
Engineering 6 (2020) 275–290
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Artificial Intelligence—Review
Progress in Neural NLP: Modeling, Learning, and Reasoning
https://doi.org/10.1016/j.eng.2019.12.014
2095-8099/� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: hshum@microsoft.com (H.-Y. Shum).
Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung Shum ⇑
Microsoft Research Asia, Beijing 100080, China

a r t i c l e i n f o
Article history:
Received 30 April 2019
Revised 30 August 2019
Accepted 13 October 2019
Available online 7 January 2020

Keywords:
Natural language processing
Deep learning
Modeling, learning, and reasoning
a b s t r a c t

Natural language processing (NLP) is a subfield of artificial intelligence that focuses on enabling comput-
ers to understand and process human languages. In the last five years, we have witnessed the rapid devel-
opment of NLP in tasks such as machine translation, question-answering, and machine reading
comprehension based on deep learning and an enormous volume of annotated and unannotated data.
In this paper, we will review the latest progress in the neural network-based NLP framework (neural
NLP) from three perspectives: modeling, learning, and reasoning. In the modeling section, we will
describe several fundamental neural network-based modeling paradigms, such as word embedding, sen-
tence embedding, and sequence-to-sequence modeling, which are widely used in modern NLP engines. In
the learning section, we will introduce widely used learning methods for NLP models, including super-
vised, semi-supervised, and unsupervised learning; multitask learning; transfer learning; and active
learning. We view reasoning as a new and exciting direction for neural NLP, but it has yet to be well
addressed. In the reasoning section, we will review reasoning mechanisms, including the knowledge,
existing non-neural inference methods, and new neural inference methods. We emphasize the impor-
tance of reasoning in this paper because it is important for building interpretable and knowledge-
driven neural NLP models to handle complex tasks. At the end of this paper, we will briefly outline our
thoughts on the future directions of neural NLP.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an important branch of artificial intelligence (AI), natural
language processing (NLP) studies the interactions between
humans and computers via natural language. It studies fundamen-
tal technologies for the meaning expressions of words, phrases,
sentences, and documents, and for syntactic and semantic process-
ing such as word breaking, syntactic parsers, and semantic parsing
and develops applications such as machine translation (MT),
question-answering (QA), information retrieval, dialog, text
generation, and recommendation systems. NLP is vital to search
engines, customer support systems, business intelligence, and
spoken assistants.

The history of NLP dates back to the 1950s. In the beginning of
NLP research, rule-based methods were used to build NLP systems,
including word/sentence analysis, QA, and MT. Such rules edited
by experts were utilized in algorithms for various NLP tasks start-
ing from MT. Normally, designing rules required significant human
efforts. Furthermore, it is difficult to organize and manage rules
when the number of rules is large. In the 1990s, along with the
rapid development of the internet, large amounts of data became
available, which enabled statistical learning methods to work on
NLP tasks. With human-designed features, statistical learning
models were learned by using labeled/mined data. The statistical
learning method brought significant improvements to many NLP
tasks, typically in MT and search engine technology. In 2012, deep
learning approaches were introduced to NLP following deep learn-
ing’s success in object recognition with ImageNet [1] and in speech
recognition with Switchboard [2]. Deep learning approaches
quickly outperformed statistical learning methods with surpris-
ingly better results. As of the present, the neural network-based
NLP (referred to as ‘‘neural NLP” hereafter) framework has
achieved new levels of quality and has become the dominating
approach for NLP tasks, such as MT, machine reading comprehen-
sion (MRC), chatbot, and so forth. For example, the Bible system
from Microsoft achieved a human parity result on the Chinese-
to-English news translation task of workshop on MT in 2017.
R-NET and NLNet from Microsoft Research Asia (MSRA) achieved
human-quality results on the Stanford Question Answering Dataset
(SQuAD) evaluation task on both the exact match (EM) score and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2019.12.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2019.12.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hshum@microsoft.com
https://doi.org/10.1016/j.eng.2019.12.014
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


276 M. Zhou et al. / Engineering 6 (2020) 275–290
the fuzzy-match score (F1 score). Recently, pre-trained models
such as generative pre-training (GPT) [3], bidirectional encoder
representations from transformers (BERT) [4], and XLNet [5] have
demonstrated strong capabilities in multiple NLP tasks. The neural
NLP framework works well for supervised tasks in which there is
abundant labeled data for learning neural models, but still
performs poorly for low-resource tasks where there is limited or
no labeled data.

This paper reviews the notable progress of the neural NLP
framework in three categories of efforts: ① neural NLP modeling
aimed at designing appropriate network structures for different
tasks; ② neural NLP learning aimed at optimizing the model
parameters; and ③ reasoning aimed at generating answers to
unseen questions by manipulating existing knowledge with
inference techniques. Based on deep analysis of current technolo-
gies and the challenges of each of these aspects, we seek to identify
and sort out future directions that are critical to advancing NLP
technology.
2. Modeling

An NLP system consumes natural language sentences and gen-
erates a class type (for classification tasks), a sequence of labels (for
sequence-labeling tasks), or another sentence (for QA, dialog,
natural language generation, and MT). To apply neural NLP
approaches, it is necessary to solve the following two key issues:

(1) Encode the natural language sentence (a sequence of words)
in the neural network.

(2) Generate a sequence of labels or another natural language
sentence.

From these two aspects, in this section, we will introduce sev-
eral popularly used neural NLP models, including word embedding,
sentence embedding, and sequence-to-sequence modeling. Word
embedding maps words in the input sentences into continuous
space vectors. Based on the word embedding, complex networks
such as recurrent neural networks (RNNs), convolutional neural
networks (CNNs), and self-attention networks can be used for fea-
ture extraction, considering the context information of the whole
sentence to build context-aware word embedding, or integrating
all the information of the sentence to construct the sentence
embedding. Context-aware word embedding can be used for
sequential labeling tasks such as part-of-speech (POS) tagging
and named-entity recognition (NER), and sentence embedding
can be used for sentence-level tasks, such as sentiment analysis
and paraphrase classification. Sentence embedding can also be
used as input to another RNN or self-attention network to generate
another sequence, which forms the encoder-decoder framework
for the sequence-to-sequence modeling. Given an input sentence,
the sequence-to-sequence modeling can be used to generate an
answer for a question (i.e., a QA task), or to perform a translation
in another language (i.e., an MT task).

2.1. Word embedding and sentence embedding

Word/sentence embedding attempts to map words and sen-
tences from a discrete space into a semantic space, in which the
semantically similar words/sentences have similar embedding
vectors.

2.1.1. Context-independent word embedding
To map a word into a continuous semantic vector, Ref. [6]

proposed the continuous bag-of-words (CBOW) and skip-gram
models, based on which the implementation tool word2vec is used
to learn word-embedding vectors with a large monolingual corpus.
As shown in Fig. 1 [6], the CBOW model predicts the central word
using its surrounding words in a window, while the skip-gram
model predicts the surrounding words of the given word. These
two models are designed based on the principle of ‘‘knowing a
word by the company it keeps” [7]. In addition, to utilize the ben-
efits of global co-occurrence statistics and meaningful linear sub-
structures, Ref. [8] proposed a global log-bilinear regression
model (GloVe) to learn word embedding.

Word2vec and GloVe learn a constant embedding vector for a
word; the embedding is the same for a word in different sentences.
For example, we can learn an embedding vector for the word
‘‘bank,” and the embedding remains the same, regardless of
whether the word ‘‘bank” is used in the sentence ‘‘an ant went to
the river bank” or in the sentence ‘‘that is a good way to build up
a bank account.” Ostensibly, the embedding of the word ‘‘bank”
in the first sentence should be different from that of ‘‘bank” in
the second sentence. To deal with this issue, context information
of the sentence is used to predict a dynamic word embedding.

2.1.2. RNN-based context-aware word embedding
ELMo [9] leverages the bidirectional recurrent neural network

(the long short-term memory (LSTM) network is particularly used)
to model the context information, in which the word embedding is
the concatenation of the hidden states of a forward RNN and a
backward one, modeling the context at the left side and the right
side, respectively. For example, given the input sentence ‘‘an ant
went to the river bank.” as shown in Fig. 2, the forward RNN first
takes the first word ‘‘an” as the input and generates the first hid-
den state, which contains the information of the first word. When
the second word ‘‘ant” is inputted, the RNN combines the informa-
tion of the first hidden state and the second word to generate the
second hidden state, which should contain the information of the
first two words. When the word ‘‘bank” is inputted, the previous
hidden state should contain all the previous information of ‘‘an
ant went to the river.” Taking it as context information, the new
hidden state of ‘‘bank” contains dynamic information from the
given sentence.

2.1.3. Self-attention-based context-aware word embedding
Ref. [3] proposed GPT, which leverages the self-attention net-

work to train a multi-layer left-to-right language model. Compared
with the RNN used in ELMo, which is also a left-to-right language
model, the self-attention network used in GPT allows direct inter-
action between the current word and each previous word, which
leads to better context representations. Ref. [4] proposed BERT,
which leverages the self-attention network to jointly consider both
the left and right context information in the sentence. Whereas the
RNN processes the input sentence in a sequential order, from left to
right or from right to left, as shown in Fig. 3, the self-attention net-
work takes all the remaining words of the word ‘‘bank” as the con-
text to build the context-aware word embedding, which is a
weighted sum of all the representations of the words in the sen-
tence, whose weight is calculated by normalizing and computing
the similarity between the current word ‘‘bank” and all the words
in the sentence. To consider the ordering information, a position
index is also used to enrich the input by summing the word
embedding and position embedding. To alleviate BERT’s pre-
train–fine-tune discrepancy issue, which means that artificial sym-
bols such as [MASK] used by BERT during pre-training are absent
from real data at fine-tuning time, Ref. [5] proposed XLNet, a
pre-training method that enables the learning of bidirectional con-
texts by maximizing the expected likelihood over all permutations
of the factorization order.

