝ using Eq. (16)

7
 End � �

8
 Return bTx, L bh; b

T
x

3.4. CL instantiation of prior learning paradigms

The formalism proposed in Section 3.3 gives us a unifying lens
to summarize existing learning paradigms. That is, we can instan-
tiate the CL formalism with different learning paradigms by con-
structing their corresponding value and partner estimating



Table 1
Learning paradigms in prior work and their recursive level.

Paradigm Teacher Student Level

Passive learning None Unaware 0
Active learning Oracle Unaware 0
LfD Expert Unaware 0
Algorithmic teaching Cooperative Unaware 1
CL Cooperative Aware 2
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functions. Since not all of these paradigms include the full set of
recursive mutual reasoning in CL, we can classify them according
to their recursive level. If a learning paradigm only has a student,
and data comes from a random process instead of a cooperative
teacher, we call it a level-0 paradigm. Some level-0 paradigms
can involve multiple agents, such as the co-training/teaching
[84–86] framework for label-noisy learning. In spite of having
two learning networks, it still follows a variation of passive learn-
ing, because there is no mutual reasoning between the learning
agents, which only differ by parameter initialization and seek to
maintain such divergence during training to avoid confirmation
bias. Paradigms like active learning [29], where the teacher only
passively replies to the student’s queries about random data and
has no agency, are also classified as level-0. Suppose that there is
a cooperative teacher who can choose her messages to the student,
but the student is not aware of the existence of this teacher. Such
learning paradigms are termed as level 1. When the teacher is
cooperative in message selection and the student is aware of her
helpfulness, we classify it as a level-2 paradigm.

We summarize the paradigms and their level in Table 1. It can
be seen that all these learning paradigms are essentially special
cases of CL with one or a few components omitted from their mod-
eling. Within each learning paradigm, there can be various learning
algorithms, and every algorithm maps to a grounding of the CL
components. In Section S3, we select some algorithms for each
paradigm and show their CL groundings. As the purpose of this
article is to propose a unified framework of learning rather than
to exhaustively list all learning algorithms, we only choose a few
exemplar algorithms for each paradigm and specify their CL
groundings. For the other algorithms, their CL groundings can be
easily migrated from the exemplar algorithms belonging to the
same paradigm. The complete summary and comparison of these
groundings can be found in Tables S2 and S3 in Appendix A.

One follow-up question about the CL formalism is how to
acquire the belief-update and value functions. There are two usual
approaches: The first is to use predefined heuristic functions,
which are specifically designed or engineered for particular tasks.
Most learning algorithms in Section S3 and the HRI example in Sec-
tion 4.3 fall into this category. The second approach is to learn
these functions as an emerged norm of communication. Learning
to teach [42] (detailed analysis in Algorithm S10 in Appendix A)
and the referential game example in Section 4.1 belong to this cat-
egory. That is, after learning and teaching multiple models (every
model learning follows Algorithm 1), the teacher and the student
Fig. 8. CL formalism. (a) Mental state representation of the teacher and the student. Th
drawn as ellipses, with the time-variant beliefs shaded. Diamonds hold the functions tha
We call these the belief-update functions. The value functions for the teacher and the stud
the transition process at the first time step. The numbers group the arrows, and the same n
to Eq. (8), the ‘‘2” arrows correspond to Eq. (14), the ‘‘3” arrows correspond to Eq. (11), an
and ‘‘6” arrows, respectively. The temporal order of these belief updates is the same as th
the ‘‘5”s and ‘‘6”s happening concurrently.
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start to know each other better and form a tacit norm of commu-
nication. The convergence of the model and the convergence of
communication norms form different hierarchies in learning. In
Section 5.2.1, we return to this problem in more detail within the
context of the halting problem of learning. At present, let us scru-
tinize CL with some exemplar applications. Using these examples,
we will discover how the belief-update and value functions are
defined or learned.
4. Examples of CL

Thus far, we have completed the definition of the CL formalism.
In this section, we reify CL with a few examples. First, we demon-
strate the effectiveness of a pragmatic protocol that emerges from
applying the CL formalism to referential games [87]. Then, we
quantitatively justify the advantage of CL with the empirical
results of a teacher-aware learning algorithm on multiple bench-
marks. Finally, we present a usage of CL in a realistic HRI task.

4.1. Case study 1: The emergence of a pragmatic protocol in referential
games

In this section, we use a proof-of-concept referential game as an
example to demonstrate the usage of the CL formalism. Despite its
simplicity, the referential game encompasses the necessary com-
ponents of standard communication between collaborative agents.
It has been shown that effective communication protocols can
emerge between agents playing various forms of referential games
[88,89]; however, in this example, we illustrate how the CL formal-
ism can facilitate the emergence of a more efficient protocol, which
we term the pragmatic protocol. We also show how the belief-
update and value functions defined in Section 3.3 can be learned
via cooperative interactions supervised with the outcomes of refer-
ential games.
e blue bubbles are for the teacher, and the red ones are for the student. Beliefs are
t agents use to maintain their beliefs about their partner’s behavior and knowledge.
ent are in the blue and red rectangles. (b) The temporal structure of CL. This expands
umber indicates that operations happen in one function. The ‘‘1” arrows correspond
d the ‘‘4” arrows correspond to Eq. (15). Eqs. (7) and (16) are represented by the ‘‘5”
e numerical order of the arrows, with the ‘‘2”s and ‘‘3”s happening concurrently and



Fig. 9. An example referential game. From right to left, the candidates are a blue
cone, a red sphere, and a blue sphere. If a student receives ‘‘blue” from the teacher,
he should be able to identify the blue sphere instead of the blue cone.
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4.1.1. Background: Referential game
The example we mentioned in Section 2.3 is actually a referen-

tial game. There are two agents participating the referential game,
a teacher and a student. Every game includes a target object and a
few distractors. Only the teacher knows the target, and she aims to
notify the student with a message so that the student can identify
the target out of the distractors after receiving this message. The
infrastructure of CL enables ToM: In order to establish proper com-
munication, the teacher and the student must take their partner’s
perspective into account [83]. Fig. 9 presents an example. There are
three candidates, a blue sphere, a red sphere, and a blue cone, with
the blue sphere being the target. If we only allow the messages to
be colors and shapes, then, for an unaware student, the blue sphere
cannot be uniquely identified, because both ‘‘blue” and ‘‘sphere”
are consistent with multiple candidates. However, a teacher-
aware student, after receiving ‘‘blue” from the teacher and con-
ducting pragmatic reasoning, should be able to rule out the blue
cone and identify the blue sphere. He knows that, if the target is
the blue cone, a helpful teacher would have used ‘‘cone” to refer
to it unambiguously. This example illustrates that, during prag-
matic [10] communication, a message conveys more information
than its literal meaning. The selection and disuse of certain mes-
sages can also suggest the intention of the speaker.

