单缝桥梁在温度作用下的结构受力计算

赵怡彬, 邵旭东

(湖南大学,长沙 410082)

[摘要] 桥台处伸缩缝问题是长期困扰工程界的难题,它会带来跳车、桥梁局部损坏、伸缩缝装置经常更换等各种问题。为有效解决这一问题,提出了一种适用于大中型桥梁的新型结构体系——单伸缩缝桥梁(单缝桥)。在考虑接线路面裂缝开展的情况下,建立了温度作用下单缝桥的简化计算模型,推导了单缝桥受力、变形的理论公式,用 Fortran90 编制程序,进行计算。以一座总长 280 m 的单缝梁桥为例,温度降低 20 ℃时,接线路面钢筋最大应力为148 MPa,最大裂缝宽度为 0.185 mm,符合规范要求;台后结构对主梁产生的附加应力仅为 0.105 MPa,影响很小。通过对影响单缝桥性能的因素:支座类型、配筋率、接线路面长度、摩擦系数、土体刚度、桥长、温差等进行分析,绘制图表,得到以下主要结论:温降时,接线路面受拉,混凝土开裂,是较不利的状况;30 m 长的接线路面可以满足结构受力和变形的需要;选择摩擦系数较小的支座和减少接线路面与垫层的摩擦力可以减少结构内力,在接线路面与垫层间推荐加铺土工格栅。

「关键词] 单缝桥梁;温度作用;受力与变形;理论公式;参数分析

[中图分类号] U445.4 [文献标识码] A [文章编号] 1009-1742(2012)10-0103-10

1 前言

桥台处伸缩缝是桥梁中易损且维护成本高的构件,为解决这一难题,国外常见的做法是采用整体式(半整体式)无缝桥梁,即通过桥头搭板将主梁与桥台的伸缩变形移至路桥接缝处,由路桥接缝吸纳所有变形。但路桥接缝容易受到土体不均匀沉降的影响,在汽车冲击荷载作用下,易变形破损^[1,2]。

为了克服上述缺陷,笔者所在的课题组研发了 全无缝桥梁。全无缝桥梁是针对跨径较小的桥梁, 由连续桥面或连续桥梁结构、整体式桥台或半整体 式桥台、跨过桥台与主梁连接的搭板以及连续配筋 接线路面构成。这种全无缝桥梁通过主梁、搭板、接 线路面协同工作,利用接线路面的有限变形和微裂 缝来吸纳主梁的温度变形。取消伸缩缝,可以避免 因伸缩缝装置而造成的桥头跳车、日常维护更换难 等问题^[3-6]。全无缝桥梁已经在广西、广东、河南、 云南、宁夏等省(区)得到推广应用,运营性能良好, 维护成本大幅降低。但一般仅用于桥长≤100 m的 中小型桥梁。

为了将无缝化技术推广至大中型桥梁,文章在 全无缝桥的基础上,提出了一种适用于长联桥梁的 单缝桥梁,即只在原桥梁温度中心处设置1 道伸缩 缝。单缝桥取消了常规桥梁桥台处主梁与搭板间的 伸缩缝,取消了国外整体式桥梁中搭板与路面之间 的路桥伸缩缝。本文对这种新型单缝桥梁在温度作 用下的受力性能进行了较为详细的研究。

2 单缝桥梁温度中心的计算

本文提出的单缝桥梁如图 1 所示,在原温度中 心设置的伸缩缝可以释放主梁的大部分温度变形, 在搭板末端和接线路面末端设置地梁,地梁与搭板 或接线路面以预埋钢筋连接,保证二者在温度作用 下可以协同受力和变形。接线路面通过变形和微裂 缝来吸纳主梁的剩余变形,为使裂缝有规律地发展, 接线路面按间距 *d*(m) 设置预锯缝。

[[]收稿日期] 2012-05-27

[[]基金项目] 广东省交通运输厅科技项目(科技 2012 - 04 - 012);清远市产学研结合项目(2011D021113001)

[[]作者简介] 赵怡彬(1985-),女,湖南邵阳市人,博士研究生,研究方向为桥梁与隧道工程;E-mail;ziby8562@163.com

2.1 计算简化模型1

在整体温度升高或降低时,主梁、搭板和接线路 面均会发生伸长或缩短,但在整体结构中存在一个 位置,这个位置在某一温差作用下位移为0,称为温 度中心,温度中心两侧的水平力相等。温降时,单缝 桥的受力如图2所示。