2.1.4. CNN-based context-aware word embedding
Both ELMo and BERT can consider all the context information in

the input sentence to generate the dynamic embedding for a given



Fig. 1. Context-independent word-embedding methods [6]. CBOW: using the context words in a window to predict the central word. Skip-gram: using the central word to
predict the context words in a window. Wt is the tth word in the sentence.

Fig. 2. RNN-based context-aware word embedding.

M. Zhou et al. / Engineering 6 (2020) 275–290 277
word. In contrast to using all the words as context, a CNN can be
used to generate the dynamic embedding with only the surround-
ing words as context [10]. As shown in Fig. 4, the CNN uses a win-
dow to slide along the sequence of the input sentence. Using the
embeddings of the words in the window, linear mappings (i.e., fil-
ters) are used to generate a representation vector to integrate the
information of the input words. For example, to generate the
dynamic embedding for the word ‘‘bank,” a window with size 3
can be used to cover the span of ‘‘river bank,” and the word ‘‘river”
can be used to generate a disambiguating dynamic embedding for
the word ‘‘bank.”

2.1.5. Sentence embedding
Based on the representation of each word in the input sentence,

the sentence representation can be obtained, via RNN, self-
attention network, and CNN. For the RNN, the last hidden state
(the blue one) should contain all the information in the sentence
by consuming the input words one by one. For the self-attention
network, a sentence-ending symbol, </S>, can be added, and its
Fig. 3. Self-attention-based context-aware word
hidden state (the blue one) can be used as the representation of
the whole sentence. For CNN, a max pooling layer can be used to
select the maximum value for each dimension and generate one
semantic vector (with the same size as the convolution layer out-
put) to summarize the whole sentence, which is processed by a
feed-forward network (FFN) to generate the final sentence repre-
sentation. The generated sentence embedding can be used in other
tasks, such as predicting the sentiment class (i.e., positive or nega-
tive) or predicting another sequence (MT).

2.2. Sequence-to-sequence modeling

2.2.1. Task of sequence-to-sequence modeling
Sequence-to-sequence modeling attempts to generate one

sequence with another sequence as input. Many NLP tasks can be
formulated as a sequence-to-sequence task, such as MT (i.e., given
the source language word sequence, generate the target language
word sequence), QA (i.e., given the word sequence of a question,
generate the word sequence of an answer), and dialog (i.e., given
the word sequence of user input, generate the word sequence of
response).

2.2.2. Encoder–decoder framework
Ref. [11] proposed an encoder–decoder framework for

sequence-to-sequence modeling. As shown in Fig. 5, the
encoder–decoder framework contains two parts: an encoder and
a decoder. The encoder is an RNN to encode the input sentence into
a semantic representation, by consuming the words from left to
right, one by one. The final hidden states should contain the
embedding. </S>: sentence-ending symbol.



Fig. 4. CNN-based context-aware word embedding.

Fig. 5. Encoder–decoder framework for MT from English to Chinese.

278 M. Zhou et al. / Engineering 6 (2020) 275–290
information of all the words in the sentence, and are used as the
context vector (i.e., representation) of the input sentence. Based
on the context vector, another decoder RNN is used to generate
the target sequence one word after another until the sentence-
ending symbol (</S>) is generated. The decoder RNN takes the pre-
vious word, previous hidden state, and source sentence context
vector as input to generate the current hidden state in order to pre-
dict the next target word.

The original encoder–decoder framework has several draw-
backs: ① Only the last hidden state is used to model the source
sentence. With such a size-fixed vector, it is difficult to model
any sentence in the source language. ② The information of previ-
ous words consumed by the encoder is difficult for the RNN cell
to maintain to influence the target word. ③ It is difficult to use
only one context vector to predict all the words in the target
sentence.
2.2.3. Attention-based encoder–decoder framework
In order to deal with these problems, the attention-based

encoder–decoder framework [12] makes it possible for the neural
network to pay attention to different parts of the input and to
directly align the input sequence and the output result. As shown
in Fig. 6, the attention mechanism leverages all the hidden states
of the encoder and the previous decoder hidden state to compute
a context vector, which is a weighted sum of the hidden state of
the encoder, and the weights are computed and normalized by
the similarity between the hidden states of the decoder and enco-
der. Together with the previous decoder hidden state and the pre-
vious target word, this context vector is used as the input to the
decoder RNN to generate the next decoder hidden state. In this
way, not only are all the encoder hidden states leveraged, but the
decoder hidden state also directly relates to the corresponding
encoder hidden states.
2.2.4. All-attention-based encoder–decoder framework
To use the strong modeling capacity of self-attention, Trans-

former [13] (as shown in Fig. 7) uses multi-head self-attention to
replace the original attention mechanism and RNN cells in the
encoder and decoder. Multi-head attention is a combination of
attention networks. By projecting each query, key, and value into
N vectors with linear layers, N attention networks are used to
generate N context vectors, which are concatenated into one



Fig. 6. Attention-based encoder–decoder framework for MT from English to Chinese.

Fig. 7. All-attention-based encoder–decoder framework for MT from English to Chinese.

M. Zhou et al. / Engineering 6 (2020) 275–290 279
context vector. For the decoder self-attention, only the previous
hidden states are used to compute the decoder context vector,
because future words cannot be used during the inference.

2.3. Summary

In this section, we introduced the network structures to learn
word embedding, sentence embedding, and sequence generation.
In order to improve modeling for various NLP tasks, several direc-
tions still require further exploration:

� Prior knowledge modeling. Even though word-embedding
methods that are trained with a huge amount of data can
model certain kinds of commonsense knowledge [6], the
problem of how to integrate the linguistic prior knowledge
information, such as WordNet and HowNet, with specific
NLP tasks should receive more attention [14].
� Document/multi-turn modeling. Leveraging sentence con-
text by means of word embedding effectively improves the
performance of various tasks, but the problem of how to
model long-distance context, such as other sentences in the
same document (or even in another document), is still an
ongoing research work [15]. For example, given the English
sentence ‘‘the mouse is on the table,” it is impossible to tell
whether the word ‘‘mouse” should be translated to the Chi-
nese ‘‘鼠标” (a computer device) or the Chinese ‘‘老鼠” (an ani-
mal) based on the information in the given sentence. To do
semantic disambiguation, the context of the document should
be leveraged. Similarly, the problem of how to better model
the context information in multi-turn tasks such as chatbots
and dialog systems [16] is still challenging.

� Non-autoregressive generation. The current sequence-to-
sequence model generates the output sentence one word at



280 M. Zhou et al. / Engineering 6 (2020) 275–290
a time in an autoregressive way, meaning that the word gen-
erated in the previous time-step is used as the input to gen-
erate the next word. Such an autoregressive generation
process leads to the exposure bias problem, in which the mis-
take made in previous steps will be amplified in subsequent
steps. To deal with this problem, non-autoregressive struc-
tures have been proposed, which show a performance drop
compared with the autoregressive structure [17]. More atten-
tion should be paid to developing better non-autoregressive
structures in the future.

3. Learning

New and efficient training algorithms have been proposed to
optimize the large number of parameters in deep learning models.
To train the neural network, stochastic gradient descent (SGD) [18]
is often used, which is usually based on back-propagation methods
[19]. Momentum-based SGD has been proposed in order to intro-
duce momentum to speed up the training process. The AdaGrad
[20], AdaDelta [21], Adam [22], and RMSProp methods attempt
to use different learning ratios for different parameters, which fur-
ther improves the efficiency and stabilizes the training process.
When the model is very complex, parallel training methods are
used to leverage many computing devices—even hundreds or thou-
sands (central processing units, graphics processing units, or field
programmable gate arrays). Depending on whether the parameters
are updated synchronously or not, distributed training methods
can be grouped into synchronous SGD and asynchronous SGD.

In addition to the progress that has been achieved in general
optimization methods, better training methods have been pro-
posed for specific NLP tasks. When large amounts of training data
are available for rich resource tasks, using supervised learning
methods, deep learning models achieve very good performance.
For some specific tasks, such as MT for language pairs with a large
volume of parallel data such as English–Chinese, neural models do
a good job, sometimes achieving human parity results in the
shared tasks. For many NLP tasks, however, it is difficult to acquire
large amounts of labeled data. Such tasks are often referred to as
low-resource tasks, including MT of sentiment analysis for rare
languages. By using unlabeled data to enhance the models trained
with a small amount of labeled data, semi-supervised learning
methods can be used. Without any labeled data, unsupervised
learning methods can be leveraged to learn NLP models. Another
way to leverage unlabeled data is to pre-train models, which will
be transferred to specific tasks with transfer learning. Instead of
leveraging in-task labeled data, labeled data from other tasks can
also be used with the help of multitask learning. If there is no data
that can be used, human resources could be introduced to create
the training data using active learning in order to maximize the
model performance with a given budget.

3.1. Supervised learning

Based on labeled data, supervised learning attempts to learn the
mapping model from input to output. For classification tasks, the
supervised learning method can train the model by maximizing
the log-likelihood of the correct label or minimizing the cross-
entropy loss. For sequence-to-sequence tasks, it is also possible
to maximize the likelihood of the correct target sentence condi-
tioned on the input sentence. For a given sentence pair ðx; yÞ in
the training data, where X ¼ x1; x2; . . . ; x xj j

� �
is the input sentence

and Y ¼ ðy1; y2; . . . ; y yj jÞ is the output sentence, the likelihood of
the conditional probability is defined as follows:

p�e Y jXð Þ ¼
Yjyj

i¼1
p�eðyijyi�1; . . . ; y1;XÞ ð1Þ
where p�eðyijyi�1; . . . ; y1;XÞ is the softmax layer output of the decoder
in the sequence-to-sequence model. Based on the likelihood, the
log-likelihood loss function is defined as follows:

LOSS ¼
X

X;Yð Þ 2 TrainingData

� log p�e YjXð Þ ð2Þ

Based on this loss function, training algorithms (such as Adam
or AdaDelta) can be used to optimize the parameters. Instead of
only maximizing the generation probability of the golden target,
in order to consider the task-specific error in the training process,
Ref. [23] proposed minimum-risk (maximum-bilingual evaluation
understudy (BLEU) [24]) training for the sequence-to-sequence
generation model. The model is first optimized using the cross-
entropy loss with the bilingual training corpus, and then fine-
tuned by maximizing the expected BLEU of the generated transla-
tion candidates (where BLEU is the evaluation metrics for MT,
which measures the n-gram accuracy of the generated candidates
against a human-made reference). To deal with the exposure bias
problem caused by the autoregressive decoding of the sequence-
to-sequence model from left to right, Ref. [25] introduced two Kull-
back–Leibler (KL) divergences into the training objective to maxi-
mize the agreement between the candidates generated by left-
to-right and right-to-left models. A deliberation network [26] is a
method to refine the translation candidate based on two-pass
decoding that simulates the human translation process; the first
pass generates the initial translation and the second pass refines
it. In order to deal with the label bias problem, as mentioned in
Section 2.3, Ref. [27] proposed sampling the context words not
only from the ground truth sequence, but also from the predicted
sequence in order to bridge the gap between the training and infer-
ence of MT training.