4.1.2. Emergence of a pragmatic protocol
Pragmatics studies the contribution of context to language

meanings. In human communication, interpretations of language
never take place out of context, and sentences can usually convey
information that goes beyond their literal meanings. However, this
mechanism is missing in most multiagent systems, restricting the
communication efficiency and the capability of human–agent
interaction. The example in Fig. 9 concretizes a typical pragmatic
principle called the scalar implicature. More details will be dis-
cussed in Section 5.1.2. It is only when agents have ToM and are
able to capture their partners’ cooperative intention that they
can bear pragmatic reasoning. Luckily, the infrastructure of CL sup-
ports ToM and allows the emergence of pragmatics protocols.

4.1.2.1. Overview. Before speaking, the teacher traverses all mes-
sages and predicts the student’s new belief after receiving each
message using w. She then sends the message leading to the most
optimal student’s new belief. Hearing the message, the student
updates his belief and takes action (makes a decision or waits for
another message). The recursive mutual modeling in ToM is inte-
grated within the belief update process. The beliefs in our model
are semantically meaningful hidden variables in the teacher’s Q-
function as defined in Eq. (3), and the student directly samples
an action according to his belief. The evolving of the belief-
update function w and p reflects the protocol dynamics between
the agents.

4.1.2.2. Teacher. The teacher selects messages according to her Q-
values and belief-update function w, which takes in the candidate
set, current belief estimation, and a message. The return value of
this function is a new belief estimation. This function can be
parameterized as a neural network with weighted candidates
encoding and messages as the inputs and softmax as the output
layer. The return value of the belief update function is directly
fed into the Q-function. That is, the output of the belief update
function is used in Q to predict the student’s belief in the next step
during testing. The teacher chooses messages according to Eq. (3).

To form a protocol, the teacher needs to learn two functions: w
and Q . In the training phase, every time the student receives a mes-
sage, he returns his new belief bt

x to the teacher. During testing,
she needs to use the output of w to approximate the student’s
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new belief. We train w by minimizing the cross-entropy between
bt
x and the teacher’s prediction. Teacher’s Q is learned with Q-

learning [90], given the reward as the results of the referential
game.

4.1.2.3. Student. In the referential game setting, the student does
not need to give much feedback. Thus, we only introduce his
belief-update function p and policy of making decisions, which
triggers the game reward for the norm of communication to
emerge within the group. We directly learn p and the policy of
the student through the REINFORCE algorithm [91]. In the referen-
tial game, the student’s policy is quite simple. If his belief is certain
enough, he will choose the target based on his belief; otherwise, he
will wait for further messages. p and the policy can be parameter-
ized as an end-to-end trainable neural network, with the candi-
dates’ encoding, original belief, and the received message as
inputs and returning an action distribution.

4.1.2.4. Adaptive training. Both the teacher and student are adap-
tively trained to maximize their expected referring success. We ini-
tialize the student as unaware, that is, with p following a Bayesian
belief update process. Then, we fix the student and train the tea-
cher to update her Q and w. After a fixed amount of time or until
converging performance, we fix the teacher and train the student.
The alternate fixing and training continue until the group perfor-
mance no longer improves. The final pragmatic protocol will be ful-
filled by then.

4.1.3. Protocol analysis
The emerged protocol demonstrates pragmatic reasoning,

which results in a significantly better referring performance than
other emerged protocols [87]. In Fig. 10, we show some example
referential games together with the teacher’s and the student’s
beliefs during training. It is clear that the student can differentiate
targets from distractors, even when messages from the teacher
have consistent literal meanings with all of them. That is, both
the literal and the pragmatic meanings of messages are correctly
grasped. More specifically, if the student is shown the four three-
dimensional (3D) objects in Fig. 10, he will know that the teacher
will send ‘‘blue” for the blue ellipsoid, ‘‘large” for the large green
cylinder, and ‘‘magenta” for the magenta cylinder. Hence, ‘‘upper
right” and ‘‘ellipsoid”, despite being valid descriptors for multiple
candidates, must indicate the target green ellipsoid on the upper
right. Mathematically, the emerged pragmatic protocol approxi-
mates the RTD of the candidate concept space, which measures
the number of examples needed for concept learning between a
pair of cooperative and rational agents [87,92]. The formal defini-
tion of RTD is provided in Section S4 in Appendix A. Intuitively,
in a concept class, there is a subset of concepts that are the



Fig. 10. A referential game example with four candidates. The fixing and training roles of the teacher and the student are switched at the end of every phase. We show the
message distribution for the target and the student’s new beliefs after receiving the most probable message. The teacher concentrates all her message distribution weights on
the unique identifiers after the first phase of training. The student’s belief illustrates that the teacher’s most probable message—although consistent with multiple
candidates—can successfully indicate the target with more confidence as the training proceeds. In general, both agents’ behavior becomes more certain, and the certainty
coordinates.
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simplest to learn—that is, that have the minimum-sized teaching
set among all the concepts. It is possible to first learn those con-
cepts and remove them from the concept class. Now, for the
remaining set of concepts, it is possible to recursively learn the
simplest concepts, and so on. The teaching complexity of this
learning schema lower bounds classic teaching dimension (TD)
[93]. In every phase of our iterative training, the agent learns to
identify the optimal teaching set for the ‘‘simplest” remaining can-
didates. In our case, candidates that are identifiable with a unique
message are the simplest.

To summarize, the referential game example illustrates how the
CL formalism can be used to develop new learning protocols from
scratch with only signals about communication outcomes. In the
coming sections, we provide exemplar usages of CL in more realis-
tic and more complicated settings than referential games to mark
the generality and scalability of the formalism.

4.2. Case study 2: Iterative teacher-aware learning

In a referential game, the teacher aims to indicate the target
among distractors to the student. This process can be formulated
as a concept learning problem with a discrete concept space
[18,94]. The tractability or even finitude of the concept space
makes referential games and similar concept learning problems
appropriate starting points to study the advantage of CL [45,55].
However, to cover the full spectrum of machine learning para-
digms, CL must accommodate problems with intractable hypothe-
sis spaces, such as learning continuous parameters [38–41].

In this section, we examine the theoretical convergence guaran-
tee of CL using machine parameter learning as an example. We
compare two types of learning paradigms. The first involves a
cooperative machine teacher and a naive learner; the second
involves the same teacher and a teacher-aware learner [95]. The
learner estimates the teacher’s data selection process with distri-
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bution and corrects his likelihood function with this estimation
to accommodate the teacher’s intention. Maximizing the new like-
lihood enables the learner to utilize both explicit information from
the selected data and implicit information suggested by the peda-
gogical context. It is clear that the teacher and student group fol-
lowing the CL formalism can achieve better performance both
empirically and theoretically.