图1和图2中各参数的含义如下:L、L。和L。分

别表示桥梁总长、搭板长度和接线路面长度;f₁₁, f₁₂,…,f_{1n}分别为第1,2,…,n号墩柱处支座对主梁 的摩擦力,摩擦系数由支座的类型决定;μ_{*}、μ_{*}分别 为搭板与垫层、接线路面与垫层的摩擦系数;K₁、K₂ 分别为搭板末端地梁和接线路面末端地梁处土体的 刚度系数,由"m"法计算得到,假定K₁、K₂沿高度不 发生变化。

Fig. 1 The schematic diagram of single expansion joint bridge

图 2 温降时计算模型1受力图示 Fig. 2 Force diagram of model 1 with temperature decreasing 注:图中 1,2,…,n 均为预锯缝的编号,n = (L_n/d) -1

如图 3 所示,以搭板的末端为 x 轴的原点,假设 温度中心截面距搭板末端的距离为 a,以温度中心 为界,将结构分成左右两部分。图 3 中将搭板末端 地梁以及接线路面末端地梁的土体水平作用力简化 成刚度系数分别为 K₁、K₂ 的弹性约束。不考虑摩擦

力的弯矩作用,则主梁及搭板的摩擦力用 $\sum F$ 表示, $\sum F = \sum f_{1n} + \gamma_s \cdot A_s \cdot L_s \cdot \mu_s$,其中 $\gamma_s A_s$ 分别为搭板的重度和面积, n_1 和 n_R 分别表示假定的 温度中心左侧第 1 条裂缝和右侧最末 1 条裂缝所在

图 3 以温度中心为界,温降时结构受力变形图示

Fig. 3 Force diagram of the both sides of temperature center

的预锯缝编号。假定搭板末端的地梁发生 Δ_1 的平移,其方向向右,接线路面末端的地梁发生 Δ_2 的平移,其方向向左。

取温度中心左侧进行分析,如图4所示,温度中 心左侧结构在水平力作用下可简化为1次超静定结构,在地梁处的土体弹性约束 X_1 、各种摩擦力以及 整体温降 ΔT 的作用下,搭板末端的地梁发生了 Δ_1 的位移, Δ_1 的方向与 X_1 方向相反。

建立力法方程如下:

Fig. 4 Force diagram of the left side of temperature center

在温降作用下,接线路面的混凝土受拉,在事先 形成的薄弱截面——预锯缝处可能开裂,接线路面 通过裂缝吸纳主梁变形,因此各系数需考虑弹性变 形和裂缝宽度。式(1)中 δ_{11} 表示单位赘余力 $\overline{X_1}$ 作 用在其本身的方向上所产生的位移, Δ_{1P} 表示在荷 载 $\sum F$ 的作用下沿 X_1 方向上产生的位移, Δ_{1R} 表 示在温度荷载 Δt 的作用下沿 X_1 的方向上产生的位 移, δ_{11} 和 Δ_{1PE} 分别表示系数的弹性部分, δ_{115} 和 Δ_{1PE} 分别表示系数的塑性部分。假定左侧第1条裂缝出 现的预锯缝编号是 n_1 ,则在 $[0, n_1d)$ 的范围内只需 考虑弹性变形,而在 $[n_1d, a]$ 则需要考虑弹性变形 和裂缝宽度。用下标i表示第i条预锯缝处裂缝的 宽度(i为变量,在图4中未示出)。int(a)表示取整 函数。根据各参数的几何意义得到具体表达式如下:

$$\delta_{11E} = \frac{X_1^2 \bullet a}{E_p A_p} , \ \rho_{ps} = \frac{A_{ps}}{A_p}$$
 (2)