3.2. Semi-supervised and unsupervised learning

Semi-supervised and unsupervised learning use unlabeled data
to improve the model performance. For semi-supervised learning,
first, the model is usually trained with labeled data; next, it is
fine-tuned with the help of unlabeled data. There are many semi-
supervised learning methods, such as self-learning, generative
methods, and graph-based methods [28]. In these methods, pseudo
data generated by models are usually used to fine-tune the model
itself. In neural machine translation (NMT), to control the errors or
noise generated in semi-supervised learning, weights/rewards are
usually leveraged to filter the bad translation candidates; examples
of weights/rewards include the expected BLEU method [29] and
the dual-learning approach [30]. To utilize unlabeled data to
improve the performance of the sequence-to-sequence model,
back-translation [31] uses a reverse translation model to translate
the target monolingual data in order to build a pseudo bilingual
corpus, which is used to fine-tune the source-to-target (S2T)
model. The joint training method (as shown in Fig. 8) extends
the back-translation method to iteratively boost the S2T and
target-to-source (T2S) translation models in a unified generalized
(T2S) expectation–maximization framework by leveraging both
the source and target monolingual corpus [32]. The bilingual cor-
pus is used to train the NMT models first, including S2T and T2S
models. With the source monolingual data, the S2T model is used
to generate pseudo data to fine-tune the T2S model, and the target
monolingual data is used to fine-tune the S2T model. This training
process is iterated until the performance on hold-out data is no
longer improved.

Leveraging the deep learning technique, deep generative
models have been proposed for unsupervised learning, such as
the variational auto-encoder (VAE) [33] and generative adversarial
networks (GANs) [34]. The VAE net follows the auto-encoder
framework, in which there is an encoder to map the input to a



Fig. 8. Joint training of S2T and T2S NMT models. m means the mth epoch; Y 0 is the translation of the source monolingual data X; X 0 is the translation of the target
monolingual data Y .

M. Zhou et al. / Engineering 6 (2020) 275–290 281
semantic vector, and a decoder to reconstruct the input. Unlike the
original auto-encoder methods, a VAE assumes that the distribu-
tion of the generated semantic vectors should be as close as possi-
ble to a standard normal distribution. Similar to the VAE nets,
GANs also have two parts: a generator, which uses a given seman-
tic vector to generate the output, and a discriminator, which tries
to distinguish between the generated samples and the real sam-
ples. With an adversarial training loss function, the generator tries
to output samples that are similar to real ones, in order to fool the
discriminator, while the discriminator tries to distinguish between
the real and fake samples. A great deal of research work has
attempted to apply VAEs and GANs to natural language-
generation tasks [35,36].

Without using a bilingual corpus, but only using a small dic-
tionary and a large monolingual corpus, unsupervised learning
methods can be used for MT methods [37]. This method uses the
joint training method to boost the S2T and T2S translation models
jointly with the source and target monolingual corpus by generat-
ing a pseudo bilingual corpus. As there is no real bilingual data, the
generated pseudo data may contain errors and noise, which will be
reinforced in the subsequent iterative training process, when such
examples are used for the model training. To deal with this prob-
lem, Ref. [38] introduced statistical machine translation (SMT)
models as posterior regularization (PR) to filter this noise. The
SMT and NMT models are optimized jointly and boost each other
incrementally in a unified expectation–maximization framework.
The whole procedure of this method consists of two parts (as
shown in Fig. 9 [38]): model initialization and unsupervised NMT
with SMT as PR. Given a language pair X–Y, two initial SMT models
are first built with language models pre-trained using monolingual
data, and word translation tables are inferred from cross-lingual
embeddings. Then the initial SMT models will generate pseudo
data to warm up two NMT models. The NMT models are trained
using not only the pseudo data generated by SMT models, but also
those generated by reverse NMT models with the joint training
method. After that, the NMT-generated pseudo data is fed to SMT
models. As PR, SMT models filter out noise and infrequent errors
by constructing strong phrase tables with good and frequent trans-
lation patterns, and then generate denoised pseudo data to guide
the subsequent NMT training. Benefiting from this process, NMT
then produces better pseudo data for SMT to extract phrases of
higher quality, while compensating for the deficiency in smooth-
ness inherent in SMT via back-translation. The NMT and SMT mod-
els boost each other until final convergence. Compared with the
work presented in Ref. [37], this method can significantly improve
the translation results on four translation tasks with gaps of 1.4
BLEU points from French to English, 3.5 BLEU points from English
to French, 3.1 BLEU points from German to English, and 2.2 BLEU
points from English to German. Ref. [39] further introduced GPT
methods to the unsupervised NMT tasks and proposed a
cross-lingual language model pre-training to achieve the new
state-of-the-art performance.

3.3. Multitask learning

Multitask learning attempts to leverage the information from
other related tasks to improve the performance on the desired task.
When a large amount of training data for the desired task is not
available, a training corpus of related tasks can be introduced using
a multitask learning approach. Ref. [10] proposed a unified neural
network architecture with various NLP tasks including POS, chunk-
ing, named entity recognition, and semantic role labeling (SRL).
This method learns internal representations based on vast amounts
of mostly unlabeled data. This work was a milestone in learning
features automatically with a neural network for NLP, which
inspired the subsequent deep learning trend that has been applied
in the field of NLP.

Ref. [40] proposed treating ten NLP tasks, including QA, MT,
summarization, natural language inference, and so forth, as QA
tasks, and built a multitask question-answering network (MQAN)
to model them in a unified framework, as shown in Fig. 10 [40].
The inputs of the MQAN are a question and a context document.
This input format is natural for the original QA task. For the MT
task, the question is roughly ‘‘What is the translation from lan-
guage X to language Y?” and the context is the source language
sentence. For the summarization, the question is ‘‘What is the sum-
mary?” and the context is the document to be summarized. The
question and the context are encoded with BiLSTM, followed by
dual co-attention to build conditional representations for both
sequences. These conditional representations are processed with
another two BiLSTMs, followed by two self-attention networks
and two BiLSTMs to obtain the final encoding representations of
the question and context. To generate the output, an attention
mechanism is leveraged to focus on the necessary encoding hidden
states, and a multi-pointer generator is used to decide whether to
copy from the question and context or generate a new word. This
model achieved a state-of-the-art result on WikiSQL with a 72.4%
EM and an 80.4% execution accuracy. With multitask learning,
the MQAN can lead to better generalization for zero-shot learning
on the zero-shot relation extraction task on dataset QA-ZRE, with a
gain of 11 F1 points over the highest single-task models. Ref. [41]
proposed MT-deep neural network (DNN), a multitask learning-
based DNN based on BERT. By adding more specific tasks into the
pre-training, MT-DNN obtains very good results on ten natural lan-
guage understanding (NLU) tasks, including SNLI, SciTail, and eight
out of nine GLUE [42] tasks. The effectiveness of MT-DNN also
shows that different but related tasks can boost each other via
multitask learning.



Fig. 9. Illustration of the unsupervised NMT training [38].

Fig. 10. Network structure of the MQAN [40]. a is the attention weights; c and k are the scalars to switch the output distributions.

282 M. Zhou et al. / Engineering 6 (2020) 275–290
3.4. Pre-trained models and transfer learning

Task-unspecific models are pre-trained first, and can then be
transferred to specific tasks with a fine-tuning process. With pre-
trained word embedding or sentence embedding, transfer learning
can be used on top of them to fine-tune the task-specific models
[43]. In recent years, many pre-trained models have been pro-
posed, such as word2vec [6,8], ELMo [9], GPT [3], BERT [4], and
XLNet [5], as introduced in Section 2.1, which are commonly used
in NLP tasks such as MRC and QA.

Zero-shot and one-shot transfer learning have been explored
with no or only a few labeled samples. Ref. [44] proposed a zero-
shot transfer learning method for text classification, in which the
model is trained to learn relationships, sentences, and categories
with a large dataset, and is then transferred to new categories with
no training data. Ref. [45] used semantic parsing to map natural
language explanations on classifying concepts to formal
constraints relating features grounded in the observed attributes
of unlabeled data. Such constraints are combined using PR to yield
a classifier for the zero-shot classification task. For some tasks in
which there is a large amount of training data in a rich language
(e.g., English), but little or no data in other languages (e.g., Roma-
nian), cross-lingual transfer learning can be used to transfer the
model trained in the rich language to a model for the rare language.
Multitask learning over different MT language pairs can be trans-
ferred to enable zero-shot translation for language pairs with no
bilingual corpus [46].