4.2.1. Background: Machine parameter teaching
Due to its continuous state space and long horizon planning,

optimal parameter teaching has been a challenging problem. Thus
far, the most prevailing and promising framework is machine
teaching [39,40]. Thus, we adopt an iterative variation of machine
teaching [41]. Following the notations in Section 3.3, the teacher
holds bh hð Þ ¼ 1 h ¼ h�ð Þ, where h� is the fixed ground-truth
parameter only known by the teacher. h� can be acquired by mini-
mizing a loss function defined on data following a distribution, such
as themean squared error for regression, cross-entropy loss for clas-
sification, and negative log-likelihood for inverse reinforcement
learning (IRL) [96,97]. In this section, we assume the choice of the
loss function is the teacher and student’s common knowledge.

4.2.1.1. Overview. The teacher and the student can represent the
same data example in different but deterministically related ways.
Then, it is likely that the optimal parameters for the teacher and
the student are in different spaces too. This mimics practical sce-
narios: The teacher and the learner are a human and a robot, or
two robots manufactured differently. Hence, following the nota-
tion in Section 3.3, we use h� 2 H andx 2 X to indicate the param-
eter for the teacher and the student, respectively. As the
representation of examples can be complex, such as features
extracted by DNNs [25,27], without harming the expressiveness,
we assume that the final decision is made by applying a linear
model to the data representation.
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To avoid infinite mutual reasoning between the teacher and the
learner, we restrict the mutual knowledge between them. In this
section, we consider a teacher who assumes that the naive learner
is using stochastic gradient descent (SGD) to update his model.
Meanwhile, the learner knows that the data comes from a helpful
teacher instead of being random. That is, the naive learner, the tea-
cher, and the teacher-aware learner have level-0, level-1, and
level-2 recursive reasoning, respectively, as defined in Section 3.4.
These levels of recursion imitate human cognitive capability
[65,66,98] and were also adopted in Ref. [53].

4.2.1.2. Teacher. Following the standard setup of machine teaching,
the teacher and the student can only communicate via examples.
This limitation does not impact the generality of the framework,
as the examples can have generic formats, such as demonstration
used in the IRL [96,97,99,100]. As defined in Section 3.3, data dt

are provided iteratively. The teacher’s goal is to provide helpful
examples to the student so that his parameter x converges to its
optimumx� as quickly as possible. Since the teacher cannot access
xt or x�, the student gives some feedback mt to her in each itera-
tion to keep her updated with the pedagogy progress.

4.2.1.3. Naive learner. The teacher-unaware learner uses a simple
learning algorithm, such as SGD [41,42,101,102] for iterative
gradient-based optimization.

4.2.2. Iterative teacher-aware learner
We first delineate the teacher whom the student should be

aware of. Similar to her counterparts in referential games, the tea-
cher in parameter learning selects messages according to her Q-
values and belief-update functions. In Section 4.1.2, we described
how these functions can be learned by letting the teacher and
the student play referential games. Due to the larger parameter
Fig. 11. ITAL performance on different tasks. (a) Linear regression; (b) Gaussian data; (c)
teacher, ITAL always achieves a substantial performance gain over IMT, demonstrating the
convergence, while a naive learner only learns to a limited extent in most tasks. The L2
current parameter. Batch and SGD teach a naive learner with random sampled data. IT
estimate the teacher-volume. More details can be found in Ref. [95].
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space and long horizon planning, the teacher uses a greedy heuris-
tic to define the Q-function—namely, the example that decreases
the distance between the student’s parameter and the ground-
truth parameter the most, a criterion commonly used in machine
teaching problems [39–41,53]. The improvement brought by the
example is defined as its teaching volume [41] and used as its Q-
value, whose mathematical definition can be found in Eq. (S40)
in Section S3.2 in Appendix A. Since the teacher does not have
access to the student’s current parameter in most practical settings
and, even if she knows the parameter, she cannot utilize the value
in a different parameter space directly, we let the student return
the inner products of his parameter and the data to the teacher
as feedback [41,95]. With the linear model assumption, the teacher
can capture the student’s learning states using simple belief-
update functions. See the row of iterative machine teaching
(IMT) [41] in Appendix A Table S2 for details.

IMT proposes a cooperative machine teacher that significantly
helps the naive learner but still falls short of complete pedagogy
by neglecting the student’s teacher-awareness. To fill in this gap,
we took advantage of CL and proposed iterative teacher aware
learning (ITAL) [95]. The teacher-aware student adjusts his p func-
tion by taking the teacher’s example selection into consideration.
Intuitively, given all data in a mini-batch, the teacher chooses
one specific example but not others. With what parameter can
the probability of this selection be maximized? To this end, the
updated teaching likelihood function has two components: The
first models the consistency between the parameter and the data
(the literal meaning of the example); the second models the tea-
cher’s selection with an estimated teaching volume and counter-
factual reasoning (the pragmatic [10] meaning of the example).
With the help of the new p, ITAL achieves both theoretical and
empirical improvements on various regression, classification, and
IRL benchmarks [95]. Fig. 11 [95] compares the learning curves
of the teacher-aware learner against those of the naive learner.
CIFAR-10; (d) tiny ImageNet; (e) equation; (f) online IRL. With the same cooperative
benefit of teacher-awareness brought by CL. Within 2000 steps, ITAL already shows
distance is calculated using the ground-truth parameter x� 2 X and the student’s
AL-X represents the size of the mini-batch used by the teacher-aware student to
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ITAL not only justifies the practicability of CL but also provides
insights into generic human–machine teaming, because fast
parameter learning enables machines to adapt to the user’s needs
quickly, even in real time. In the next section, we present the usage
of CL in a human–robot collaboration setting.

4.3. Case study 3: Bidirectional human–robot value alignment

The overarching purpose of CL is to fulfill human-like learning
ability and thereby achieve generic human–machine teaming.
The machine would adopt the human user’s input and change its
behavior in real time so that the system and the human user can
cooperatively accomplish a common task. To do so, the machine
needs to actively infer the human user’s belief, desire, and goal
[103,104]. This inference process can be naturally modeled as a
learning problem and fits into the CL formalism. In this section,
we introduce a human–machine collaborative game in which a
team of machine scouts must constantly align their value to the
human commander’s value to finish certain tasks [105]. We then
demonstrate how the CL formalism can be applied to this scenario.
As we will show, the success of the game completely relies on
effective communications between the commander and the scouts,
enabled by the representations in Section 3.1 and modeling in
Section 3.3.