 $^{\u03ex]} ^{\u03ex]} ^{\$}

$$W_{1Xi} = C_1 C_2 C_3 \frac{X_1}{E_{ps} A_{ps}} (\frac{30 + d_{ps}}{0.28 + 10\rho_{ps}}) \qquad (4)$$

$$\delta_{11S} = \sum_{i=1}^{m(n)} W_{1Xi} , \ \delta_{11} = \delta_{11E} + \delta_{11S}$$
(5)

$$\Delta_{1PE} = \frac{X_1 \int_0^{\infty} F_{1P}(x) dx}{E_p A_p}$$
(6)

$$W_{1Pi} = C_1 C_2 C_3 \frac{F_{1P}(x)}{E_{ps} A_{ps}} \left(\frac{30 + d_{ps}}{0.28 + 10\rho_{ps}}\right)$$
(8)

$$\Delta_{1PS} = \sum_{i=1}^{m(r,a)} W_{1Pi} , \Delta_{1P} = \Delta_{1PE} + \Delta_{1PS}$$
 (9)

$$\Delta_{11} = -X_1 \cdot \alpha \cdot \Delta t \cdot a \qquad (10)$$

式(2)~(10)中, E_{p} 、 A_{p} 分别为接线路面的弹性模 量及面积; E_{ps} 、 A_{ps} 分别为接线路面的钢筋弹性模量 及面积; d_{ps} 、 ρ_{ps} 分别为接线路面的钢筋直径及配筋 率; C_{1} 、 C_{2} 、 C_{3} 分别是钢筋的表面形状系数、作用长 期效应影响系数、与构件受力性质有关的系数^[7]:

 W_{1Xi} 、 W_{1Pi} 分别为单位赘余力 X_1 、摩擦力 F_{1P} 在第i条预锯缝产生处的裂缝宽度; α 表示混凝土材料的线膨胀系数, Δt 表示温差。

将式(2)~(10)代入式(1)中,可以求出用a表示的 X_1 ,则温度中心左侧的水平力之和 $F_1(x)$

 $F_{1}(x) \mid_{x = a} = F_{1P}(x) \mid_{x = a} + X_{1}$ (11)

取温度中心右侧进行分析,如图 5 所示。同理,温 度中心右侧结构在水平力作用下可简化为 1 次超静定 结构,假设右侧最末 1 条裂缝出现的预锯缝编号为 n_R, 则在(a,n_Rd]的范围内需考虑弹性变形和裂缝宽度,而 在(n_Rd,L_p]只需考虑弹性变形。用下标 j 表示第 j 条 预锯缝处裂缝的宽度(j 为变量,未在图 5 中示出)。

根据各参数的几何意义得到具体表达式:

$$\delta_{22}X_2 + \Delta_{2P} + \Delta_{21} = \Delta_2 = -X_2/K_2 \quad (12)$$

$$\delta_{22E} = \frac{X_2^2 \cdot (L_p - a)}{E_p A_p}$$
(13)

当 $int(a) \leq j \leq n_{\mathbb{R}}$ 时,

$$W_{2\,x_j} = C_1 C_2 C_3 \frac{X_2}{E_{\rm ps} A_{\rm ps}} (\frac{30 + d_{\rm ps}}{0.28 + 10\rho_{\rm ps}}) \quad (14)$$

当 $n_{\mathbb{R}} < i \leq n$ 时.

$$W_{2x_j} = 0$$
 (15)

$$\delta_{225} = \sum_{j=101(a)}^{n} W_{2Xj} , \ \delta_{22} = \delta_{22E} + \delta_{22S}$$
(16)

$$\Delta_{2PE} = \frac{\overline{X}_{2} \cdot \int_{0}^{F} F_{2P}(x) dx}{E_{P}A_{P}}$$
(17)

当 $int(a) \leq j \leq n_R$ 时,

$$W_{2Pj} = C_1 C_2 C_3 \frac{F_{2P}(x)}{E_{ps} A_{ps}} \left(\frac{30 + d_{ps}}{0.28 + 10\rho_{ps}}\right) \quad (18)$$

当 $n_{\rm B} < j \leq n$ 时,

类似。

$$W_{2 Pj} = 0$$
 (19)

$$\Delta_{2PS} = \sum_{j=\text{mt}(a)}^{n} W_{2Pj} , \Delta_{2P} = \Delta_{2PE} + \Delta_{2PS} \quad (20)$$

$$\Delta_{2t} = -\overline{X_2} \cdot \alpha \cdot \Delta t \cdot (L_p - a)$$
(21)

式(12)~(21)中, W_{2,Y_1} 、 W_{2,P_1} 分别为单位赘余力 X_2 、 摩擦力 F_{2P}在第 *j*条预锯缝处产生的裂缝宽度。其 余各参数含义同前文所述。 δ_{22} 、 X_2 、 Δ_{2P} 、 Δ_{21} 、 Δ_2 、 δ_{22E} 、 δ_{22S} 、 Δ_{2PE} 、 Δ_{2PS} 分别表示在单位赘余力 X_2 作 用下的各系数,含义与公式(1)~(11)中对应项目