Another direction for transferring a pre-trained model to a wide
variety of new and unseen situations is ‘‘learning to learn”—also
known as meta learning. First proposed by Ref. [47], meta learning
has recently become a hot topic, and is used for pre-trained model
transfer, hyper-parameter tuning, and neural network optimiza-
tion. By directly optimizing an initial model that can be effectively
transferred with the help of a few examples, model agnostic meta



M. Zhou et al. / Engineering 6 (2020) 275–290 283
learning (MAML) [48] has been proposed to learn a task agnostic
model. The learned model can be quickly adapted (with a small
number of update steps) to several related tasks. Ref. [49]
leveraged MAML to optimize NMT models using 18 European
languages. By treating each example as a unique pseudo-task, the
original structured query-generation task is reduced to a few-
shot problem for which meta learning is used, bringing significant
performance improvement.

Ref. [50] introduced an effective multitask learning framework
to train a transferable sentence representation by combining a set
of objectives including multi-lingual NMT, natural language infer-
ence, constituency parsing, and skip-thought vectors (i.e., to predict
the previous or following sentence), and the learned representation
can be transferred to a low-complexity classifier on a new task. By
switching between different tasks, the gated recurrent unit (GRU)
based RNN network can learn different aspects of the sentence.
With the NMT and parsing tasks, syntactic properties can be better
encoded. Sentence characteristics such as length and word order
have been found to be better encoded by parsing. The learned rep-
resentations are visualized using dimensionality reduction and
nearest-neighbor exploration on three different datasets (movie
reviews, question type classification, and Wikipedia classification),
and sentences are found to be clustered reasonably well according
to the labels. The learned representations are used as features
(without parameters updating), and transferred to sentiment-
classification tasks (movie reviews, product reviews, subjectivity/
objectivity classification) with gains of 1.1%–2.0%, question type
classification with gains of 6%, and paraphrase identification
(Microsoft research paraphrase corpus) with gains of 2.3%.

3.5. Active learning

Active learning can interactively query the user in order to
selectively label the data, with the aim of maximizing the perfor-
mance gain and minimizing the labeling costs. To deal with the
low-resource problem, one straightforward method is to label
more data, which presents the challenge of identifying which data
should be labeled in order to improve the model performance best.
To deal with this problem, active learning methods [51] can be
used to automatically and iteratively select useful instances to be
labeled to maximize the model performance. With the labeled
data, the learning model can be trained and applied to the unla-
beled data. Based on the labeled result, the active selection model
can predict a best selection for the editors to label based on signals
such as uncertainty. The new labeled data can be used to obtain a
better learning model, and this process can be iterated until an
acceptable performance is achieved.

3.6. Summary

In this section, we reviewed several typical training methods,
including supervised, semi-supervised, and unsupervised learning;
multitask learning; transfer learning; and active learning. When
enough labeled data is available, the supervised method can
achieve very good performances on many NLP tasks, such as MT
and MRC. For other tasks, where there is insufficient labeled data,
we have introduced several learning methods to enhance the
model performance, including semi-supervised and unsupervised
learning with unlabeled data, transfer learning with pre-trained
models, multitask learning with labeled data of other tasks, and
active learning to annotate the most valuable samples. To improve
the performance of NLP models, we think that more research
should be conducted in the following topics:

� The topological training process. Although multitask learn-
ing and transfer learning can leverage the data from related
tasks to enhance models for a desired task, the relationship
between various NLP tasks should be further studied. For
instance, a topological training process should be developed
in the future, based on which the pre-trained models on fun-
damental tasks (e.g., language models, POS, and parsing) can
be better transferred to higher-level tasks (e.g., MT and QA).

� Reinforcement learning (RL). RL has also been explored in
many NLP model training cases, but it seems that it has not
achieved satisfactory results. For example, in the dialog system
for custom service, the error or loss is not available in each turn
of the dialog session. The only information is whether the tick-
ets are booked successfully or not, or howmany turns are used.
For such scenarios, where only a long-term reward is available,
RL can be used to learn a policy network to maximize the
expected reward. The RL process still suffers from the expo-
nential search space with respect to the length of the natural
language sentence [52].

� GANs. Even though many research efforts have tried to apply
GANs to NLP tasks, such as MT [53] and natural language gen-
eration [54], there are several challenges. It is difficult for the
discriminator to pass the gradient signal to the generator
directly, as it does in image and speech processing, due to
the discrete output of the generator. And the GAN is very sen-
sitive to the random initialization and small deviations from
the best hyper-parameter choice [36]. Such challenges
amplify the difficulty of GAN training.

4. Reasoning

Neural approaches have achieved good progress on many NLP
tasks, such as MT andMRC. However, they still have some unsolved
problems. For example, most neural network models behave like a
black box, which never tells how and why a system has solved a
problem in the way it did. Besides, for tasks such as QA and dialog
systems, only knowing the literal meanings of input utterances is
often not enough. To generate the right responses, external and/or
context knowledge may also be needed. To build such interpretable
and knowledge-driven systems, reasoning is necessary.

In this paper, we define reasoning as a mechanism that can
generate answers to unseen questions by manipulating existing
knowledge with inference techniques. Based on this definition, a
reasoning system (Fig. 11) should have two components:

� Knowledge, such as a knowledge graph, common sense, rules,
assertions extracted from raw texts, etc.;

� An inference engine, to generate answers to questions by
manipulating existing knowledge.

Next, we use two examples to illustrate why reasoning is
important to NLP tasks.

The first example is a knowledge-based QA task. Given the
question ‘‘When was Bill Gates’ wife born?,” the QA model must
parse it into the logical form for answer generation:
kxky: DateOfBirthðy; xÞ ^ SpouseðBill Gates; yÞ, where a knowledge
graph-based reasoning is needed. Starting with this question,
new questions can be further appended to this context, such as:
‘‘What’s his/her job?” To answer such context-aware questions,
co-reference resolution determines which person is meant by
‘‘his/her.” This is also a reasoning procedure, which needs the com-
monsense knowledge that ‘‘his” can only refer to men and ‘‘her”
can only refer to women.

The second example is a dialog task. For example, if a user says
‘‘I am very hungry now,” it would be more suitable to reply: ‘‘Let
me recommend some good restaurants to you” instead of ‘‘Let
me recommend some good movies to you.” This also requires rea-
soning, as the dialog system should know that hungry will lead to
actions such as looking for restaurants instead of watching films.

In the remainder of this section, we will first introduce two
types of knowledge: the knowledge graph and common sense.



Fig. 11. Overview of a reasoning system. ILP: integer linear programming; MLN: Markov logic network.

284 M. Zhou et al. / Engineering 6 (2020) 275–290
Next, we will describe typical inference approaches, which have
been or are being studied in the NLP area.

4.1. Knowledge

Knowledge plays an important role in reasoning-driven NLP
tasks. It may refer to any information (e.g., dictionaries, rules,
knowledge graphs, annotations of specific tasks) that can guide
NLP systems to complete specific tasks. Here, we focus on two
types of knowledge for reasoning: the knowledge graph and com-
mon sense.

4.1.1. The knowledge graph
A knowledge graph is a directed graph fV ; Eg, which consists of

nodes V and edges E. Each node v 2 V denotes an entity. Each edge
e 2 E denotes a predicate between the two entities it connects
with. Each triple < v1; e;v2 > denotes a fact, where v1;v2 2 V
and e 2 E.

For example, < Microsoft; Founder; Bill Gates > is a knowledge
triple from a knowledge graph, where Microsoft is the subject
entity, Bill Gates is the object entity, and Founder is the predicate
indicating that Bill Gates is the founder of Microsoft. A knowledge
graph is essential to those NLP tasks where parsing a natural lan-
guage into machine-executable structured queries is indispen-
sable, such as semantic searches, knowledge-based QA, and task-
oriented dialog.

The approaches of knowledge graph construction can be
grouped into three categories:

� Handcrafted methods. In these methods, knowledge graphs
are manually constructed by human experts. Knowledge
graphs built in this way, such as WordNet [55], are usually
of high quality, but cover limited facts. In addition, the cost
of maintenance is usually very high.

� Crowdsourcing methods. In these methods, community
members construct knowledge graphs in a collaborative
way. Compared with handcrafted methods, knowledge
graphs built in this way, such as DBpedia [56], Freebase
[57], and WikiData [58], are large scale and high quality.

� Information-extraction methods. These methods extract
structured knowledge from web documents. KnowItAll [59],
YAGO [60], and NELL [61] are representatives of this method.
Compared with the first two approaches, these methods can
extract more knowledge from free texts; however, they also
bring a lot of noise into the resulting knowledge graphs.

4.1.2. Common sense
Common sense refers to common knowledge of things in the

world, such as their properties, relationships, and interactions,
which all humans are expected to know. Such knowledge is mostly
location-, language-, and culture-independent, and is rarely explic-
itly expressed in texts.

For example, ‘‘a father is a male” is property common sense,
‘‘the sun is in the sky” is spatial common sense, and ‘‘plants grow
from seeds” is procedural common sense.

Building a commonsense knowledge base (CKB) is difficult. At
present, there are three major methods (which are similar to the
knowledge graph), but all suffer from significant problems.

� Handcrafted methods. CYC [62] is a CKB built by human
experts in this way, which focuses on things that are rarely
written down or said, such as ‘‘every human has exactly one
father and exactly one mother.” The goal of CYC is to enable
AI systems to perform human-like reasoning and to be
less brittle when confronting unseen situations. The sizes
of CKBs such as CYC are limited, as human labeling is
expensive.

� Crowdsourcing methods. ConceptNet [63] is a CKB built by
absorbing knowledge from knowledge graphs such as Word-
Net, Wiktionary, Wikipedia, DBpedia, and Freebase. Compared
with CYC, ConceptNet covers many more assertions. However,
a large portion of the ConceptNet assertions is actually not
common sense, as it comes from existing knowledge bases
and are about ‘‘named entities,” such as Bill Gates and White
House, instead of ‘‘common nouns,” such as human and
building.

� Information extraction methods. WebChild [64] is a CKB
containing commonsense assertions that connect nouns with
adjectives via fine-grained relations such as hasShape and
hasTaste. Such assertions are extracted from web documents
based on seed assertions from WordNet. Due to extraction
errors, WebChild contains a great deal of noise. It now covers
more than four million commonsense assertions.