4.3.1. Communication paradigm for generic human–robot teaming
To achieve generic human-robot teaming, robots must be able

to adapt to their users’ values and change their behaviors in real
time so that human–machine teams can cooperatively achieve a
set of common goals. To understand the user’s messages promptly,
machine intelligence must substitute conventional data-driven
machine learning approaches with CL between collaborative part-
ners. The prerequisite for cooperation-oriented human–machine
teaming is that the machine possesses a certain level of ToM: It
can actively infer the user’s intentions, desires, beliefs [103,104],
and need for cooperation, thereby forming a human-centric and
human-compatible process [106]. As the example in Section 2.3
suggests, the essence of establishing such cooperation lies in
shared agency [107,108] or a common mind [3,109,110].

4.3.2. Prototype setting for generic human–robot teaming
We devised a human–robot collaboration system presented in

the form of a cooperative game, in which a human user must work
with a group of robotic scouts to complete certain tasks and opti-
mize the group’s gain [105]. In this game, the human user (the
commander) and the robot scouts communicate over a restricted
channel: Only the robot team interacts directly with the physical
world; the commander does not directly access the physical world
or directly control the behavior of the robot scouts. At the same
time, only the commander has access to the true value function
of the task (e.g., minimizing the total time); the robotics teammust
infer this value function through HRI. Such a setting realistically
mimics real-world human–robot collaboration tasks, as many sys-
tems perform autonomously in hazardous environments under the
supervision of human users.

To complete a game successfully, the robots must achieve bidi-
rectional alignment by both ‘‘listening” and ‘‘speaking” wisely.
First, the robots are expected to extract useful information from
human feedbacks to infer the user’s values and adjust their policies
accordingly. Second, the robots are required to effectively explain
what they have done and plan to do based on their current value
inference, letting the user know whether or not the team shares
the human values. Meanwhile, the commander is tasked to direct
the robot scouts to reach the destination while maximizing the
team’s score. Therefore, the evaluation of a robot by the human
is also a two-way process: The human user must infer the goal of
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the robot scouts, verify whether or not it aligns with the given
value function of the task, and choose proper instructions to adjust
the robots’ goals if they are not aligned. Eventually, if the system
performs well, the value function of the robot scouts should align
well with the ground-truth value function provided only to the
commander, and the commander should obtain high trust from
the system. Fig. 12 illustrates the bidirectional value alignment
process in the game [105]. There are three values in the interactive
process:
� UA: the user’s true value;
� UAinB: the robot’s estimation of the user’s value, where, in

this game, the scouts do not have their own value, so they
will act according to UAinB;

� UBinA: the user’s estimation of the robot’s value, which is the
ToM structure held by the user that is essential for feedback
and trust formation.

Among these three values, two alignments take place:
� UBinA ! UA: the robots learn the user’s value from feedback.
� UAinB ! UBinA: the user learns the robots’ value from

explanation.
Eventually, the three values will converge to UA, at which

moment the human–machine team will form mutual trust and
effective collaboration.

This game design motivates spontaneous human–machine
teaming and bidirectional reasoning, because both parties have
crucial but private information at the beginning of the game.
The robot scouts can obtain information about the map but lack
access to the commander’s value function. Since the value decides
the mission goals, the robot scouts cannot make proper decisions
reflecting the human user’s intent on their own. In the meantime,
the human user, despite knowing the task’s value function that
governs the decision-making process, cannot access the environ-
ment directly. By allowing constrained communication to fulfill
human–machine collaboration, the robot scouts can make spo-
radic action proposals to the human user, and the human user
provides binary accept/reject feedback, which the robot scouts
then use to infer the correct value and adjust their actions
accordingly.

Viewing this task from the perspective of the CL framework, we
have the human user as the teacher A and the robot scouts team as
the student B. The goal is for the robots’ utility function to align
with the user’s and for the user to trust the robots—that is, for
uA ¼ uB and uBinA ¼ uA. As the robot team shares the environment
information with the user in real time, we assume that their state
beliefs are identical (as are their beliefs over state beliefs). This
game does not entail model learning within the human–robot
team, but the same algorithm for value alignment can easily be
applied to model alignment with minor adjustments. mt are the
robots’ proposals and accompanied explanations, while dt are the
user’s feedback (acceptance or rejection) to the robot team. To
achieve a fast alignment, the students need to know when and
how to make proposals such that feedback from the teacher is
the most informative to correct their value estimation. The feed-
back directly changes the belief of the robots. To obtain instructive
feedback from the human teacher, the robots need to know what
the human knows and believes, what she intends to do, and what
is aligned and misaligned. It is only based on this shared agency
and common mind that the robot scouts can provide proper expla-
nations justifying their previous actions and current proposals, and
influence the BoB of the human user appropriately.
4.3.3. Game setup
Our collaborative game has a minimal design and involves one

human player as the commander and three robot scouts. The
game’s objective is to find a safe path in an unknown territory from



Fig. 12. Overview of bidirectional human–robot value alignment. Pie charts represent the values—that is, the importance of different goals in a collaboration task, such as
simultaneously considering safety, gaining money, saving time, and reserving resources. t in the superscript represents the time step. A and B in the subscript represent
‘‘user” and ‘‘machine,” respectively, indicating their resemblance to the teacher, A, and student, B, in the prior text. UA is the user’s true value, UAinB is the robot’s estimation
of the user’s value, and UBinA is the user’s estimation of the robot’s current value. d denotes the distance between values in the task value space. In every round of interaction,
the machine first receives signals from the physical environment and processes its observations to form an abstract state of the environment. Next, the machine presents the
processed map together with movement proposals and explanations to human users, who will provide feedback to the system accepting/rejecting the proposals according to
human values and the current map state. Given the user’s feedback, the machine then updates its estimation of human values and takes actions with respect to the new
values. Cooperative human–robot communication with appropriate explanation aligns the team values in two directions by diminishing the distance between UAinB and UA ,
as well as UBinA and UAinB , resulting in final convergence to the true value UA .
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the base (located in the bottom right corner of the map) to the des-
tination (located in the upper left corner of the map). The territory
map is represented as a partially observed 20� 20 tile board. In the
map, every tile can either be empty or hold one of the various
devices, which remains unobserved until a robot scout gets closer
to it.

As they look for the safe path, the robot scouts can pursue a set
of goals, including ① saving time for the path finding, ② scrutiniz-
ing suspicious devices on the map, ③ exploring tiles, and ④ col-
lecting resources. The game performance of the human–robot
team is measured by the accomplishment of these goals and their
relative importance (weights), defined as the human user’s value
function, which is only known by the human user and not by the
robot scouts. (See Fig. 13 for a snapshot of the game; Fig. 14 sum-
marizes the human–machine interaction flow.)