将式(13)~(21)代入式(12),可以得到用 a 表 示的 X_2 ,则温度中心右侧的水平力之和 $F_2(x)$ 为

$$F_2(x)|_{x=a} = F_{2P}(x)|_{x=a} + X_2$$
 (22)

根据温度中心处的平衡条件 $F_1(x)$ _{x = a} = $F_2(x)$ 最终可以得到 a_1 继而求出 X_1 和 X_2 。

求出 X_1 和 X_2 后,接线路面任一位置x在温度 作用下轴力 F(x) 及应力 $\sigma(x)$ 为

当 $0 \leq x < a$ 时,

 $F(x) = \sum F + \gamma_{\rm p} \cdot A_{\rm p} \cdot x \cdot \mu_{\rm p} + X_{\rm 1}$ (23) 当 $a \leq x \leq L_n$ 时,

$$F(x) = \gamma_{p} \cdot A_{p} \cdot (L_{p} - x) \cdot \mu_{p} + X_{2} \quad (24)$$

$$\sigma(x) = F(x)/A_{p} \quad (25)$$

$$\sigma(x) = F(x)/A_{\rm p} \qquad (25)$$

式(23)~(25)中, y。表示接线路面的重度。

根据单缝桥所在地区的最大温降值,可以求出 原温度中心处主梁端部的变形量,根据变形量选择 合理的伸缩缝型号,计算公式为

 $\Delta = \alpha (L/2 + L_s) \Delta t + \Delta_1 - \Delta_e - \Delta_{se} \quad (26)$ 式(26)中, Δ 、 Δ_{l} 、 Δ_{e} 、 Δ_{se} 分别表示主梁端部变 形、搭板末端地梁处位移、主梁的弹性变形及搭板的 弹性变形。

2.2 计算流程

为求解温度中心的位置 a、地梁所受赘余力 X_1 、 X_2 以及接线路面的开裂情况 n_L 、 n_R ,用 Fortran90 编制程序 CESEJB. for, 计算流程如下: a. 输 入单缝桥主梁、搭板、接线路面的参数:b. 假定 $n_{\rm L}$ 和 n_R;c. 假定温度中心距搭板末端的距离 a;d. 根 据式(1)~(26)计算各系数:e. 计算温度中心两侧 水平力之差 $\varepsilon, \varepsilon = F_1(x) \Big|_{x=a} - F_2(x) \Big|_{x=a}$,若 $\varepsilon \leq [\varepsilon]$ 则进入f,否则返回c重新假定后计算;f. 验 证开裂位置是否与假设的一致,若不一致返回 b 重 新假定后计算;g. 输出计算结果,计算结束。

2.3 计算简化模型2

当温降作用较小时,混凝土受拉但仍处于弹性 阶段,未开裂,此时分析方法与2.1节一致,但各系 数均只需考虑弹性变形, δ_{IIS} 和 Δ_{IPE} 均为 0。

2.4 计算简化模型3

当温降作用较大时,可在接线路面末端设置多 道地梁(暂以2道为例),地梁的间距为6m,受力如 图6所示。与前文类似,温度中心左侧简化为1次 超静定结构,温度中心右侧简化为2次或多次超静 定结构。

2.5 计算简化模型4

在温升作用下,结构受力如图7所示。混凝土 的抗压强度约为抗拉强度的 10 倍,因此温升作用下 不考虑混凝土开裂,各系数只需考虑弹性变形,方法 与2.3一致。

3 桥梁基本参数

一座14 m×20 m 的空心板连续梁桥,伸缩缝设 置于跨中,空心板梁高0.9 m,挖空直径为0.59 m. 搭板长度 L_s = 8 m,高度为 0.3 m,接线路 面长度 L₀=30 m,高度为 0.24 m,搭板末端和接线路面末 端各设1道地梁,地梁尺寸为0.6m×1.2m,如图8 所示。搭板和接线路面均采用 C30 混凝土,预锯缝 按间距1 m 设置,浇筑时在预锯缝处填塞5 cm 高, 4 mm厚的小木板,形成薄弱面。接线路面按 φ20@15

