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This work introduces an optimal transportation (OT) view of generative adversarial networks (GANs).
Natural datasets have intrinsic patterns, which can be summarized as the manifold distribution principle:
the distribution of a class of data is close to a low-dimensional manifold. GANs mainly accomplish two
tasks: manifold learning and probability distribution transformation. The latter can be carried out using
the classical OT method. From the OT perspective, the generator computes the OT map, while the
discriminator computes the Wasserstein distance between the generated data distribution and the real
data distribution; both can be reduced to a convex geometric optimization process. Furthermore, OT
theory discovers the intrinsic collaborative—instead of competitive—relation between the generator
and the discriminator, and the fundamental reason for mode collapse. We also propose a novel generative
model, which uses an autoencoder (AE) for manifold learning and OT map for probability distribution
transformation. This AE-OT model improves the theoretical rigor and transparency, as well as the
computational stability and efficiency; in particular, it eliminates the mode collapse. The experimental

results validate our hypothesis, and demonstrate the advantages of our proposed model.
© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Generative adversarial networks (GANs) have emerged as one
of the dominant approaches for unconditional image generation.
When trained on several datasets, GANs are able to produce realis-
tic and visually appealing samples. GAN methods train an uncondi-
tional generator that regresses real images from random noises
and a discriminator that measures the difference between the gen-
erated samples and real images. GANs have received various
improvements. One breakthrough was achieved by combing opti-
mal transportation (OT) theory with GANs, such as the Wasserstein
GAN (WGAN) [1]. In the WGAN framework, the generator com-
putes the OT map from the white noise to the data distribution,
and the discriminator computes the Wasserstein distance between
the generated data distribution and the real data distribution.
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E-mail address: gu@cs.stonybrook.edu (X. Gu).
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1.1. Manifold distribution hypothesis

The great success of GANs can be explained by the fact
that GANs effectively discover the intrinsic structures of real
datasets, which can be formulated as the manifold distribution
hypothesis: A specific class of natural data is concentrated on a
low-dimensional manifold embedded in the high-dimensional
background space [2].

Fig. 1 shows the manifold structure of the MNIST database.
Each handwritten digit image has the dimensions 28 x 28, and
is treated as a point in the image space R’%4. The MNIST data-
base is concentrated close to a low-dimensional manifold. By
using the t-SNE manifold embedding algorithm [3], the MNIST
database is mapped onto a planar domain, and each image is
mapped onto a single point. The images representing the same
digit are mapped onto one cluster, and 10 clusters are color
encoded. This demonstrates that the MNIST database is
distributed close to a two-dimensional (2D) surface embedded
in the unit cube in R%4,
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Fig. 1. Manifold distribution of the MNIST database. (a) Some handwritten digitals in MNIST database; (b) the embedded result of the digitals in two-dimensional (2D) plane

by t-SNE algorithm. The x and y relative coordinates are normalized.

1.2. Theoretic model of GANs

Fig. 2 illustrates the theoretic model of GANs. The real data dis-
tribution v is concentrated on a manifold ~ embedded in the ambi-
ent space y. (X, v) together show the intrinsic structure of the real
datasets. A GAN model computes a generator map g, from the
latent space Z to the manifold X, where 0 represents the parameter
of a deep neural network (DNN). { is a Gaussian distribution in the
latent space, and g, pushes forward { to p, The discriminator
calculates a distance between the real data distribution v and
the generated distribution p,, such as the Wasserstein distance
W o, v), which is equivalent to the Kontarovich’s potential
¢¢ (&: the parameter of the discriminator).

Despite GANs’ advantages, they have critical drawbacks. In the-
ory, the understanding of the fundamental principles of deep
learning remains primitive. In practice, the training of GANs is
tricky and sensitive to hyperparameters; GANs suffer from mode
collapsing. Recently, Mescheder et al. [4] studied nine different
GAN models and variants showing that gradient-descent-based
GAN optimization is not always locally convergent.