4.3.4. Value alignment with CL
To estimate the human user’s value during the communication

process, we accommodate two levels of ToM into the computation
model. The level-1 ToM models the cooperative assumption: A
cooperative human user is more likely to accept proposals aligned
with the correct value function than misaligned ones. The level-2
ToM further integrates the users’ pedagogy into the model; that
is, the user prefers the feedback that drives the robots’ value closer
to the true value over other feedbacks. We use a ToM one level dee-
per to delineate this pedagogical inclination, because it demands
recursive modeling of the user’s model of the robots. Incorporating
both levels of ToM into our computational framework, we for-
mulize the human interaction with functions parameterized by
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the value and develop a closed-form parameter learning algorithm
[105].

It is notable that our human–machine teaming framework is a
setting that is comparable to but different from IRL [111]. More
specifically, IRL seeks to learn an underlying reward function that
causes prerecorded expert demonstrations to satisfy certain opti-
mality criteria in an offline passive learning setting. As we will
summarize in Table 1 and specify in Appendix A, the standard
IRL is a level-0 paradigm. In contrast, the robot scouts in our setting
are designed to learn human value in an interactive way via sparse
supervision from the user. Essentially, our design requires real-
time and in situ inference of the human value as the human–robot
collaboration proceeds—a unique property of human-centric learn-
ing schemes that fall into the category of level-2 paradigms. Fur-
thermore, to consummate a collaboration, the robot and the user
must have bidirectional alignment. That is, not only must the robot
scouts quickly grasp the human user’s intent, but they must also
elucidate themselves to guarantee smooth communication with
the commander throughout the entire game. In summary, the
robots are tasked to drive bidirectional value alignment by actively
inferring the human user’s mental model, making proposals, and
evaluating the user’s feedback, all of which demand complex and
recursive mind modeling of the collaborator.

5. Contributing to the foundations of learning

As discussed in Section 2, current frameworks in communica-
tion, applied math, and statistical machine learning are limited to
special settings, and the derived performance bounds



Fig. 13. User interface of the scout exploration game. From left to right, the legend panel explains the different types of tiles on the gamemap. The value function panel shows
the current value function of the user’s team. This value is given to the user at the beginning of the game but is unknown to the robot scouts and cannot be altered. The central
map displays the current information on the game board. The score panel shows the user’s current score and the individual fluent functions that contribute to the score. The
overall score is calculated as the normalized, value function-weighted sum of the individual fluent function scores. The status panel updates the current status of the system
to the user. The proposal panel shows the robot scouts’ proposals in this round, and the user can accept/reject each. The explanation panel shows the explanations provided
by the scouts.

Fig. 14. Study design of the scout exploration game. (a) Timeline shows events in a single round of the game, beginning with the scouts receiving environment signals and
ending with their next move. Users in different experimental groups receive proposals and explanations differently. The value estimation asks the users to infer the scouts’
value at the current time. The answers to these questions are to probe the users’ mental status and are only used in the analysis after the game completes. (b, c) Timelines
depict the mental dynamics of the robots and the user, respectively.
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[77,78,112–115] based on PAC learning and Vapnik–Chervonenkis
(VC) dimensions are often overly pessimistic. Most concepts are
‘‘not learnable” in PAC learning settings [9], while human intelli-
gence can learn from small examples for daily tasks. The main rea-
son is that the current methods do not account for many important
aspects of human communication and end up with less effective
learning protocols.

In this section, we will elaborate on a few topics to formulate
and develop the theoretical foundation to support CL. We first
introduce a new representation of learning, a starting point of
learning protocols going beyond the Shannon communication limit
[8]. We then discuss the hierarchies of learning and put forth the
halting problem of learning, on top of these hierarchies.

5.1. Learning representation introduced by CL

5.1.1. When Aumann meets Grice: From distributed knowledge to
common knowledge

Realizing the insufficiency of Shannon’s communication model
and Valiant’s PAC learning theory in modeling human learning, we
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seek another representation that is generic enough to accommodate
both the scientist’s and the student’swayof learning. As discussed in
Section 2.1, both types of learning can be interpreted as having
information delivered from one mind to another. Hence, a generic
representation should model both the ‘‘mind of departure” and
the ‘‘mind of destination” of information delivery. In particular, we
need a clear formulation for what is known and unknown in the
learning process to model the transitions in the teacher’s and the
student’s minds during learning. Fortunately, epistemic logic—that
is, the logic of knowledge [116]—introduces a rigorous definition
and mathematical representation of knowledge and beliefs. In the
1970s, Robert Aumann further expanded the existing logical analy-
sis of knowledge reasoning to multiple agents and applied the con-
cept of common knowledge to economics and game theories [117].
The notion of common knowledge, togetherwith the later proposed
concept of distributed knowledge [118], provides an ideal tool to
represent agents’ mental status before and after learning, and thus
to model the whole learning process.

The framework for modeling knowledge is based on possible
worlds [61]. The intuitive idea behind the possible-worlds model



Fig. 15. Common and distributed knowledge for inferring a state x (star) in the
one-dimensional (1D) space between Alice and Bob. Every segment represents a cell
in the partition. States that have fallen into the same segment cannot be
differentiated. (a) Knowledge representation before communication; (b) knowledge
representation after communication. Alice and Bob’s perception partition becomes
finer because the partners’ messages enable further differentiation of worlds. PA

and PB represent perception partitions; PA\B and PA[B is the meet and the join of
the two partitions PA and PB, respectively. IA;1; :::; IA;8 and IB;1; :::; IB;8 are projections
of observations.

y Intuitively, since Alice knows that x 2 PA xð Þ, she knows that Bob must know
that x 2 IB;3; IB;5

	 

. Likewise, Bob knows that Alice knows that x 2 IA;2; IA;4

	 

.

Together, the mutual knowledge forms PA\B xð Þ. Rigorously, the definition of
common knowledge triggers infinite recursions. In the case of Fig. 15, the recursion
converges after one round.
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is that, besides the true state of affairs, there are a number of other
possible states of affairs or ‘‘worlds.” Given its current information,
an agent may not be able to tell which one of the possible worlds
describes the actual state of affairs. An agent is then said to know a
fact if it is true in all the possible worlds (given the agent’s current
information). Concretely, we can imagine a robot with a blurry
camera. Visual signals received by the blurry camera are not clear
enough for the robot to differentiate every possible world, so the
robot needs to maintain a set of worlds that are all possible given
the views it has received. The facts known by the robot must be
true in all the worlds it considers possible.