Fig. 7 Force diagram of model 4 with temperature decreasing

配置, $\rho = 0.78 \% (\rho 表示纵向受拉钢筋配筋率),支$ 座采用四氟滑板支座,支座与主梁底部的摩擦系数 $<math>\mu_1 = 0.03^{[8]}$,垫层材料采用水稳定碎石,滑动摩擦系 数 $\mu_x \downarrow_\mu$ 由试验得到, $\mu_x = \mu_p = 1.8^{[9]}$, K_1 , K_2 根据地 基规范^[10],取 $K_1 = K_2 = 5.0 \times 10^4 \text{ kN/m}^4$,温 降差 $\Delta T = -20$ °C。以横向 1 m 宽的结构进行计算分析, 计算结果如表 1 所示。

图8 实桥模型示意图(单位:m)

 $Fig. \ 8 \quad Diagram \ of \ bridge \ model \ (\ unit:m)$

衣 1	表1	基本参数	下的	计算结	果
-----	----	------	----	-----	---

_	Table	1	Results	of	basic	parameters
----------	-------	---	---------	----	-------	------------

温度中心距桥台	接线路面最大轴力	钢筋最大应力	裂缝	裂缝宽度总和	最大裂缝宽度	接线路面末端地梁	主梁最大附加应力
的距离 a/m	$N_{\rm max}/{\rm kN}$	$\sigma_{_{\rm S}}/{\rm MPa}$	总数	$W_{\rm T}/{ m mm}$	$W_{\rm max}/{ m mm}$	的位移 Δ_2 /mm	$\sigma_{\rm b}/{\rm MPa}$
10.116	278	148	16	2.599	0.185	2.216	0.105

从表1看出,温降20℃作用下, $\sigma_s =$ 148 MPa < HRB335 抗拉强度设计值[σ] = 280 MPa, $W_{max} = 0.185$ mm < [W] =1 mm, $\Delta_2 =$ 2.216 mm < [Δ] = 10 mm^[11],符合规范要求。主 梁的最大附加应力为0.105 MPa,台后结构对主梁 的影响很小,因此总长280 m 的梁桥采用单缝桥结 构是合理的,并且单缝桥主梁的最大附加应力只与 主梁总长及支座摩擦系数有关。

4 结构参数分析

其他条件不变,分别改变如表 2 所示的某一个参数,用 CESEJB. for 程序计算的结果在 4.1~4.8 节分述。

表 2 拟调整的参数	
------------	--

	Т	able 2	The para	ameters to	be adjuste	ed	
序号	1	2	3	4	5	6	1
类	主梁支座	接线路面	接线路面	接线路面与	地梁处土	桥梁	泪关
型	类型	配筋率	长度	垫层的摩擦	体刚度	总长	血左

4.1 不同支座类型的计算结果

其他参数不变,主梁改为板式橡胶支座 ц = 0.3^[8]的结果如表3所示。

表3 不同支座类型的计算结果

Table 3 Results of different types of bearings

a	$N_{\rm max}$	$\boldsymbol{\sigma}_{\mathrm{s}}$	裂缝	$W_{\rm T}$	W _{max}	Δ_2	$\boldsymbol{\sigma}_{\mathrm{b}}$
/ m	∕kN	/MPa	总数/个	/mm	/mm	/ mm	/MPa
- 5.399	531	169	34	7.4	0.24	1.860	1.05

注:a 出现负值表示温度中心位于搭板上,数值表示距搭板末端的距离; 最大轴力 N_{max}出现在搭板上,搭板按φ20@10配置双层钢筋,ρ=2.3%

比较表1和表3可以发现,支座与主梁的摩擦 系数增大, ΣF 增大,温度中心向桥台方向靠近。采 用四氟滑板支座时接线路面的 N_{max}为 273 kN.采用 板式橡胶支座时 N_{max}为 531 kN,后者比前者增大了 95%,同时Wr从2.905mm增加至7.4mm,增加了 155 %, 主梁最大附加应力从 0.105 MPa 增加至 1.05 MPa, 增大了9倍, 对这种新型结构的受力不 利。因此应在考虑抗震要求的基础上尽量选用摩擦 系数较小的支座,让主梁可以较自由地纵向滑动。 在实桥设计中,应避免出现温度中心位于搭板的 现象。