According to the manifold distribution hypothesis, a natural
dataset can be represented as a probability distribution on a
manifold. Therefore, GANs mainly accomplish two tasks:
(D manifold learning—namely, computing the decoding/encoding
maps between the latent space and the ambient space; and
@ probability distribution transformation, either in the latent or
image space, which involves transformation between the given
white noise and the data distribution.

Fig. 3 shows the decomposition of the generator map gy = h-T,
where h: Z — X is the decoding map from the latent space to the
data manifold X in the ambient space, the probability distribution

D: W (U, v), @,

Fig. 2. The theoretic model of GANs. G: generator; D: discriminator.

Fig. 3. The generator map is decomposed into a decoding map h and a transporta-
tion map T. Ty( is the push-forward measure induced by T.

transformation map T: Z — Z. The decoding map h is for manifold
learning, and the map T is for measure transportation.

1.3. Optimal transportation view

OT theory [5] studies the problem of transforming one
probability distribution into another distribution in the most
economical way. OT provides rigorous and powerful ways to
compute the optimal mapping to transform one probability
distribution into another distribution, and to determine the
distance between them [6].

As mentioned before, GANs accomplish two major tasks:
manifold learning and probability distribution transformation.
The latter task can be fully carried out by OT methods directly. In
detail, in Fig. 3, the probability distribution transformation map T
can be computed using OT theory. The discriminator computes
the Wasserstein distance W1y, v) between the generated data
distribution and the real data distribution, which can be calculated
directly using the OT method.

From the theoretical point of view, the OT interpretation of
GANs makes part of the black box transparent, the probability
distribution transformation is reduced to a convex optimization
process using OT theory, the existence and uniqueness of the
solution have theoretical guarantees, and the convergence rate
and approximation accuracy are fully analyzed.

The OT interpretation also explains the fundamental reason for
mode collapse. According to the regularity theory of the Monge-
Ampeére equation, the transportation map is discontinuous on
some singular sets. However, DNN can only model continuous
functions/mappings. Therefore, the target transportation mapping
is outside of the functional space representable by GANs. This
intrinsic conflict makes mode collapses unavoidable.
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The OT interpretation also reveals a more complicated relation
between the generator and the discriminator. In the current GAN
models, the generator and the discriminator compete with each
other without sharing the intermediate computational results.
The OT theory shows that under the L? cost function, the optimal
solution of the generator and the optimal solution of the
discriminator can be expressed by each other in a closed form.
Therefore, the competition between the generator and the
discriminator should be replaced by collaboration, and the
intermediate computation results should be shared to improve
the efficiency.

1.4. Autoencoder-optimal transportation model

In order to reduce the training difficulty of GANs and, in partic-
ular, to avoid mode collapses, we propose a simpler generative
model based on OT theory: an autoencoder (AE)-OT model, as
shown in Fig. 4.

As mentioned before, the two major tasks for generative models
are manifold learning and probability distribution transformation.
The AE computes the encoding map, fy: Z — X, and the decoding
map g:;: 2 — Z, for the purpose of manifold learning. The OT
map, T: Z — Z, transforms the white noise { to the data distribution
push-forwarded by the encoding map, (fy)s?.

The AE-OT model has many merits. From a theoretical stand-
point, the OT theory has been well established and is fully under-
stood. By decoupling the decoding map and the OT map, it is
possible to improve the theoretical rigor of generative models
and make part of the black box transparent. In practice, the OT
map is reduced to a convex optimization problem, the existence
and the uniqueness of the solution are guaranteed, and the training
process will not be trapped in the local optimum. The convex
energy associated with the OT map has an explicit Hessian matrix;
hence, the optimization can be performed using Newton’s method
with second-order convergence, or using quasi-Newton’s method
with superlinear convergence. In contrast, current generative mod-
els are based on the gradient descent method with linear conver-
gence; the number of unknowns is equal to that of the training
samples, in order to avoid the over-paramerization problem; the
error bound of the OT map can be fully controlled by the sampling
density in the Monte Carlo method; the hierarchical algorithm
with self-adaptivity further improves the efficiency; and the paral-
lel OT map algorithm can be implemented using a graphics pro-
cessing unit (GPU). Most importantly, the AE-OT model can
eliminate mode collapse.