When there are two agents reasoning about the world, the con-
cepts of common knowledge and distributed knowledge become
relevant.
� Common knowledge: Facts that both agents know, and both

agents know that their partners know, and both agents know
that their partners know that they know, and so on and so
forth.

� Distributed knowledge: Facts that both agents will know if
they fully combine their knowledge.

In other words, common knowledge is something that is known
by both agents and that neither can deny, whereas distributed
knowledge may not be known by any of the agents individually
before they exchange their knowledge. Hence, distributed knowl-
edge is always at least as precise as and usually more precise than
common knowledge. The goal of learning is for the facts in the tea-
cher and student’s distributed knowledge to be delivered to their
common knowledge. For example, suppose that there are two
robots whose cameras are blurred in different ways. Learning takes
place when they communicate and share their knowledge to prune
both of their sets of possible worlds. When their common knowl-
edge becomes identical to their distributed knowledge, the learn-
ing terminates, as both robots have no private information the
other robots do not know.

We demonstrate an example of a learning process with logic
knowledge representation in Fig. 15. Suppose that Alice and Bob
have imperfect perception of the world (like the robot with a
blurry camera). That is, they cannot observe x; instead, they
observe some projections as input.

IA ¼ IA xð Þ ¼ IA;1; :::; IA;8ð Þ ð17Þ

IB ¼ IB xð Þ ¼ IB;1; :::; IB;8ð Þ ð18Þ
where IA xð Þ and IB xð Þ project the world state, x, into observation
space, encoded by IA;i and IB;i. Each input IA;i; IB;i 2 0; 1f g is binary
and is ¼ 1 if x is on its right side and ¼ 0 if x is on the left. Their
perception partitions are PA and PB, respectively.

PA xð Þ ¼ x0: IA x0ð Þ ¼ IA xð Þf g ð19Þ

PB xð Þ ¼ x0: IB x0ð Þ ¼ IB xð Þf g ð20Þ

That is, when the world is x 2 X, Alice cannot differentiate
worlds in PA xð Þ. That is, she knows the real world must be in
PA xð Þ, but she does not know which element of PA xð Þ it is. Sim-
ilarly, Bob knows that one world in PB xð Þmust be true but is con-
fused about the exact element in PB xð Þ.

Then, with some preliminary definitions about partitions, we
can define Alice and Bob’s common and distributed knowledge.
Given two partitions P and P0 of a set S, then
� P is finer than P0 if 8s 2 S; P sð Þ # P0 sð Þ;
� P is coarser than P0 if 8s 2 S;P0 sð Þ#P sð Þ.
Intuitively, if partition P is finer than partition P0, then the

information sets given by P give at least as much information as
the information sets given by P0 (since considering fewer states
possible corresponds to having more information). The meet of
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partitions P and P0, denoted P \P0, is the finest partition that is
coarser than P and P0; the join of P and P0, denoted as P [P0, is
the coarsest partition finer than P and P0 (see Chapter 3 in Ref.
[61]). Next, we can make use of the meet and the join to give nice
characterizations of common knowledge and distributed
knowledge.

As shown in Fig. 15(a), before they communicate, the meet of
the two partitions, PA\B, forms the common partition of Alice
and Bob, and the join of the two partitions, PA[B, forms the dis-
tributed partition of them. That the event E1 happens is the com-
mon knowledge, because

PA\B xð Þ 	 E1 ð21Þ

That is, because the event E1 happens in all worlds of PA\B xð Þ,
both Alice and Bob know that it happens, although they do not
know the exact world. Moreover, neither Alice nor Bob can deny
that they do not know E1, because PA\B xð Þ contains all possible
confused worlds for both Alice and Boby, making E1 their common
knowledge. On the contrary, neither Alice nor Bob knows that the
event E2 happens, because



Fig. 16. An example of partition in 2D space and inference of a state using the
pragmatic protocol. Left: The partition of the 2D space. States within the same patch
trigger identical neural responses. Right: neurons fired for pa (red) and pb (green),
cells marking two sets of possible states.
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PA xð Þå E2 ^PB xð Þå E2 ð22Þ
However, by combining their knowledge, E2 is also commonly

knowable, because

PA[B xð Þ 	 E2 ð23Þ
In Fig. 15(b), we show that, by sharing one of their partition

boundaries with their partner, Alice and Bob can transit the event
E2 from their distributed knowledge to their common knowledge.
That is,

mA!B ¼ IA;3 xð Þ and mB!A ¼ IB;4 xð Þ ð24Þ
Then, through one round of messaging, E2 becomes common

knowledge. The perceived cell is compressed:

PA xð Þ ¼ x0: IA x0ð Þ ¼ IA xð Þ ^ IA x0ð Þ ¼ mB!Af g ð25Þ

PB xð Þ ¼ x0: IB x0ð Þ ¼ IB xð Þ ^ IB x0ð Þ ¼ mA!Bf g ð26Þ
Here, we slightly abuse the notation and use the equal sign to

indicate a perception that is consistent with the received message.
To summarize, using the framework of logical knowledge analysis,
learning is modeled as the agents communicating and sharing their
individual knowledge so that their partition of the worlds is refined
and information is delivered from distributed knowledge to com-
mon knowledge.

5.1.2. Beyond Shannon’s limits: A better learning protocol enabled by
CL

The notion of common and distributed knowledge provides a
formal representation of learning. Nevertheless, the knowledge
representation alone still falls short of modeling the cooperation
in human pedagogy. More specifically, information delivery from
distributed knowledge to common knowledge answers the ques-
tion of what learning is, but it does not approach how the teacher
and the student should send out and comprehend messages—that
is, what an efficient learning protocol is. To answer the question of
how to learn efficiently, we must arm Aumann’s knowledge repre-
sentation with pragmatics.

As we mentioned in Section 4.1.2, pragmatics is the branch of
linguistics that studies how the context of language using con-
tributes to the meanings [10,36,119]. Recall the example illus-
trated in Figs. 5, 9, and 10. In the context of pedagogy, where the
teacher and the student form a collaborative group, not only are
the literal meanings of the teacher’s messages considered, but
her actions of choosing certain messages over others also facilitate
the student’s learning. The student makes exquisitely sensitive
inferences about what the utterance means, given their knowledge
of the situation, the context, and the teacher [83]. A famous con-
cretization is the Gricean maxim of quantity [10] or the scalar
implicature: When people say, ‘‘I like drinking warm coffee,”
although the lexical meaning of ‘‘warm” is semantically close to
‘‘hot,” they mean ‘‘not hot;” otherwise, the people would have said
‘‘hot” directly [120,121]. This simple phenomenon entails two fun-
damental characteristics of human communication: the collabora-
tive common ground between the listener and speaker, and
recursive ToM modeling. By embedding learning in a communica-
tion framework, CL can satisfy both of these conditions that are
impossible to meet using unilateral machine learning paradigms.