4.2 不同配筋率的计算结果

其他参数不变的情况下,接线路面采用不同的配

筋方式(\$20@15、\$16@15、\$20@20、\$16@20). 计算结果如表4所示。

表4 不同配筋率的计算结果 Table 4 Results of different reinforcement ratios

工况名	ф 20@ 15	$\varphi20@20$	ф16@15	ф16@20
钢筋面积	1 88	1 57	1 206	1 005
$A_{\rm s}/10^{-3}~{\rm m}^2$	1.00	1.57	1.200	1.005
温度中心	10 116	10 272	10 293	10 351
位置 a /m	10.110	10.272	10.295	10.001
最大轴力	278	273	268	263
$N_{\rm max}/{\rm kN}$	270	215	200	200
钢筋最大	148	174	222	261
应力 σ _s /MPa	140	174	222	201
裂缝总数	16	15	14	13
裂缝宽度				
总和 W _T /mm	2.599	2.954	3.272	3.605
最大裂缝				0.01
宽度 W _{max} /mm	0.185	0.22	0.261	0.31
接线路面末端	2.216	2 000	1 000	1 0 10
地梁的位移 Δ_2 /mm	2.216	2.099	1.908	1.819

从表4可以看出,配筋面积A、越小, N_{max} 越小, 钢筋应力 σ_s 越大, 裂缝宽度 W_{max} 越大, Δ_2 越小。以 配置 φ16@20 的钢筋为例, W_{max} = 0.31 mm, σ_s = 261 MPa < [σ] = 280 MPa,均能满足规范要求。因 此在满足规范的前提下,可适当减小配筋率。

4.3 不同接线路面长度计算结果

其他参数不变,改变接线路面的长度(L_{o} = 15 m、20 m、25 m、30 m、35 m、40 m), 计算结果如 图9所示。

Fig. 9 Results of different pavement length

从图 9 可以看出,接线路面长度 L_p 从 15 m 增 加至 40 m,裂缝数目增加,裂缝宽度总和增加, N_{max} 增大, W_{max} 也随之增大。 $L_p = 15$ m 时, $N_{max} =$ 198 kN, $L_p = 40$ m 时, $N_{max} = 325$ kN,增加了 64%。 接线路面长度增加反而不利于结构受力,因此从经 济性和安全性的角度考虑,接线路面不宜过长,但从

结构整体刚度渐变的角度,接线路面的长度不宜太短,推荐采用30m的接线路面。

4.4 不同滑动摩擦系数计算结果

其他参数不变,改变接线路面与垫层的滑动摩 擦系数(μ_p = 1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、 1.9、2.0),计算结果如图 10 所示。

从图 10 中可以看出,滑动摩擦系数 μ, 增大,裂 缝数目增加, N_{max}增大, W_{max}随之增大。滑动摩擦系 数越大,接线路面受力越不利。因此建议在施工中, 在垫层与接线路面之间铺设土工格栅,既能起到加 筋的作用,又可以减少摩擦;或选择较光滑的河卵石 作为垫层材料,尽量避免多棱角粗糙的山石,以减小 摩擦系数。

4.5 不同土体刚度计算结果

其他参数不变,改变地梁埋置处的土体类型和 土体的刚度系数(K=0.5×10⁷~8×10⁷),以模拟不 同类型的回填土及压实程度,计算结果如图11和表 5所示。

图11 土体不同刚度系数的计算结果

Fig. 11 Results of different soil stiffness

表 5 土体不同刚度对赘余力 X_2 及地梁位移 Δ_2 的影响

Table 5 Force and displacement results of different soil stiffness

工况名	K = 0.5	K = 0.75	K = 1	K = 1.5	K = 2	K = 2.5	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8
接线路面末端												
地梁所受赘余力	10.444	15.328	20.217	27.861	35.739	43.433	48.005	56.937	67.274	75.890	79.524	85.766
$\overline{X_2}$ /kN												
接线路面末端												
地梁发生的位移	3.223	3.154	3.120	2.866	2.758	2.681	2.469	2.197	2.076	1.952	1.753	1.654
$\Delta_2/\mathrm{m}\mathrm{m}$												