4.2. Inference engine

Although this paper focuses on neural NLP methods, we will
still start from two typical non-neural inference methods: integer
linear programming (ILP) and Markov logic networks (MLNs), as
they have been studied a great deal and have already been used
in some NLP tasks. After that, we will introduce memory networks
as a typical neural inference method. We will also describe their
applications in two reasoning tasks: semantic parsing and
response generation, which are based on the knowledge graph
and common sense, respectively.

4.2.1. Non-neural inference methods: ILP and MLN
ILP is an optimization framework that maximizes a linear objec-

tive function over a finite set of variables x, subject to a set of linear
inequality constraints:



M. Zhou et al. / Engineering 6 (2020) 275–290 285
maxmize wTx
subject to Ax � b
Fig. 13. Sub-optimal results without using ILP. E: entities occurred in the sentence;
R: relations between entities.

Fig. 14. Optimal results when using ILP.
and x 2 Zn

where w is parameters to be optimized; A and b are pre-defined
parameters in constraints; n is the number of variables.

The constraints used in ILP can be considered as prior knowl-
edge, and the optimization procedure is to reason out a global pre-
diction by incorporating learned models based on such prior
knowledge. This method can be used in the information extraction
task [65], whose objective is to recognize named entities and their
relationships from texts. Fig. 12 gives an example.

Usually, an NER and a relation extractor (RE) will be trained
separately and used in this task in a cascaded manner. First, the
NER detects entity mentions from input and assigns possible types
to each mention. Then, the RE assigns possible relations to each
entity pair. Five prediction tables are generated for these three
named entities and two relations, which are shown in Fig. 13.

If local predictions with the highest probabilities are always
chosen, errors will occur. For example, the type of Brooklyn will
be recognized as Person and the relation between Adam and Anne
will be classified as PlaceOfBirth. However, if it is known that the
object type of PlaceOfBirth should be Location instead of Person,
such errors can be avoided. Inference with such prior knowledge
is a reasoning procedure, which can be done by ILP.

In order to obtain correct predictions based on the above five
local prediction tables, we formulate it as an ILP problem and
manually define the following four constraints: ① Each entity
mention can be assigned an entity type only once. ② Each entity
pair can be assigned a relation only once. ③ The type assignment
to each entity mention should be consistent with the assignments
to its neighboring relations. For example, when Anne is tagged as
Person, if type of Brooklyn is also recognized as Person, then the
relation assignment between Anne and Brooklyn cannot be
PlaceOfBirth, as its object entity type should be Location, which
is inconsistent with Person. ④ The relation assignment to each
entity pair should be consistent with the assignments to these
two entities. Based on local NER and RE outputs and these four
constraints, ILP can obtain the global optimized output (Fig. 14).

This time, the type of Brooklyn is recognized as Location, as it is
consistent to the relation (i.e., PlaceOfBirth) assigned to Anne and
Brooklyn. Similarly, the relation between Adam and Anne can be
correctly recognized as SpouseOf.

ILP can be used in many NLP tasks, such as QA [66–68] and
semantic role labeling [69,70]. It is especially useful when the size
of the training data is small, as prior knowledge (used as con-
straints in ILP) can play more important roles in such scenarios.
However, this framework is still independent from existing neural
network methods.

An MLN [71] L ¼ ðFl;wlÞ is defined as a set of pairs, where each
Fl is a first-order logic formula and wl is the weight of Fl. It combi-
nes probability and first-order logic in a unified model and can
generate a Markov network ML;C by grounding all variables in for-
mulas to constants C ¼ fc1; . . . ; cjcjg. The basic idea of an MLN is to
Fig. 12. An example of an information-extraction task.
soften hard constraints in first-order logic: When a world violates
one formula in the knowledge graph, it is less probable, but not
impossible.

Ideally, an MLN can be applied to reasoning-required NLP tasks
by the following steps. Here, we use the famous ‘‘friend smoking”
case as an example:

(1) Given a world described in natural language, parse it into a
set of first-order logic formulas F ¼ fF1; :::; F jFjg. For example, given
two sentences:

Smoking causes cancer
Friendshave similar smokinghabits

The sentences are parsed into two first-order logic formulas:

8xSmokes xð Þ ) CancerðxÞ
8x; y Friends x; yð Þ ) Smokes xð Þ () Smokes yð Þð Þ
In practice, each formula has a weight, which should be learned

from existing relational databases by algorithms such as the
pseudo-likelihood algorithm [72].

(2) Given L and a set of constants C, a Markov network ML;C is
defined as follows: ① ML;C contains one binary node for each pos-
sible grounding of each predicate in L. The value of the node is 1 if
the ground atom is true, and 0 otherwise. ② ML;C contains one fea-
ture for each possible grounding of each formula Fi in L. The value
of this feature is 1 if the ground formula is true, and 0 otherwise.
The weight of the feature is the wi associated with Fi in L. For



286 M. Zhou et al. / Engineering 6 (2020) 275–290
example, given two constants Anna(A) and Bob(B), the ground ML;C

is described in Fig. 15.
(3) Given a set of evidences, such as Friends A;Bð Þ ¼ 1 and

Cancer Að Þ ¼ 1, reason the most likely state of the world, such as
Smokes Að Þ ¼ ?, Smokes Bð Þ ¼ ?, and Cancer Bð Þ ¼ ?. This inference
procedure can answer questions such as ‘‘What is the probability
that Anna smokes, given that Anna has cancer?” In practice, algo-
rithms such as MC-SAT [66] can be used to solve such inference
tasks.

As a statistical relational learning approach, the MLN has been
applied to some NLP tasks already, such as semantic parsing [73],
information extraction [74], and entity disambiguation [75]. How-
ever, it is still difficult to apply it to real tasks, as the size of the
ground Markov network is usually very large, which will raise
the computation issue. For example, based on the analysis of Ref.
[76], the size of the corresponding ground Markov networks is
exponential in jCj, which is the number of constants. If the con-
stants come from a practical knowledge base (such as Freebase,
which contains 39 million entities), the inference complexity in
the resulting ground Markov networks will be enormous. In addi-
tion, similar to ILP, the MLN is independent of neural models. The
necessities and solutions of designing neural versions of the MLN
are still worthy of discussion and study.
4.2.2. Neural inference methods: MemNN and its variants
A memory network (MemNN) [77–79] is a neural network

architecture in which reasoning can be supported by processing
knowledge stored in a long-term memory component multiple
times before outputting a result.

We take the key-value memory networks (KV-MemNN) pro-
posed by Ref. [79] as an example to show how this framework
can support reasoning. Fig. 16 [79] gives an overview of the KV-
MemNN.
Fig. 15. An example of a Markov network.

Fig. 16. Overview of KV-MemNN [79]. a means the answer of the question; B means a d
which is used to update the representation of the input question in jth hop.
In KV-MemNN, the long-termmemory is represented as pairs of
vectors k1;v1ð Þ; :::; ðkM ;vMÞ, where kM denotes a key and vM

denotes the value of kM . Knowledge from both structured
knowledge bases and unstructured texts can be represented as
key-value pairs. For example, given a triple < e1; r; e2 > from a
knowledge graph, the key is composed of the subject entity e1
and predicate r, and the value is the object entity e2. Given an input
question x, a small subset of key-value pairs kh1 ;vh1

� �
; :::; ðkhN

;vhN Þ
will first be retrieved from memory based on their similarities
with x. Then, a relevance probability is computed to each key as
follows:

phi
¼ softmax AUX xð Þ � AUK khi

� �� � ð3Þ

where UX xð Þ and UK khi
� �

map x and khi into feature maps of dimen-
sion D, and A is a d� D matrix. d means a hyperparameter of the
model, and there is no physical meaning for it. Next, an output vec-
tor o is generated by taking the weighted sum of the value vectors
based on their corresponding relevance probabilities:

o ¼
X

i
phi

AUV vhi

� � ð4Þ
If a task needs multi-turn reasoning based on the stored knowl-

edge, then the input question x will be updated to

q2 ¼ R1ðqþ oÞ ð5Þ

where q ¼ AUX xð Þ is the question vector, and R1 is a d� d matrix.
This procedure will repeat H times using different Rj and the final
vector qHþ1 will be used to predict outputs.

MemNN is widely used in many reasoning-required NLP tasks.
For example, Ref. [77] first proposed the MemNN framework and
applied it to bAbI, which is a reasoning-required QA task. Ref.
[79] proposed KV-MemNN and evaluated it on two QA datasets:
WikiMovies and WikiQA [80]. Ref. [81] described an end-to-end
goal-oriented dialog method based on MemNN.

In a broader sense, MemNN is a special case of memory-
augmented neural networks (MANNs), which extend the capabili-
ties of neural networks by coupling them to external memory
resources. In such methods, neural models interact with memory
by attentional processes. As MANNs have many variants, we use
two examples to illustrate the applications of a MANN in two
reasoning-required tasks (i.e., semantic parsing and response
generation), which are based on the knowledge graph and on
commonsense knowledge, respectively.

Ref. [82] proposed a unified semantic parsing approach to han-
dle a knowledge-graph-based conversational QA task, in which a
dialog memory motivated by MemNN is introduced to cope with
� D matrix, which can be constrained to be identical to A. Rj means a d � d matrix,



Table 1
List of actions, each consisting of a semantic category, function symbol, and list of
arguments.