In Fig. 16, we give an example demonstrating the advantage of
integrating pragmatic reasoning into the learning protocol. Let
statex be an image, and let Alice and Bob have NA and NB neurons
as their observations:

IA xð Þ ¼ h1
A xð Þ; :::; hNA

A xð Þ
� �

ð27Þ

IB xð Þ ¼ h1
B xð Þ; :::; hNB

B xð Þ
� �

ð28Þ
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Here h denotes neurons, which can be indicators or ReLU pro-
jections of the image. That is,

h xð Þ ¼ 1 x; kh i 
 0ð Þ or max 0; x; kh ið Þ ð29Þ
where k is the weight of the neuron. As shown in Fig. 16, pa is sur-
rounded by eight red neurons, while pb is bounded by four green
neurons. Suppose that Alice knows an event x 2 pa and tells Bob
via the following message

mA!B ¼ hA;a1 ; :::; hA;a8

� � ð30Þ
Bob will then refine his perception from PB xð Þ to pa, achieving

an information gain of

IGShannon ¼ log2
PB xð Þ
�� ��
paj j ð31Þ

as defined in Eq. (1). That is, Bob’s belief of the possible worlds nar-
rows down fromPB xð Þ to pa. Interestingly, if Bob has ToM and inte-
grates pragmatics into the learning protocol, he will read between
the lines: Since Alice could but did not send a shorter message using
the four green neurons, she must imply not pb but pa. Therefore,
Bob can further refine his belief and achieve an information gain of

IGCL ¼ log2
jPB xð Þj
jpa=pbj ð32Þ

where pa=pb means areas in pa but not in pb.

Proposition. The pragmatic protocol is more effective than

Shannon’s communication protocol, as Bob gains more information
than Shannon’s information measurement, since we have

IGCL > IGShannon ð33Þ
The pragmatic protocol goes beyond Shannon’s information

limit by integrating ToM. The extra information gain is brought
by reflecting the minds of the other agents: Alice selects messages
after deliberating what Bob knows, and Bob reasons why Alice sent
this message instead of other plausible messages.
5.2. The halting problem of learning

After studying the convergence from distributed knowledge to
common knowledge, we raise the ‘‘halting problem of learning,”
by analogy to the halting problem of computing [122]. That is,
under what conditions does the learning process terminate at var-
ious equilibria, which define the fundamental limits of learning.
Just like the pedagogy and learning in our everyday lives, CL pro-
ceeds iteratively. For iterative learning, the problem of halting is
ubiquitous. Thus far in this article, we have not dived into this
problem. In Algorithm 1, the algorithms terminate when a fixed
number of steps is reached. However, deciding the proper rounds
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of interaction beforehand can be challenging, if not impractical.
Thus, we need some criteria to monitor the learning and terminate
the process when learning arrives at its limits.

To approach the halting problem of learning, we must know the
underlying driving force of learning—namely, what do the teacher
and the student seek to agree on when they communicate with
each other? Here, we recognize the three granularity of learning:

(1) Message level: an understanding of messages in a single
round of communication;

(2) Task level: mental alignment between the teacher and the
student about a specific task, involving multiple rounds of
communication;

(3) Group level: an understanding of the partner’s characteriza-
tion, reused across different tasks.

Every level has a distinctive goal and is controlled by a loop in
CL, as depicted in Fig. 17. Within each loop, the teacher and the stu-
dent aim to achieve an equilibrium. In the next section, we intro-
duce each level in detail. As one purpose of CL is to facilitate the
development of new learning paradigms, we also include opening
questions along with the introduction to encourage future explo-
rations in related topics.
5.2.1. Three hierarchies in learning
5.2.1.1. Message level. The message level indicates the interpreta-
tion of each message between the teacher and the student. As mes-
sages are the building blocks of a communication process, being
able to fully comprehend the speaker is the prerequisite of an
effective learning process. At this level, messages communicate
about a state, a cell, or an event (set) in the state space in order
to achieve a common ground and common belief. Although we
only discuss a few types of messages such as labeled data (Sec-
tion 3.4), projection on cells as partitions (Section 5.1.1), and linear
neurons (Section 5.1.2), the message space of CL can be extended to
nodes in a parse graph or logic predicates that correspond to the
compositions of atomic cells or events. The reflection loop in CL
is in charge of the equilibrium in the message level. The reflection
processes involve loops, because the agents bear ToM and conduct
recursive mutual reasoning. In particular, the teacher considers
what the student needs to know, and the student thinks about
why the teacher sends one specific message instead of others,
Fig. 17. CL includes three nested loops: ① The reflection loop in black for the deliberatio
achieve a commonmodel, utility, policy, and so forth; and③ the characterization loop in
the value and belief-update functions defined in Section 3.3. The norm of communica
stabilize. bh and bx are beliefs of the model; bs ; bbs ; and ebbs are beliefs of the learning state;
loss function and superscripts represent time stamp. All notations follow the definition
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and so forth. Hence, the agents form reflection loops entailing their
egocentric belief bh=bx and their ToM belief bs=bŝ, as shown in
Fig. 17.

At this level, ideal agents should be capable of capturing both
the literal and pragmatic meaning of the messages. To date, most
works assume that the teacher and the student have a common
ground about the literal meanings of all the messages. In other
words, they speak the same language; or, at least, each has a dic-
tionary for the language the other is speaking. One relaxation of
this assumption is to take away their dictionaries and see if they
can still develop a valid codebook that they share as the common
literal meanings of the messages. Namely, the teacher needs to
learn /; w and the student needs to learn n, f, and p from scratch
as a group or individually with the partner being fixed. Another
challenge at this level is the derivation of pragmatic meanings,
which often requires counterfactual reasoning. That is, to under-
stand the speaker, the listener needs to consider not only the expli-
cit selected message but also the implicit unselected messages.
When the message space is large, such as the English language,
such counterfactual reasoning often becomes intractable and
requires an efficient method to be fully interpreted.
5.2.1.2. Task level. Task-level learning involves transmitting and
understanding a sequence of messages to obtain the convergence
of the teacher’s and the student’s mental components. The learning
loop in CL aims to find the equilibrium in this level—that is, for the
student’s utility, model, and policy to be close enough to the tea-
cher’s counterparts. To evaluate the convergence, agents need to
(either directly or indirectly) measure the distance between their
minds. Direct measurements rely on the representation of the
mental components, such as the Kullback–Leibler (KL) divergence
for beliefs with a closed form. Indirect measurements can be
applied by comparing the task performance between the teacher
and the student, such as a sufficient statistics difference between
their motion trajectories. We denote this evaluation metric as

L bh; b
T
x

� �
in Fig. 17.