注:K值表示地梁处土体的刚度系数,系数为 107

从图 11 中可以看出,K从 0.5×10⁷ 增加至 8× 10⁷,即从可塑性粘土、硬塑性粘土、粗砂到砾石,裂 缝数目、裂缝宽度以及最大轴力 N_{max} 、 W_{max} 均增大, 即地梁近似于锚固在岩石里时,反而不利于地梁受 力。综合图 11 和表 5 可看出,地梁处土体刚度K增 大,接线路面的 N_{max} 增大,但 Δ_2 减小。因此不能选 用 K 值过大的土层,不利于接线路面受力,但也不 能选用 K 值太小的土层,以免地梁位移过大,推荐 采用土体刚度系数为 $K = 2.5 \times 10^7 \sim 7 \times 10^7$ 的回填 土。在全无缝桥中,如果土的可压缩性较大,即 K 值较小,地梁处会发生过大位移而使接线路面整体 被拖动,导致结构失效,因此地梁处的土一定要紧密 压实^[12],对施工的要求比较严苛,而新型的单缝桥 梁对土体的适应性较强,施工要求可以适当放松。

4.6 不同桥梁长度计算结果

其他参数不变,改变单侧桥梁的长度(L/2 = 20 m、40 m、60 m、80 m、100 m、120 m、140 m、160 m),计算结果如图 12 所示。

从图 12 中可以看出, L/2 从 20 m 增大到 160 m, 裂缝数目由 14 条增加至 17 条, 仅新增3条; 接线路面的裂缝宽度总和由 2. 186 mm 增加至 2. 755 mm, 仅增加了 26 %, 桥长增加对结构性能的 影响不大, 设置在原桥梁温度中心处的伸缩缝的确 能极大地释放桥梁的温度变形。L/2 = 160 m时, $W_{max} = 0.190$ mm < [W] = 1 mm, $N_{max} = 279$ kN, $\sigma_s =$ 147 MPa < $[\sigma] = 280$ MPa。因此这种单缝桥梁对于 总长 300 m 左右的梁桥是适用的。

4.7 不同温降值计算结果

其他参数不变,改变温降值 ($\Delta T = -5$ ℃、

-10 ℃、-15 ℃、-20 ℃、-25 ℃、-30 ℃、 -35 ℃、-40 ℃),计算结果如图 13 所示。

从图 13 中可以看出,裂缝数目由 -5 ℃时的 9 条增加至 -40 ℃时的 25 条,增加得较多,但即使在 -40 ℃的温度下, W_{max} = 0.25 mm,远小于文献[11] 所容许的 1 mm,此时 N_{max} = 337 kN, σ_s = 180 MPa, 小于 HRB335 抗拉强度设计值,因此这种新型的结 构可以用于温差较大的地区,极大地拓宽了无缝化 技术的使用范围。

4.8 温升作用下的最大应力

用 CESE JB. for 计算当 $\Delta T = 20 \,^{\circ}$ C 时的各种工 况,并计算模型在 ΔT 分别为 5 $\,^{\circ}$ 、10 $\,^{\circ}$ 、15 $\,^{\circ}$ 、 20 $\,^{\circ}$ 、25 $\,^{\circ}$ 、30 $\,^{\circ}$ 、35 $\,^{\circ}$ 、40 $\,^{\circ}$ 的受力情况。仅选 取最不利的工况用图表加以阐述:当温升 ΔT = 20 ℃时, L_p 变化对结构的影响如图 14 所示, ΔT 分 别为 5 ℃、10 ℃、15 ℃、20 ℃、25 ℃、30 ℃、35 ℃、 40 ℃的结构受力如图 15 所示。

Fig. 15 Results of different temperatures with temperature increasing

从图 14 可以看出, 在温升 $\Delta T = 20 ℃ 作用下, 随着接线路面长度 L_p 增大, 接线路面 <math>N_{max}$ 增加,这与温降作用的规律一致,并且 L_p =40 m 时, N_{max} = 392 kN, 预锯缝处接线路面混凝土的应力 σ_c = 392 kN/0.14 m² =2.8 MPa, 小于 C30 混凝土的抗 压强度(f_{ed} =13.8 MPa), 混凝土不会开裂。

比较图9 和图 14 可以看出,在其他参数相同, $L_p = 40 \text{ m}$ 时,温升作用下,接线路面不开裂, $N_{\text{max}} = 392 \text{ kN}$,而温降作用下,接线路面共 25 条微裂缝, $N_{\text{max}} = 325 \text{ kN}$,比温升作用时减小了 17 %。这说 明,接线路面通过微裂缝吸纳了主梁的部分变形,释 放了部分约束,减少了结构内力。

