碳基燃料固体氧化物燃料电池发展前景

韩敏芳,彭苏萍

(中国矿业大学(北京)化学与环境工程学院,煤气化燃料电池联合研究中心, 煤炭资源与安全开采国家重点实验室,北京 100083)

[摘要] 以煤炭、石油、天然气为代表的化石燃料是中国乃至世界的主要能源资源,其平均发电效率低(30%左右),环境危害大,迫切需要改进。燃料电池是一种高效发电装置,将燃料的化学能直接转换为电能。在各种燃料电池中,固体氧化物燃料电池(SOFC)可以直接使用各种含碳燃料,很容易与现有能源资源供应系统兼容,一次发电效率高(50%~60%);SOFC采用全固态结构,长期稳定性好;不使用贵金属催化剂,成本低廉。SOFC尤其适用于分布式发电系统和动力电源系统。基于我国能源结构的现状和稀土资源优势,很有必要发展碳基燃料 SOFC。在 SOFC 从示范运行逐步走向产业化应用的过程中,迫切需要进一步提高其长期稳定性并降低成本,所以今后的研究重点是碳基燃料 SOFC 关键材料和系统集成创新,解决其中的材料设计和制备、碳基燃料反应特性、电池构造、理论模拟、系统集成与运行过程中的基础科学和技术问题,为高效率、低成本、稳定可靠的碳基燃料 SOFC 系统产业化奠定基础。

[关键字] 固体氧化物燃料电池;碳基燃料;发电系统

[中图分类号] TM911 [文献标识码] A [文章编号] 1009-1742(2013)02-0004-03

1 前言

燃料电池(FC)是一种将燃料的化学能直接转 换为电能的发电装置,具有能量转化效率高(一次 发电效率为40%~60%,系统热电联供效率为60%~ 80%)、污染小等优点。根据所使用的电解质不同, 燃料电池主要分为固体氧化物燃料电池(SOFC)、 熔融碳酸盐燃料电池(MCFC)、磷酸盐燃料电池 (PAFC)、质子交换膜燃料电池(PEMFC)和碱性 燃料电池(AFC)等,它们的一次发电效率依次是 50 %~60 %, 40 %~50 %, 40 %~50 %, 35 %~40 %, 50 %~60 %, 其中, SOFC 热电联供系统效率最高, 其 能量转化率在80%以上。SOFC采用全固态结构, 长期稳定性更好;不需要贵金属催化剂,成本更低; 不受低温燃料电池中必须使用纯氢燃料的限制,可 以直接使用各种碳基燃料发电,很容易与现有能源 资源供应系统兼容。SOFC不仅是21世纪最有应用 前景的绿色发电系统,而且可以满足不同规模、不 同层次的电力需求,尤其适用于分布式发电系统,还可以用作便携式电源和辅助动力装置(APU),以及火车、轮船和潜艇上的动力系统。

2 基于我国目前能源结构现状,发展碳基 燃料SOFC很有必要

以煤炭、石油、天然气等为代表的化石燃料是中国(比例>90%)乃至世界(比例>80%)的主要能源资源,其平均发电效率仅为30%左右,迫切需要提高。SOFC的突出优点之一是可以直接使用化石燃料,如气态的天然气(CH4)、煤相关的气化煤气(含地下气化煤气)、焦炉煤气(主要成分是CO、H2、CH4)和煤层气(主要成分是CH4)等,液态的(以异辛烷为主要成分的)汽油[1-3]、航空柴油和醇类等,和固态的焦炭和煤等[4-5],这些燃料都以含碳化合物为主要成分,这里统称为碳基燃料(根据化学成分,碳基燃料还可以进一步拓宽至沼气和生物质气[6]等可再生的生物质燃料,其中的主要成分也是CO、H2、

[收稿时间] 2012-11-30

[基金项目] 国家重点基础研究发展计划"973计划"资助项目(2012CB215404);国家自然科学基金资助项目(51110463) [作者简介] 彭苏萍(1959—),男,江西萍乡市人,中国工程院院士,教授,研究方向是能源系统;E-mail:psp@cumtb.edu.cn