Since teaching often requires a sequence of messages, task-level
learning accommodates planning for sequential pedagogy, in
which the communication takes multiple steps. As the planning
complexity is exponential with respect to the number of steps,
n of inferential messages to achieve common ground; ② the learning loop in blue to
red to achieve a better group understanding of each agent’s characterization, such as
tion forms when group members’ estimations of their partners’ characterizations
m and d are messages from the student and the teacher, respectively; L denotes the
in Section 3.3.
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and the message space is usually large or dynamic, most existing
teachers use heuristics or short-horizon planning. Nevertheless,
even for this inadequate planning, the student is treated as a naive
learner who does not model the teacher (a level-1 paradigm).
Developing a planning algorithm for teachers in level-2 paradigms
remains an active research question. It requires the teacher and the
student to form a group-level norm of communication, which falls
under the scope of group-level learning. Another potential
improvement of task-level learning is to generalize message-level
pragmatic reasoning to the task level; or, in other words, to endow
the student with more information from the unselected teaching
sequences in addition to the selected one.

5.2.1.3. Group level. Finally, the group level entails the characteriza-
tion of the teacher and the student. To conduct effective CL, the
value and belief-update functions of the teacher and the student
must work in accordance. In most prior learning paradigms, the
characterizations of the agents are predefined by heuristics. In
more generic and realistic settings, the teacher and the student
need to learn proper characterization in order to collaborate. The
characterization loop in CL seeks to tackle this problem. Just as
human teams demand sufficient collaboration experience to
acquire tacit cooperation, it usually requires multiple learning
tasks for the agents to learn appropriate characterization. As
shown in Fig. 17, the outcomes of multiple learning tasks will
shape the agents’ characterizations. The referential game in Sec-
tion 4.1 follows this process. Afterward, norms of communication
and a learning protocol will be established between the teacher
and the student.

In all the works surveyed in this article, one teacher is exclu-
sively designed for one or one type of student. A standard charac-
terization loop also only sets up the learning protocol for one
specific group. A more ambitious setting is to have a teacher that
can adapt to different kinds of students—even those she never
encountered during her training. Suppose that we can characterize
the student’s personality, such as his IQ and memory, which corre-
spond to his mental dynamics; then, a versatile teacher should be
able to identify her student’s characterization and customize her
pedagogy accordingly. To be more specific, the teacher (student)
can parameterize her (his) dynamic functions, w, / n; f; pð Þ; and
model a distribution of the parameters. Such a setting is similar
to the ad hoc teamwork [123] and multitask/meta-RL in MDPs with
different dynamics [124], but it has not been thoroughly studied in
the context of pedagogical machine learning.

5.2.2. Halting criteria
Knowing the three hierarchies of learning, we can discuss the

appropriate halting criteria of learning. In every level, the CL loop
terminates under different conditions. In the message level, a plau-
sible halting criterion is fully understanding both the literal and
pragmatic meaning of each message. The literal meaning is usually
straightforward when agents use mutually recognizable message
spaces. The pragmatic meaning depends on the context, such as
the situated state, the communication history, and so on. As prag-
matic understanding requires ToM, the reflection loop usually
stops when the recursive reasoning converges or when the cogni-
tive burden of going to the next recursion layer exceeds the cost of
sending an explicit query message to clarify.

In the task level, the ideal halting occurs when the six minds
converge to one and are validated by the oracle (God’s mind).

Recall the high-level mind notation we used in Fig. 1. That is,

Pt ¼ Qt ¼ bPt ¼ bQt ¼ Ct ¼ G ð34Þ
This is the strictest halting condition. In many cases, some alter-

native halting conditions can be defined. For example, let D X;Yð Þ
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denote the distance between two minds X and Y , such as the KL
divergence, total variance distance, earth mover’s distance, and
so forth. Then, we can name a few halting conditions:

� D Pt ; bQ t

� �
� �: The teacher thinks that the student already

knows what she knows and stops teaching.
� D Qt�1; Qtð Þ � �: The student becomes complacent and thinks

that he cannot acquire new knowledge. Thus, he stops
learning.

� D bQt�1; bQt

� �
� �: The teacher thinks that the student cannot

make further promising progress and stops teaching.
� D Ct ; /ð Þ � �: The teacher and the student find it difficult to

reach common ground and terminate communication.
� D Qt ; Gð Þ � �: The student achieves satisfactory performance

in the real world and stops learning. Notice that, in some
cases, G may not be directly accessible, so certain surrogate
functions may be needed; for example, it may be necessary
to let the student finish some unseen tasks as tests.

The above conditions are by no means comprehensive; more
can be proposed to meet distinctive needs and circumstances. In
addition, conditions more complicated than a single distance func-
tion can also be defined, such as comparing the gain of minimizing
the divergence between the student and the teacher against the
cost of transmitting teaching messages.

In the group level, the teacher and the student can stop interact-
ing with each other after they know their partners’ characteristics,
that is, dynamic functions, state, model, value spaces, and so forth.
Accomplishing this usually requires collaboration over several
pedagogy tasks. The assessment of the convergence needs the tea-
cher and the student to communicate given unseen learning objec-
tives. It is only when they can cooperate effectively in diverse tasks
that they can terminate the characterization loop and halt group-
level learning. Suppose that we also want a flexible teacher who
can adapt to various students quickly. Then, the halting condition
will be for the teacher to successfully conduct CL with multiple
students, each covering multiple learning objectives, resembling
the evaluation used in ad hoc teaming [125].
6. Conclusions

In this article, we study a CL formalism, which inspects learning
from a communication perspective. We review existing learning
paradigms such as passive learning, active learning, and algorith-
mic teaching and examine their limitations. The new formalism
has the potential to overcome these limitations and integrate prior
machine learning algorithms into a unified framework. With con-
crete usage examples, we demonstrate how efficient learning pro-
tocols can emerge from CL and verify the formalism’s suitability for
complicated HRI tasks and generic human–machine collaboration.
Moreover, the CL formalism makes two contributions to the foun-
dation of learning: First, it introduces new representations of
learning and puts forth protocols beyond Shannon’s communica-
tion limits. Second, it sheds light on the universal halting problem
of learning by teasing out three hierarchies in learning and defining
possible halting criteria. Overall, we see CL as providing conceptual
clarity for existing and future methods of machine learning from
the perspective of mutual reasoning between the teacher and the
student, and as a fruitful base for future work on more advanced
learning paradigms.
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