从图 15 可以看出,随着温升值的增大,接线路 面的最大轴力 N_{max} 增大,这与在温降值增大时的规 律一致, ΔT =40 ℃时,接线路面中 N_{max} =408 kN, 接线路面混凝土的应力 σ_e = 408 kN/0. 14 m² = 2.91 MPa < 13.8 MPa,混凝土不开裂。因此这种新型单缝桥梁对温度的适应性较强。比较图 13 和图 15,可以得到与上文一样的结论。

5 结语

 温降较大时,混凝土受拉,预锯缝所形成的 薄弱处会开裂,以吸纳梁体的部分水平位移,但各裂 缝宽度远小于规范所规定的最大裂缝宽度;温升时, 混凝土受压,不开裂。温降作用是结构的较不利 状况。

2)增加配筋率,会增加结构内力,但能有效减 小裂缝宽度;接线路面越长,接线路面的最大轴力越 大,推荐采用30m左右的接线路面;尽量减小接线 路面与垫层之间的摩擦系数,在施工中,垫层上应铺 设土工格栅、采用较光滑的卵石,可减少摩擦系数, 其中土工格栅还可以起到加筋和防止反射裂缝的 作用。 3) 单缝桥适用于温差较大的地区,并且适用于 总长 300 m 以内的梁桥。

参考文献

- [1] Arockiasamy M, Butrieng N, Sivakumar M. State of the art of integral abutment bridge: design and practice [J]. Journal of Bridge Engineering, 2004,9(5):497-506.
- [2] White H II, Petursson H, Collin P. Intergral abutment bridges: the European way [J]. Practice Periodical on Structural Design and Construction, 2010, 15(3):201-207.
- [3] Jin Xiaoqin, Shao Xudong, Yan Banfu, et al. New technologies in China's first jointless integral-abutment bridge [C]. IABSE Symposium on Metropolitan Habitats and Intrastructure. Shanghai, 2004.
- [4] Jin Xiaoqin, Shao Xudong, Peng Wanghu, et al. A new category of semi-integral abutment in China [J]. Structural Engineering Intemational, 2005, 15(3):186-188.

- [5] 邵旭东,占雪芳,金晓勤.带地梁的新型无缝桥基本性能研究[J].中国公路学报,2010,23(1):43-48.
- [6] 金晓勤,邵旭东.半整体式全无缝桥梁研究[J].土木工程学报,2009,42(9):68-73.
- [7] JTG D62—2004 公路钢筋混凝土 及预应力混凝土桥涵设计规 范[S].北京:人民交通出版社,2004.
- [8] JT/T 4—2004 公路桥梁板式橡胶支座[S]. 北京:电子工业出版社,2004.
- [9] 邵旭东,陈志新,金晓勤.无缝桥加筋接线路面的拉伸变形 性能[J].中国公路学报,2010,23(6):34-40.
- [10] JTG D63-2007 公路桥涵地基与基础设计规范[S].北京:人 民交通出版社, 2007.
- [11] JTG D40-2002 公路水泥混凝土路面设计规范[S].北京:人 民交通出版社, 2003.
- [12] 金晓勤.新型全无缝桥梁体系设计与实验研究[D].长沙:湖 南大学,2007:1-50.

Study on temperature effects of single expansion joint bridge

Zhao Yibin, Shao Xudong

(Hunan University, Changsha 410082, China)

[Abstract] There are some problems of easy damage and arduous maintenance in the expansion joints at abutment, and a new type of single expansion joint bridge (SEJB) is herein proposed to deal with them. To investigate the mechanical characteristics of SEJB under temperature load, simplified calculation model is proposed in this paper. Considering the distribution and development rule of cracks in approach pavement, theoretical formulas for internal force and deformation were derived, and calculation programs were compiled. For example, under the effect of temperature drop of 20 $^{\circ}$ C, the maximum steel stress was 148 MPa, and the maximum crack width was 0.185 mm for a 280 m-length SEJB, which met the requirement of criterion; the additional stress of beam was 0.105 MPa, which could be ignored. Moreover, taking the different temperatures into account, parameter analysis was performed. The results show that the 30 m-length pavement can well meet the needs for use. Internal force is reduced by using bearing and cushion materials with low surface friction coefficient, and a biaxial geogrids is recommended.

[Key words] single expansion bridge; temperature effect; stress and deformation; theoretical formula; parameter analysis