Action Operation Note

A1�A3 start ! set numj jbool
A4 set ! find set; rð Þ Set of entities with a r edge to e
A5 num ! count setð Þ Total number of set
A6 bool ! in e; setð Þ Whether e is in set
A7 set ! union set1; set2ð Þ Union of set1 and set2
A8 set ! inter set1; set2ð Þ Intersection of set1 and set2
A9 set ! diff set1; set2ð Þ Instances included in set1 but not

included in set2
A10 set ! larger set; r;numð Þ Subset of set linking to more than

num entities with relation r
A11 set ! less set; r;numð Þ Subset of set linking to less than num

entities with relation r
A12 set ! equal set; r;numð Þ Subset of set linking to num entities

with relation r
A13 set ! argmax set; rð Þ Subset of set linking to most entities

with relation r
A14 set ! argmin set; rð Þ Subset of set linking to least entities

with relation r
A15 set ! ef g
A16�A18 e rj jnum ! constant Instantiation for entity e, predicate r

or number num
A19�A21 set numj jbool ! actioni�1 Replicate previous action sequence

(w/o or w/ instantiation)

M. Zhou et al. / Engineering 6 (2020) 275–290 287
co-reference and ellipsis phenomena in multi-turn interactions.
Two examples are given below.

In order to answer the first question:
(1) Where was Donald Trump born?
The semantic parser first generates its logical form:

€ex:PlaceOfBirth ðDonald Trump; xÞ
and then executes it against a knowledge base to get the answer
New York. This is called context-independent semantic parsing,
as only the current question is needed.

In order to answer the second question:
(2) Where did he graduate from?
Both questions (1) and (2) are needed, as ‘‘he” in question (2)

refers to Donald Trump in question (1). This is called context-
dependent semantic parsing.

Given a context-independent question, (e.g., question (1)),
semantic parsing is done as an action sequence prediction task.
Starting from a root symbol ‘‘Start,” a grammar-guided decoder
recursively rewrites the leftmost nonterminal (i.e., the semantic
category) in the logical form by applying a legitimate action. It ter-
minates when no nonterminal is left. Fig. 17 illustrates this
procedure.

A list of actions is defined in Table 1, where each action consists
of three parts: a semantic category; a function symbol, which
might be omitted; and a list of arguments, each of which can be
a semantic category, a constant, or an action subsequence. The first
15 actions (A1–A15) are designed to cover typical operations in
semantic parsing. We take A5 as an example: "num" is the seman-
tic category, which denotes the returned type of countðsetÞ;
‘‘count” is the function symbol, which returns the number of ele-
ments in set; and ‘‘set” is the only argument of count. A16–A18
are designed to instantiate entity e, predicate r, and number
num, respectively. A19–A21 are designed to reuse the previously
predicated action subsequences.

Given a context-dependent question (e.g., question (2)), a dialog
memory is used to maintain all entities, predicates, and action sub-
sequences that come from either the generated logical forms of
previous questions or the predicted answers. Such contents are
considered to be the conversation history and will be used to
restore the missing information (co-reference and entity/relation
ellipsis) of the current question. For the example in Fig. 18, as
‘‘he” in current question actually refers to Donald Trump in the
previous question, the semantic parser can copy the action subse-
quence (i.e., A15 eDT) from the dialog memory to complete the log-
ical form generation.

Experiments are conducted on the CSQA dataset [83], which
consists of 2�105 dialogs with 1.6�106 turns over 1.28�107 enti-
ties from WikiData, and this method achieves state-of-the-art
results on both context-independent and context-dependent
questions.

Ref. [84] proposed a commonsense-aware encoder–decoder
framework for the response-generation task in open-domain dia-
log systems. ConceptNet is used in this work to understand the
background information of a given user utterance and then facili-
tate response generation.

In the encoder part, each word xi in the input utterance
X ¼ x1; :::; xn is used to retrieve a graph from the entire common-
Fig. 17. An example of context-independen
sense knowledge base. The retrieved graph is then encoded as a
graph vector gi, which is the weighted sum of the head and tail vec-
tors of the triples contained in the graph. Here, each attention
weight measures the association of a relation to its head entity
and tail entity. Lastly, the embedding of each input word vec xið Þ
is obtained by concatenating the word vector and the graph vector
vec xið Þ ¼ ½w xið Þ; gi�, and is fed to the GRU cell of the encoder. In this
procedure, the graph vector is obtained based on an MemNN-like
method.

In the decoder part, a knowledge–aware generator is designed
to generate a response by making full use of the retrieved graphs.
This part plays two roles: ① It attentively reads the retrieved
graphs to obtain a graph–aware context vector, and uses the vector
to update the decoder’s state. This procedure is similar to MemNN.
② It adaptively chooses a generic word or an entity from the
retrieved graphs for response generation.

Experiments are conducted on the Commonsense Conversation
dataset, and this method achieves state-of-the-art results com-
pared with the traditional sequence-to-sequence approach with
copy.

With deep learning, different types of knowledge can be repre-
sented and used in neural inference methods for various reasoning
tasks. We also see that such approaches still lack sufficient reason-
ing flexibilities. For example, the reasoning hop in MemNN is fixed
without considering different input contents, which can be further
improved in the future.

4.3. Reasoning–aware shared tasks

Based on different types of knowledge used, we classify recently
proposed reasoning tasks into four categories:
t semantic parsing. DT: Donald Trump.



Fig. 18. An example of content-dependent semantic parsing.

288 M. Zhou et al. / Engineering 6 (2020) 275–290
� Tasks based on knowledge graphs. These tasks include
WikiSQL [85], LC-QuAD [86], CSQA [83], and Complex-
WebQuestions [87], in which various types of questions, such
as multi-hop, multi-constraint, superlative, and multi-turn
questions, must be answered based on knowledge graphs.
In these tasks, reasoning is required and is done by perform-
ing semantic parsing explicitly.

� Tasks based on commonsense knowledge. These tasks
include the Winograd Schema Challenge [88], ARC [89], Com-
monsenseQA [90], and ATOMIC [91], in which questions can
be answered based on different types of commonsense
knowledge, such as temporal, spatial, and causal common
sense. In these tasks, reasoning can either be performed
explicitly by designing specific inference models, or per-
formed implicitly by end-to-end training.

� Tasks based on texts. These tasks include HotpotQA [92],
NarrativeQA [93], MultiRC [94], and CoQA [95], in which
answers can be obtained by reasoning across paragraphs,
documents, or conversation turns. Currently, state-of-the-art
results on these tasks are achieved by end-to-end neural
models. One reason for the current poor performance is that
existing knowledge bases still suffer from low coverage of
open-domain natural language texts.

� Tasks based on both texts and visual content. These tasks
include GQA [96] and VCR [97], in which the goal is to answer
a natural language question based on a given image. As the
questions in these two datasets are either multi-hop ques-
tions or require commonsense knowledge, a model needs a
strong reasoning ability to achieve a good performance.

As data annotation is expensive, these datasets are often small
in size, or big but generated automatically using templates. The
models learned from such datasets lack strong generalization
abilities. Recently, pre-trained models such as ELMo, GPT, BERT,
and XLNet have shown good generalization performances across
different NLP tasks. For the next step, it is practical to fine-tune
existing pre-trained models with reasoning–aware datasets with
the aim of building more generalized reasoning systems.
4.4. Summary

This section briefly reviewed the progress of reasoning in NLP.
Typical (non-neural and neural) inference methods were intro-
duced, including ILP, MLN, and MemNN, all of which have been
successfully used in various NLP tasks, such as QA, dialog systems,
and information extraction.

In order to build more powerful reasoning systems, some chal-
lenges remain:

� Knowledge extraction. Due to the limited coverage of exist-
ing knowledge sources, only a small portion of queries issued
to current human–computer interaction systems (such as
search, QA, and dialog engines) can be fully understood and
addressed. Therefore, knowledge extraction is still a long-
term research task in order to acquire high-quality knowledge
to support reasoning.

� Reasoning with explicit knowledge and pre-trained mod-
els. Typical reasoning approaches are built based on explicit
knowledge bases. Recently, pre-trained models such as GPT,
BERT, and XLNet have shown strong abilities on reasoning-
required NLP tasks, such as the Winograd Schema Challenge
[88] and SWAG [98]. Therefore, the question of how to com-
bine explicit knowledge and pre-trained models into a unified
reasoning framework is worth exploring.

� Datasets and metrics. Although the latest approaches can
perform well on many NLP tasks, it is still difficult to tell
how much reasoning capability an NLP model has. In order
to measure such abilities, large-scale datasets and specific
metrics should be built for the community.

In general, reasoning is critical to advance NLP, as reasoning can
bring existing knowledge into all NLP tasks for better natural lan-
guage understanding and generation.
5. Conclusion

This paper reviewed the latest progress of neural NLP from
three perspectives: modeling, learning, and reasoning. In general,
NLP is entering a new era, in which neural network-based models
dominate in research and application systems. For rich-source
tasks with enough training data (e.g., NMT and SQuAD), supervised
learning can do pretty well. For low-resource tasks with little train-
ing data, semi-supervised and unsupervised learning, multitask
learning, transfer learning, and active learning can be used; these
methods can either generate more pseudo training data for model
training, or leverage the knowledge learned from existing models
and tasks. Different reasoning mechanisms have also been
explored and used for tasks in which reasoning is required, such
as commonsense QA, chitchat, and dialog systems.

Looking ahead, we can see many exciting directions. For exam-
ple, pre-trained models such as GPT, BERT, and XLNet have already
shown strong performances on various NLP tasks, and there is no
doubt that they will continue to evolve for both natural language
understanding and generation tasks. It is also worth exploring
how to integrate such pre-trained models into various NLP tasks
with transfer learning, multitask learning, meta learning, and so
on. Research on memory-argument neural networks and their vari-
ants will further advance reasoning approaches, with the help of
new knowledge-extraction techniques. Furthermore, by combing
NLP with multi-modal tasks such as speech recognition, image/
video captioning, and QA, new research and application scenarios
will emerge. It is an incredibly exciting time to work on NLP from
research to applications.



M. Zhou et al. / Engineering 6 (2020) 275–290 289
Compliance with ethics guidelines

Ming Zhou, Nan Duan, Shujie Liu, and Heung-Yeung Shum
declare that they have no conflict of interest or financial conflicts
to disclose.
References

[1] Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical
image database. In: Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition; 2009 Jun 20–25; Miami, FL, USA; 2009. p. 248–
55.