Fig. 4. A generative model, the AE-OT model, combining an AE and an OT map.

1.5. Contributions

This work interprets the GAN model using OT theory. GANs can
accomplish two major tasks: manifold learning and probability
distribution transformation. The latter task can be carried out
using OT methods. The generator computes an OT map, and the
discriminator calculates the Wasserstein distance between the
generated data distribution and the real data distribution. Using
Brenier’s theory, the competition between the generator and the
discriminator can be replaced by collaboration; according to
the regularity theory of the Monge-Ampére equation, the
discontinuity of the transportation map causes mode collapse.
We further propose to decouple manifold learning and probability
distribution transformation by means of an AE-OT model, which
makes part of the black box transparent, improves the training
efficiency, and prevents mode collapse. The experimental results
demonstrate the efficiency and efficacy of our method.

This paper is organized as follows: Section 2 briefly reviews the
most related works in OT and GANs; Section 3 briefly introduces
the fundamental theories in OT and the regularity theory of the
Monge-Ampeére equation; Section 4 introduces a variational
framework for computing OT, which is suitable for a deep learning
setting; Section 5 analyzes the GAN model from the OT perspec-
tive, explains the collaborative (instead of competitive) relation
between the generator and the discriminator, and reveals the
intrinsic reason for mode collapse; Section 6 reports the experi-
mental results; and the paper concludes in Section 7.

2. Previous works
2.1. Optimal transportation

The OT problem plays an important role in various kinds of
fields. For detailed overviews, we refer readers to Refs. [7] and [8].

When both the input and output domains are Dirac masses, the
OT problem can be treated as a standard linear programming (LP)
task. In order to extend the problem to a large dataset, the authors
of Ref. [9] added an entropic regularizer into the original LP prob-
lem; as a result, the regularized problem could be quickly com-
puted with the Sinkhorn algorithm. Solomon et al. [10] then
improved the computational efficiency by the introduction of fast
convolution.

The second type of method for solving the OT problem com-
putes the OT map between continuous and point-wise measures
by minimizing a convex energy [6] through the connection
between the OT problem and convex geometry. In Ref. [11],
the authors then linked the convex-geometry-viewed OT to the
Kantorovich duality by means of the Legendre dual theory. The
proposed method is an extension of this method in high
dimension. If both the input and output are continuous densities,
solving the OT problem is equivalent to solving the famous
Monge-Ampére equation, which is a highly nonlinear elliptic
partial differential equation (PDE). With an additional virtual time
dimension, this problem can be relaxed through computational
fluid dynamics [12-14].

2.2. Generative models

In the machine learning field, generative models, which are cap-
able of generating complex and high-dimensional data, are
recently becoming increasingly important and popular. To be
specific, generative models are largely utilized to generate new
images from given image datasets. Several methods, including
deep belief networks [15] and deep Boltzmann machines [16], have
been introduced in early stages. However, the training in these
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methods is generally tricky and inefficient. Later, a huge break-
through was achieved from the scheme of variational AEs (VAEs)
[17], where the decoders approximate real data distributions from
a Gaussian distribution using a variational approach [17,18]. Vari-
ous recent works following this scheme have been proposed,
including adversarial AEs (AAEs) [19] and Wasserstein AEs (WAEs)
[20]. Although VAEs are relatively simple to train, the images they
generate look blurry. To some extent, this is because the explicitly
expressed density functions may fail to represent the complexity of
a real data distribution and learn the high-dimensional data distri-
bution [21,22]. Other non-adversarial training models have been
proposed, including PixelCNN [23], PixelRNN [24], and WaveNet
[25]. However, due to their auto-regressive nature, the generation
of new samples cannot be paralleled.