-

4 中国工程科学

CH₄)。碳基燃料 SOFC 是实现化石燃料高效转化和 洁净利用的有效途径四。与燃煤发电技术相比, SOFC极大地降低了化石燃料在热电转换中的能量 损失和对生态环境的破坏,具有更高的效率和更低 的污染,SOFC一次发电效率为50%~60%(与汽轮 机)热电联动后,能量转化效率高达80%以上。与 熔融碳酸盐燃料电池相比,SOFC具有更高的功率 密度,没有液态熔盐腐蚀介质,避免了材料的热腐 蚀,提高了可靠性,延长了使用寿命。与必须采用 贵金属材料(如Pt、Pd)作电极催化剂的质子交换膜 燃料电池相比,SOFC不需要贵金属催化剂,而是采 用Ni、Cu等普通金属以及轻稀土类陶瓷材料作为电 极,价格低廉,大幅度降低成本。与必须采用纯氢 为燃料的碱性燃料电池、磷酸燃料电池和PEMFC 相比,SOFC可以直接使用各种碳基燃料,来源广 泛,运输方便,容易储存,使用更安全。SOFC是基 于碳基燃料最合适的高效、洁净能源动力系统,其 发电效率的提高,直接降低单位发电量的CO₂排放; SOFC 系统中产生的 CO₂易于回收处理,有望实现 碳基燃料能源利用过程中的近零排放。SOFC能源 系统适合模块化设计,可以组装成不同规格的发电 和动力系统,安装灵活,很容易与现有各种燃料及燃 料供应基础设施兼容。因此,基于我国能源结构现 状,发展碳基燃料SOFC能源动力系统很有必要,它 将为我国以化石能源尤其是以煤为主体的能源结构 和以燃煤发电为主的电力结构调整做出重要贡献。

3 基于我国高丰度稀土资源,发展碳基燃料 SOFC极具优势

SOFC的突出优点之二是不需要使用任何贵金属材料,而是采用廉价的 Ce、La 轻稀土陶瓷材料。以 Ce、La 轻稀土为基础,构成了 SOFC 高性能电解质材料和电极催化剂材料。具有萤石结构的掺杂氧化铈,如氧化钆掺杂氧化铈(GDC)^[8]和氧化钐掺杂氧化铈(SDC)^[9],600 ℃时的电导率达 0.02 S/cm,是理想的中低温电解质材料^[10,11];钙钛矿结构的 Sr、Mg掺杂的 LaGaO_{3- δ}(LSGM)^[12,13]电解质,在很宽的氧分压范围内,都表现出高的氧离子电导率和稳定性。Cu-SDC^[14],Cu/Ni-SDC^[15]等金属陶瓷阳极对碳基燃料表现出良好的催化化学和抗积碳性能;钙钛矿结构的 (La_{0.75}Sr_{0.25})_{0.9}Cr_{0.5}Mn_{0.5}O₃ (LSCM)^[16]和BaZr_{0.1}Ce_{0.7}Y_{0.2-x}Yb_xO_{3-a}(BZCYY)^[17]则是新型有前途的阳极材料。锰酸锶镧(LSM)是 SOFC 中最常用的

阴极,LSM-SDC则是更实用的混合导电型复合阴极,La_{1-x}Sr_xCo_{1-y}Fe_yO₃(LSCF)阴极表现出更好的催化活性。与PEMFC必须采用昂贵的质子交换膜和贵金属Pt作电极催化剂相比,SOFC在关键材料上极具成本优势。在我国,Ce、La等轻稀土属于高丰度稀土资源,每千克价格仅约20元。这为构建低成本SOFC系统奠定了基础,同时也有利于提高我国高丰度稀土资源的平衡利用。因此,发展碳基燃料SOFC在我国拥有独特的资源优势。

4 现阶段我国发展碳基燃料SOFC十分迫切

从技术进展的世界趋势上看,SOFC也处于最 合适的发展阶段。在世界范围内,PEMFC已经从科 研界转入产业界,我国也进行了大量的示范运行, 多年来国家也给予PEMFC大量的资金支持。但 是,PEMFC必须采用昂贵的电池组件(包括质子交 换膜本身、Pt电极催化剂等),成本居高不下。燃料 则必须采用纯氢,而氢不是一次能源,只是一种能 源载体,在制备、储存、输运、安全防护等方面存在 一系列问题。新近发展的碱性阴离子膜燃料电池, 有可能使用可替代贵金属的催化剂,但是仍然需要 以H2为燃料,世界范围内尚处于探索起步阶段,短 期内难以形成示范效应。只有SOFC在世界范围内 处于从科研界向产业界的转化阶段,从示范运行向 商业运行的发展阶段。世界各地已经有数百台 SOFC示范系统成功运行,最长运行时间达4万小 时,展示了SOFC在技术上的可行性[18]。对此,欧 美、日本等发达国家已经开展了系统而深入的研究 工作。在中国,尽管SOFC研究起步并不晚(我国自 "八五"开始),但是支持力度很低,一直处于零散作 战状态,尚处于较低水平的跟踪阶段,未形成自己 的特色。近年来,国家科技部"863"项目支持了 SOFC 系统相关研究,资助力度也在持续增加,但 是,由于缺乏对SOFC相关基础科学问题研究的支 持,致使我国在SOFC领域进展缓慢,总体技术水平 与国外先进水平相比仍然有很大差距。现阶段十 分迫切需要开展碳基燃料 SOFC 基础科学问题的研 究工作[19,20],踏踏实实做好积累,以推动高效率、低 成本、长寿命的SOFC在中国的跨越式发展。