[2] Xiong W, Wu L, Alleva F, Droppo J, Huang X, Stolcke A. The Microsoft 2017
conversational speech recognition system. In: Proceedings of the 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing; 2018 Apr
15–20; Calgary, AB, Canada; 2018. p. 5934–8.

[3] Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language
understanding by generative pre-training [Internet]. [cited 2019 Apr 29].
Available from: https://s3-us-west-2.amazonaws.com/openai-assets/research-
covers/language-unsupervised/language_understanding_paper.pdf.

[4] Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the
2019 Annual Conference of the North American Chapter of the Association for
Computational Linguistics; 2019 Jun 2–7; Minneapolis, MN, USA; 2019.
p. 4171–86.

[5] Yang ZL, Dai Z, Yang YM, Carbonell J, Salakhutdinov R, Le QV. XLNet:
generalized autoregressive pretraining for language understanding. 2019.
arXiv:1906.08237.

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. 2013. arXiv:1301.3781.

[7] Firth JR. A synopsis of linguistic theory 1930–1955. In: Firth JR. Studies in
linguistic analysis. Oxford: Blackwell; 1957. p. 1–31.

[8] Pennington J, Socher R, Manning C. GloVe: global vectors for word
representation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing; 2014 Oct 25–29; Doha, Qatar;
2014. p. 1532–43.

[9] Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep
contextualized word representations. In: Proceedings of the 2018 Annual
Conference of the North American Chapter of the Association for
Computational Linguistics; 2018 Jun 1–6; New Orleans, LA, USA; 2018.

[10] Collobert R, Weston J. A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th
International Conference on Machine Learning; 2008 Jul 5–9; Helsinki,
Finland; 2008. p. 160–7.

[11] Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H,
et al. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. 2014. arXiv:1406.1078.

[12] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to
align and translate. 2014. arXiv:1409.0473.

[13] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. In: Proceedings of the 31rd Neural Information
Processing Systems; 2017 Dec 4–9; Long Beach, CA, USA; 2017.

[14] Yu M, Dredze M. Improving lexical embeddings with semantic knowledge. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics; 2014 Jun 23–25; Baltimore, MD, USA; 2014. p. 545–50.

[15] Zhang J, Luan H, Sun M, Zhai F, Xu J, Zhang M, et al. Improving the transformer
translation model with document-level context. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing; 2018 Oct
31– Nov 4; Brussels, Belgium; 2018. p. 533–42.

[16] Wu Y, Wu W, Xing C, Xu C, Li Z, Zhou M. A sequential matching framework for
multi-turn response selection in retrieval-based chatbots. Comput Linguist
2019;45(1):163–97.

[17] Gu J, Bradbury J, Xiong C. Li VOK, Socher R. Non-autoregressive neural machine
translation. 2017. arXiv:1711.02281.

[18] Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002;38
(4):367–78.

[19] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature 1986;323(9):533–6.

[20] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning
and stochastic optimization. J Mach Learn Res 2011;12(Jul):2121–59.

[21] Zeiler MD. ADADELTA: an adaptive learning rate method. 2012.
arXiv:1212.5701.

[22] Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings
of the 2015 International Conference on Learning Representations; 2015 May
7–9; San Diego, CA, USA; 2015.

[23] Shen S, Cheng Y, He Z, He W, Wu H, Sun M, et al. 2016. Minimum risk training
for neural machine translation. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics; 2016 Aug 7–12; Berlin,
Germany; 2016.

[24] Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics; 2002 Jul 7–12; Philadelphia, PA,
USA; 2002. p. 311–8.
[25] Zhang Z, Wu S, Liu S, Li M, Zhou M, Xu T. Regularizing neural machine
translation by target-bidirectional agreement. In: Proceedings of the 31rd
AAAI Conference on Artificial Intelligence; 2019 Jan 27–Feb 1; Honolulu, HI,
USA; 2019.

[26] Xia Y, Tian F, Wu L, Lin J, Qin T, Yu N, et al. Deliberation networks: sequence
generation beyond one-pass decoding. In: Proceedings ot the 31rd Neural
Information Processing Systems; 2017 Dec 4–9; Long Beach, CA, USA; 2017.

[27] Zhang W, Feng Y, Meng F, You D, Liu Q. Bridging the gap between training and
inference for neural machine translation. 2019. arXiv:1906.02448.

[28] Zhu XJ. Semi-supervised learning literature survey. Madison: University of
Wisconsin-Madison; 2005.

[29] Cheng Y, Xu W, He Z, He W, Wu H, Sun M, et al. Semi-supervised learning for
neural machine translation. 2016. arXiv:1606.04596.

[30] He D, Xia Y, Qin T, Wang L, Yu N, Liu T, et al. Dual learning for machine
translation. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems; 2016 Dec 5–10; Barcelona, Spain; 2016.
p. 820–8.

[31] Sennrich R, Haddow B, Birch A. Improving neural machine translation models
with monolingual data. 2015. arXiv:1511.06709.

[32] Zhang Z, Liu S, Li M, Zhou M, Chen E. Joint training for neural machine
translation models with monolingual data. In: Proceedings of the 32nd AAAI
Conference on Artificial Intelligence; 2018 Feb 2–7; New Orleans, LA, USA;
2018.

[33] Kingma DP, Welling M. Auto-encoding variational bayes. 2013.
arXiv:1312.6114.

[34] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative adversarial nets. In: Proceedings on Neural Information Processing
Systems (NIPS 2014); 2014 Dec 8–13; Montreal, QC, Canada; 2014. pp. 2672–
80.

[35] Hu W, Tan Y. Generating adversarial malware examples for black-box attacks
based on GAN. 2017. arXiv:1702.05983.

[36] Semeniuta S, Severyn A, Gelly S. On accurate evaluation of GANs for language
generation. 2018. arXiv:1806.04936.

[37] Lample G, Conneau A, Denoyer L. Ranzato M. Unsupervised machine
translation using monolingual corpora only. 2017. arXiv:1711.00043.

[38] Ren S, Zhang Z, Liu S, Zhou M, Ma S. Unsupervised neural machine translation
with SMT as posterior regularization. 2019. arXiv:1901.04112.

[39] Conneau A, Lample G. Cross-lingual language model pretraining. 2019.
arXiv:1901.07291.

[40] McCann B, Keskar NS, Xiong C, Socher R. The natural language decathlon:
multitask learning as question answering. 2018. arXiv:1806.08730.

[41] Liu X, He P, Chen W, Gao J. Multi-task deep neural networks for natural
language understanding. 2019. arXiv:1901.11504.

[42] Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR. GLUE: a multi-task
benchmark and analysis platform for natural language understanding. In:
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP; 2018 Oct 31– Nov 4; Brussels, Belgium;
2018. p. 353–5.

[43] Zoph B, Le QV. Neural architecture search with reinforcement learning. 2016.
arXiv:1611.01578.

[44] Pushp PK, Srivastava MM. Train once, test anywhere: zero-shot learning for
text classification. 2017. arXiv:1712.05972.

[45] Srivastava S, Labutov I, Mitchell T. Zero-shot learning of classifiers from
natural language quantification. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics; 2018 Jul 15–20; Melbourne,
VIC, Australia; 2018. p. 306–16.

[46] Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, et al. Google’s
multilingual neural machine translation system: enabling zero-shot
translation. Trans Assoc Comput Linguist 2017;5:339–51.

[47] Schmidhuber J. Evolutionary principles in self-referential learning: on
learning how to learn [dissertation]. München: Technische Universität
München; 1987.

[48] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of
deep networks. 2017. arXiv:1703.03400.

[49] Gu JT, Wang Y, Chen Y, Cho K, Li VOK. Meta-learning for low-resource neural
machine translation. 2018. arXiv:1808.08437.

[50] Subramanian S, Trischler A, Bengio Y, Pal CJ. Learning general purpose
distributed sentence representations via large scale multi-task learning.
2018. arXiv:1804.00079.

[51] Settles B. Active learning literature survey. Madison: University of Wisconsin-
Madison; 2009.

[52] He J, Chen J, He X, Gao J, Li L, Deng L, et al. Deep reinforcement learning with a
natural language action space. 2015. arXiv:1511.04636.

[53] Wu L, Xia Y, Zhao L, Tian F, Qin T, Lai J, et al. Adversarial neural machine
translation. 2017. arXiv:1704.06933.

[54] Alzantot M, Sharma Y, Elgohary A, Ho BJ, Srivastava M, Chang KW. Generating
natural language adversarial examples. 2018. arXiv:1804.07998.

[55] Miller GA. WordNet: a lexical database for English. Commun ACM 1995;38
(11):39–41.

[56] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: a nucleus
for a web of open data. In: Proceedings of the 2007 International Semantic
Web Conference; 2007 Nov 11–15; Busan, Korea; 2007. p. 722–35.

[57] Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively
created graph database for structuring human knowledge. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data;
2008 Jun 9–12; Vancouver, BC, Canada; 2008. p. 1247–50.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0080
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0080
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0080
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0090
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0090
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0095
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0095
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0100
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0100
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0140
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0140
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0230
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0230
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0230
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0235
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0235
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0235
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0255
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0255
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0275
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0275


290 M. Zhou et al. / Engineering 6 (2020) 275–290
[58] Vrandečić D, Krötzsch M. Wikidata: a free collaborative knowledgebase.
Commun ACM 2014;57(10):78–85.

[59] Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T, et al. Web-
scale information extraction in knowitall: (preliminary results). In:
Proceedings of the 13th International Conference on World Wide Web; 2004
May 17–20; New York, NY, USA; 2004. p. 100–10.

[60] Fabian MS, Gjergji K, Gerhard WE. YAGO: a core of semantic knowledge
unifying WordNet and Wikipedia. In: Proceedings of the 16th International
Conference on World Wide Web; 2007 May 8–12; Banff, AL, Canada; 2007. p.
697–706.

[61] Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER Jr, Mitchell TM. Toward
an architecture for never-ending language learning. In: Proceedings of the
24th AAAI Conference on Artificial Intelligence; 2010 Jul 11–15; Atlanta, GA,
USA; 2010.