2.3. Adversarial generative models

GANs [26] were proposed to solve the disadvantages of the
above models. Although they are a powerful tool for generating
realistic-looking samples, GANs can be difficult to train and suffer
from mode collapsing. Various improvements have been proposed
for better GAN training, including changing the loss function (e.g.,
the WGAN [1]) and regularizing the discriminators to be Lipschitz
by clipping [1], gradient regularization [4,27]|, or spectral
normalization [28]. However, the training of GANs is still tricky
and requires careful hyperparameter selection.

2.4. Evaluation of generative models

The evaluation of generative models remains challenging. Early
works include probabilistic criteria [29]. However, recent genera-
tive models (particularly GANs) are not amenable to such evalua-
tion. Traditionally, the evaluation of GANs relies on visual
inspection of a handful of examples or a user study. Recently, sev-
eral quantitative evaluation criteria were proposed. The inception
score (IS) [30] measures both diversity and image quality. How-
ever, it is not a distance metric. To overcome the shortcomings of
the IS, the Fréchet inception distance (FID) was introduced in Ref.
[31]. The FID has been shown to be robust to image corruption,
and correlates well with visual fidelity. In a more recent work
[32], precision and recall for distributions (PRD) was introduced
to measure both precision and recall between generated data dis-
tribution and real data distribution. In order to fairly compare the
GANSs, a large-scale comparison was performed in Ref. [33], where
seven different GANs and VAEs were compared under a uniform
network architecture, and a common baseline for evaluation was
established.

2.5. Non-adversarial models

Various non-adversarial models have also been proposed
recently. Generative latent optimization (GLO) [34] employs an
“encoder-less AE” approach in which a generative model is trained
with a non-adversarial loss function, achieving better results than
VAEs. Implicit maximum likelihood estimation (IMLE) [35] pro-
posed an iterative closest points (ICP)-related generative model
training approach. Later, Hoshen and Malik [36] proposed genera-
tive latent nearest neighbors (GLANN), which combines the advan-
tages of GLO and GLANN, in which an embedding from the image
space to latent space was first found using GLO, and then a trans-
formation between an arbitrary distribution and latent code was
computed using IMLE.

Other methods directly approximate the distribution transfor-
mation map from the noise space to the image space by means
of DNNs with a controllable Jacobian matrix [37-39]. Recently,
the energy-based models [40-42] have been chosen to model the

image distribution through the Gibbs distribution by representing
the energy function with DNNs. These methods alternatively gen-
erate fake samples using the current models, and then optimize
the model parameters with the generated fake samples and real
samples.

3. Optimal transportation theory

In this section, we introduce basic concepts and theorems in
classic OT theory, with a focus on Brenier’s approach and their gen-
eralization to the discrete setting. Details can be found in Villani’s
book [5].

3.1. Monge’s problem

Suppose X c RY Y cR? are two subsets of d-dimensional
Euclidean space RY, and u and v are two probability measures
defined on X and Y, respectively, with the following density
functions:

p(x) = f(x)dx

v(y) = g(y)dy
Suppose the total measures are equal, u(X) = «(Y); that is

[ roax= [ sy 1)
We only consider maps that preserve the measures.

Definition 3.1 (measure-preserving map). A map T: X — Y is mea-
sure preserving if for any measurable set B C Y, the set T~'(B) is u-
measurable and u[T'(B)] = «B), that is,

fodx— [ gy @
T 1(B) B

The measure-preserving condition is denoted as Tuu = v, where
T4 is the push-forward measure induced by T.

Given a cost function c(x,y): X x Y— R.o, which indicates the
cost of moving each unit mass from the source to the target, the
total transport cost (C;) of the map T: X — Y is defined to be

C = / clx, T(x)]dp(x) 3)

Monge’s problem of OT arises from finding the measure-
preserving map that minimizes the total transport cost.

Problem 3.2 (Monge’s [43]; MP). Given a transport cost function
c(%,y): X x Y- R, find the measure-preserving map T: X — Y that
minimizes the total transport cost:

(MP) min [ cx. T)dpcx) (4)

Tyu=v Jx

Definition 3.3 (OT map). The solutions to Monge’s problem are
called the OT maps. The total transportation cost of an OT map is
called the Wasserstein distance between u and v, denoted as
Wdp, v).