5 SOFC发展方向

SOFC作为未来发电的战略高技术,世界各国都非常重视。经过几十年的研究积累,已经取得了

很大进步,发达国家已经对多量级的SOFC发电系 统进行了广泛的示范运行。但是,为了在电池性 能、成本、可靠性等方面进一步改进,满足产业化应 用的要求,仍然需要对碳基燃料SOFC相关的基础 科学问题、技术工程问题进行系统、深入的研究,以 进一步提高其稳定性,降低成本。这需要从SOFC 相关的结构、材料及其中的荷电传输机制,组元之 间的相容性及其中的界面演化特征等科学问题入 手,探究SOFC长期稳定性相关的影响因素;还需要 进一步优选性能优良、价格低廉(非贵金属)的陶瓷 材料,发展高性能纳米材料及低温烧结理论和方 法;研究非均质多层膜高温匹配机制,优化单电池 和电池堆结构和系统设计;探究SOFC中多尺度多 物理场(温场、电场、流场)耦合规律等,为SOFC系 统长期运行和成本降低奠定基础;同时还需要发展 和建立 SOFC 理论和技术基础平台,为碳基燃料 SOFC产业化奠定科学基础。

参考文献

- Zhan Z L , Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308: 844–847.
- [2] Sun C W, Xie Z, Xia C R, et al. Investigations of mesoporous CeO₂-Ru as a reforming catalyst layer for solid oxide fuel cells [J]. Electrochemistry Communications, 2006, 8 (5): 833–838.
- [3] Ding D, Liu Z B, Li L, et al. An octance-fueled low temperature solid oxide fuel with Ru- free anodes[J]. Electrochemistry Communications, 2008, 10:1295–1298.
- [4] Cao D X, Sun Y, Wang G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. Journal of Power Sources, 2007,167: 250–257.
- [5] Gür T M. Coal conversion in a Fluidized Bed Direct Carbon Fuel Cell[C]//10th Annual Solid State Energy Conversion Alliance (SECA) Workshop, Pittsburg, 2009.
- [6] Yin Y H, Zhu W, Xia C R, et al. Low-temperature SOFCs using

- biomass-produced gases as fuels[J]. Journal of Applied Electrochemistry, 2004, 34 (12): 1287–1291.
- [7] 国家高技术研究发展计划(十一五863计划)先进能源技术领域专家组.中国先进能源技术发展概论[M]. 北京:中国石油出版社,2010.
- [8] Han Minfang , Zhou Su, Liu Ze, et al. Fabrication, sintering and electrical properties of cobalt oxide doped $Gd_{0.1}Ce_{0.9}O_{2-\delta}[J]$. Solid State Ionics, 2011,192:181–184.
- [9] Zha S W, Xia C R, Meng G Y. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. J.Power Sources, 2003,115:44–48.
- [10] Steele B C H. Appraisal of Ce_{1-y}Gd_yO_{2-y/2} electrolytes for IT-SOFC operation at 500 degrees [J]. Solid State Ionics, 2000, 129(1-4): 95-110.
- [11] Liu Y, Zha S, Liu M. Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD) [J]. Advanced Materials (Weinheim, Germany), 2004, 16(3): 256–260.
- [12] Ishihara T, Matsuda H, Takita Y. Doped LaGaO₃ perovskite type oxide as a new oxide ionic conductor[J]. J. Am. Chem. Soc., 1994,116(9): 3801–3803.
- [13] Huang K Q, Feng M, Goodenough J B. Sol-gel synthesis of a new oxide-ion conductor Sr-and Mg-doped LaGaO₃ perovskite [J]. Journal of the American Ceramic Society, 1997, 79(4): 1100–1104.
- [14] Xie Z, Xia C R, Zhang M Y, et al. Ni_{1-x}Cu_x alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel[J]. Journal of power sources, 2006,161 (2): 1056–1061.
- [15] Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320–323.
- [16] Park S D, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000,404: 265–267.
- [17] Yang L, Wang S, Blinn K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr_{0.1}Ce_{0.7}Y_{0.2-x} Yb_xO_{3-d}[J]. Science, 2009(10): 126–129.
- [18] 辛格哈尔. 高温固体氧化物燃料电池——原理、设计和应用 [M]. 韩敏芳, 蒋先锋, 译. 北京: 科学出版社, 2007.
- [19] 彭苏萍,韩敏芳. 煤基/碳基固体氧化物燃料电池技术发展 前沿[J]. 自然杂志(特约稿),2009,31(4):187-192.
- [20] 韩敏芳,彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社,2004.

Prospect of carbon-based solid oxide fuel cells

Han Minfang, Peng Suping

(Union Research Center of Fuel Cell, School of Chemical and Environmental Engineering, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China)

[Abstract] Fossil fuel such as coal, oil and nature gas is the main energy resource in China even in the world. It has low power generation efficiency (approximately 30 %) and a great environmental impact, which (下转26页)