[62] Lenat DB. CYC: a large-scale investment in knowledge infrastructure. Commun
ACM 1995;38(11):33–8.

[63] Liu H, Singh P. ConceptNet—a practical commonsense reasoning tool-kit. BT
Technol J 2004;22(4):211–26.

[64] Tandon N, De Melo G, Weikum G. Acquiring comparative commonsense
knowledge from the web. In: Proceedings of the 28th AAAI Conference on
Artificial Intelligence; 2014 Jul 27–31; Quebec City, QC, Canada; 2014.

[65] Roth D, Yih W. A linear programming formulation for global inference in
natural language tasks. In: Proceedings of the 8th Conference on
Computational Natural Language Learning; 2004 May 6–7; Boston, MA, USA;
2004.

[66] Khashabi D, Khot T, Sabharwal A, Clark P, Etzioni O, Roth D. Question
answering via integer programming over semi-structured knowledge. 2016.
arXiv: 1604.06076.

[67] Khot T, Sabharwal A, Clark P. Answering complex questions using open
information extraction. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics; 2017 Jul 30–Aug 4; Vancouver, BC,
Canada; 2017. p. 311–6.

[68] KhashabiD,KhotT, SabharwalA,RothD.Questionansweringasglobal reasoning
over semantic abstractions. In: Proceedings of the 32nd AAAI Conference on
Artificial Intelligence; 2018 Feb 2–7; New Orleans, LA, USA; 2018.

[69] Punyakanok V, Roth D, Yih WT, Zimak D. Semantic role labeling via integer
linear programming inference. In: Proceedings of the 20th International
Conference on Computational Linguistics; 2004 Aug 23–27; Geneva,
Switzerland; 2004.

[70] Srikumar V, Roth D. A joint model for extended semantic role labeling. In:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing; 2011 Jul 27–31; Edinburgh, UK; 2011. p. 129–39.

[71] Richardson M, Domingos P. Markov logic networks. Mach Learn 2006;62(1–
2):107–36.

[72] Besag J. Statistical analysis of non-lattice data. Statistician 1975;24(3):179–95.
[73] Poon H, Domingos P. Unsupervised semantic parsing. In: Proceedings of the

2009 Conference on Empirical Methods in Natural Language Processing; 2009
Aug 6–7; Singapore, Singapore; 2009.

[74] Pawar S, Bhattacharya P, Palshikar GK. End-to-end relation extraction using
Markov logic networks. 2017. arXiv:1712.00988.

[75] Dai HJ, Tsai RTH, Hsu WL. Entity disambiguation using a Markov-logic
network. In: Proceedings of the 5th Internatioanl Joint Conference on Natural
Language Processing; 2011 Nov 8–13; Chiang Mai, Thailand; 2011. p. 846–55.

[76] Culotta A, McCallum A. Practical Markov logic containing first-order
quantifiers with application to identity uncertainty. In: Proceedings of the
Workshop on Computationally Hard Problems and Joint Inference in Speech
and Language Processing; 2006 Jun 9; New York, NY, USA; 2006. p. 41–8.

[77] Weston J, Bordes A, Chopra S, Rush AM, van Merriënboer B, Joulin A, et al.
Towards AI-complete question answering: a set of prerequisite toy tasks.
2015. arXiv:1502.05698.

[78] Sukhbaatar S, Szlam A, Weston J, Fergus R. End-to-end memory networks. In:
Proceedings of the 2015 Neural Information Processing Systems Conference;
2015 Dec 7–12; Montreal, QC, Canada; 2015.

[79] Miller AH, Fisch A, Dodge J, Karimi AH, Bordes A, Weston J. Key-value memory
networks for directly reading documents. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing; 2016 Nov
1–5; Austin, TX, USA; 2016. p. 1400–9.
[80] Yang Y, Yih WT, Meek C. WikiQA: a challenge dataset for open-domain
question answering. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing; 2015 Sep 17–21; Lisbon, Portugal;
2015. p. 2013–8.

[81] Bordes A, Boureau YL, Weston J. Learning end-to-end goal-oriented dialog. In:
Proceedings of the 2017 International Conference on Learning
Representations; 2017 Apr 24–26; Toulon, France; 2017.

[82] Guo D, Tang D, Duan N, Zhou M, Yin J. Dialog-to-action: conversational
question answering over a large-scale knowledge base. In: Proceedings of the
2018 Neural Information Processing Systems Conference; 2018 Dec 3–8;
Montreal, QC, Canada; 2018. p. 2942–51.

[83] Saha A, Pahuja V, Khapra MM, Sankaranarayanan K, Chandar S. Complex
sequential question answering: towards learning to converse over linked
question answer pairs with a knowledge graph. In: Proceedings of the 32nd
AAAI Conference on Artificial Intellgence; 2018 Feb 2–7; New Orleans, LA,
USA; 2018.

[84] Zhou H, Young T, Huang M, Zhao H, Xu J, Zhu X. Commonsense knowledge
aware conversation generation with graph attention. In: Proceeding of the
27th International Joint Conference on Artificial Intelligence; 2018 Jul 13–19;
Stockholm, Sweden; 2018. p. 4623–9.

[85] Zhong V, Xiong C, Socher R. Seq2SQL: generating structured queries from
natural language using reinforcement learning. 2017. arXiv:1709.00103.

[86] Trivedi P, Maheshwari G, Dubey M, Lehmann J. LC-QuAD: a corpus for complex
question answering over knowledge graphs. In: Proceedings of the 2017
International Semantic Web Conference; 2017 Oct 21–25; Vienna, Austria;
2017. p. 210–8.

[87] Talmor A, Berant J. The web as a knowledge-base for answering complex
questions. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technology; 2018 Jun 3–5; New Orleans, LA, USA; 2018. p. 641–51.

[88] Levesque HJ, Davis E, Morgenstern L. The winograd schema challenge.
In: Proceedings of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning; 2012 Jun 10–14; Rome, Italy;
2012.

[89] Clark P, Cowhey I, Etzioni O, Khot T, Sabharwal A, Schoenick C, et al. Think you
have solved question answering? Try ARC, the AI2 reasoning challenge. 2018.
arXiv:1803.05457.

[90] Talmor A, Herzig J, Lourie N, Berant J. CommonsenseQA: a question answering
challenge targeting commonsense knowledge. 2018. arXiv:1811.00937.

[91] Sap M, Le Bras R, Allaway E, Bhagavatula C, Lourie N, Rashkin H, et al. ATOMIC:
An atlas of machine commonsense for if-then reasoning. In: Proceedings of the
31rd AAAI Conference on Artificial Intelligence; 2019 Jan 27–Feb 1; Honolulu,
HI, USA; 2019.

[92] Yang Z, Qi P, Zhang S, Bengio Y, CohenWW, Salakhutdinov R, et al. HotpotQA: a
dataset for diverse, explainable multi-hop question answering. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing;
2018 Oct 31–Nov 4; Brussels, Belgium; 2018. p. 2369–80.

[93] Kočiský T, Schwarz J, Blunsom P, Dyer C, Hermann KM, Melis G, et al. The
narrativeQA reading comprehension challenge. Trans Assoc Comput Linguist
2018;6:317–28.

[94] Khashabi D, Chaturvedi S, Roth M, Upadhyay S, Roth D. Looking beyond the
surface: a challenge set for reading comprehension over multiple sentences.
In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technology;
2018 Jun 3–5; New Orleans, LA, USA; 2018. p. 252–62.

[95] Reddy S, Chen D, Manning CD. CoQA: a conversational question answering
challenge. 2018. arXiv:1808.07042.

[96] Hudson DA, Manning CD. GQA: a new dataset for real-world visual reasoning
and compositional question answering. 2019. arXiv:1902.09506.

[97] R. Zellers Y. Bisk A. Farhadi Y. Choi From recognition to cognition: visual
commonsense reasoning. In: Proceedings of the 2019 IEEE Conference on
Computer Vision and Pattern Recognition; 2019 Jun 16–20; Long Beach, CA,
USA; 2019. 6720–31.

[98] Zellers R, Bisk Y, Schwartz R, Choi Y. SWAG: a large-scale adversarial dataset
for grounded commonsense inference. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing; 2018 Oct 31–Nov 4;
Brussels, Belgium; 2018. p. 93–104.

http://refhub.elsevier.com/S2095-8099(19)30492-8/h0290
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0290
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0310
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0310
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0315
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0315
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0355
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0355
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0360
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0380
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0380
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0380
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0380
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0390
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0390
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0390
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0465
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0465
http://refhub.elsevier.com/S2095-8099(19)30492-8/h0465

	Progress in Neural NLP: Modeling, Learning, and Reasoning
	1 Introduction
	2 Modeling
	2.1 Word embedding and sentence embedding
	2.1.1 Context-independent word embedding
	2.1.2 RNN-based context‐aware word embedding
	2.1.3 Self-attention-based context‐aware word embedding
	2.1.4 CNN-based context‐aware word embedding
	2.1.5 Sentence embedding

	2.2 Sequence-to-sequence modeling
	2.2.1 Task of sequence-to-sequence modeling
	2.2.2 Encoder–decoder framework
	2.2.3 Attention-based encoder–decoder framework
	2.2.4 All-attention-based encoder–decoder framework

	2.3 Summary

	3 Learning
	3.1 Supervised learning
	3.2 Semi-supervised and unsupervised learning
	3.3 Multitask learning
	3.4 Pre-trained models and transfer learning
	3.5 Active learning
	3.6 Summary

	4 Reasoning
	4.1 Knowledge
	4.1.1 The knowledge graph
	4.1.2 Common sense

	4.2 Inference engine
	4.2.1 Non-neural inference methods: ILP and MLN
	4.2.2 Neural inference methods: MemNN and its variants

	4.3 Reasoning–aware shared tasks
	4.4 Summary

	5 Conclusion
	Compliance with ethics guidelines
	References