We(p,v) = min [ cx. To0)dpx) (5)
#H=V JXx

3.2. Kontarovich’s approach

Depending on the cost function and measures, an OT map
between (X, 1) and (Y, ) may not exist. Kontarovich relaxed the
transportation maps to transportation plans, and defined the joint
probability measure p(x, ¥): X x Y — R0, such that the marginal
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probability of p is equal to ¢ and v, respectively. Let the projection
maps formally be m,(x,y) = %, my(x,¥) =y, then define the joint mea-
sure class as follows:

Mg, v) = {p®*Y) : X x Y = R: (m)p = 1. (1) o= v} (6)

Problem 3.4 (Kontarovich’s; KP). Given a transport cost function
c(xy): X x Y- R, find the joint probability measure p(x, y):
X x Y- R, that minimizes the total transport cost.

(KP) We(p,v) = min | c(xydpx.y) (7)
pell(py) Jxxy
KP can be solved using the LP method. Due to the duality of LP,
Eq. (7) (the KP equation) can be reformulated as the duality prob-
lem (DP) as follows:

Problem 3.5 (duality; DP). Given a transport cost function
c(xy): X x Y- Ry, find the real functions ¢: X — R and :
Y — R, such that

(DP) max
s

[owdi+ [poidv: ot + vy <cxy)| @)
X Y

The maximum value of Eq. (8) gives the Wasserstein distance.
Most existing WGAN models are based on the duality formulation
under the L' cost function.

Definition 3.6 (c-transformation). The c-transformation of ¢:
X — Ris defined as ¢“: Y — R:

¢°(y) = infle(x.y) - p(x) (9)
The DP can then be rewritten as follows:

(DP) We (1, 7) = max / Px)dp+ / o (y)dv (10)

3.3. Brenier’s approach

For the quadratic Euclidean distance cost, the existence, unique-
ness, and intrinsic structure of the OT map were proven by Brenier
[44].

Theorem 3.7 (Brenier’s [44]). Suppose X and Y are subsets of the
Euclidean space R? and the transportation cost is the quadratic

Euclidean distance c(x,y) = 1/2| x —y ||% Furthermore, u is abso-
lutely continuous and u and v have finite second-order moments

/ % () + / Iy I2do(y) < oo (1)
X Y

then there exists a convex function u: X — R, the so-called Brenier’s
potential, whose gradient map Vu gives the solution to MP:

(Vu), =0 (12)

The Brenier’s potential is unique up to a constant; hence, the
optimal mass transportation map is unique.

Assuming that the Briener potential is C2 smooth, then it is the
solution to the following Monge-Ampére equation:

Pu(x) f(x)
dﬂ(ax,»axj) “gvu@) (13)

For the L? transportation cost c(x,y) = 1/2|| x —y || in RY, the
c-transform and the classical Legendre transform have special
relations.

Definition 3.8 (Legendre transform). Given a function ¢: R" — R,
its Legendre transform is defined as follows:

@' (y) = sup[(xy) — p(x)] (14)

It can be shown that the following relation holds when
c®y) =12 x—y|*

1 o '
SV =00 = 3121 - (x| (1)

Theorem 3.9 (Brenier’s polar factorization [44]). Suppose X and Y
are the Euclidean space RY, y is absolutely continuous with respect
to the Lebesgue measure, and a mapping ¢: X — Y pushes u for-
ward to v, pxu = v, then there exists a convex function u: X — R,
such that ¢ = Vu-s, where s: X —» X is measure preserving,
syl = p. Furthermore, this factorization is unique.

The following theorem is well known in OT theory:

Theorem 3.10 (Villani [5]). Given x and v on a compact convex
domain Q c RY there exists an OT plan p for the cost c(x, y) =
h(x — y), with h strictly convex. It is unique and of the form
(id, Tx)u (id: identity map), provided that u is absolutely continu-
ous and 9L is negligible. Moreover, there exists a Kantorovich’s
potential ¢, and T can be represented as follows:

T(x) =x— (Vh) ' [Vo(x)]

When c(x,y) = 1/2|| x —y ||, we have

= Vu(x)

T(0) = X~ Vo) = V| % - o)

In this case, the Brenier's potential u and the Kantorovich’s
potential ¢ are related by the following:

u® = 31X | - p(x) (16)

3.4. Regularity of OT maps

Let Q and A be two bounded smooth open sets in R% and let
u = fdx and v = gdy be two probability measures on R? such that
flpe o =0 and gl , = 0. Assume that f and g are bounded away
from zero and infinity on € and A, respectively.

3.4.1. Convex target domain
Definition 3.11 (Holder continuous). A real or complex-valued
function f on a d-dimensional Euclidean space satisfies a Hoélder
condition, or is Holder continuous, when there are nonnegative
real constants C, o. > 0, such that |f(x) — f(y)| < C|| x—y ||* for all
x and y in the domain of f.

Definition 3.12 (Holder space). The Hélder space C**((2), where Q
is an open subset of some Euclidean space and k > 0 is an integer,
consists of those functions on £ having continuous derivatives up
to order k and such that the kth partial derivatives are Holder con-

tinuous with exponent o, where 0 < o < 1. C¥*(Q) means the above

loc

conditions hold on any compact subset of Q.

Theorem 3.13 (Caffarelli [45]). If A is convex, then the Brenier’s
potential u is strictly convex; furthermore,

(1)If A <f, g <1/ for some 2> 0, then u € C};%(Q).

(2)If f € C}(£2) and g € CiX(A), with f, g > 0, then u € C,2%(Q2)

loc loc

and (k > 0,0 € (0.1)).

3.4.2. Non-convex target domain

If A is not convex and there exist f and g that are smooth such
that u¢ C'(Q), then the OT map Vu is discontinuous at
singularities.
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Definition 3.14 (subgradient). Given an open set Q c R and a
convex function u: Q — R, for x € 2, the subgradient (subdifferen-
tial) of u at x is defined as follows:

ouRx)={peR":u(z) >uRX) +(pz—x), Vzec 2}

It is obvious that u(x) is a closed convex set. Geometrically, if
p € u(x), then the hyperplane I,,(z) = u(x) + (p,z — x) touches u
from below at x; that is, Iy, < u in Q and I, p(x) = u(x), where I,
is a supporting plane to u at x.

The Brenier’s potential u is differentiable at x if its subgradient
ou(x) is a singleton. We classify the points according to the
dimensions of their subgradients, and define the sets
Zi(u) = {x € RYdim[ou(x)] = k}, k=0,1,2,....d

It is obvious that Xo(u) is the set of regular points, and X (u),
where k > 0, is the set of singular points. We also define the reach-
able subgradients at x as follows:

V.ux) = {’lim Vu(xy)| X, € Zo, X — x}

It is well known that the subgradient is equal to the convex hull
of the reachable subgradient:

ou(x) = Convex hull V,u(x)

Theorem 3.15 (regularity). Let Q, 4 c R be two bounded open
sets, let f, g: RY — R* be two probability densities that are zero out-
side Q and A, and are bounded away from zero and infinity on 2
and A, respectively. Denote by T = Vu: 2 — A the OT map pro-
vided by Theorem 3.7. Then there exist two relatively closed sets
YocQand X Cc AwithXo=2, =0suchthatT: Q\Xg - A\Z 4
is a homeomorphism of class C) for some o > 0.

We call X the singular set of the OT map Vu: Q — A. Fig. 5
illustrates the singularity set structure, computed using the
algorithm based on Theorem 4.2. We obtain the following:

3
Xy = Q{{Z] UZz}, X = Uykv 2= {Xo,X]}
k=0

The subgradient of x, Ou(xo), is the entire inner hole of A, while
du(xq) is the shaded triangle. For each point on yi(t), du[yk(t)] is a
line segment outside A. x; is the bifurcation point of y4, 5, and
3. The Brenier’s potential on X; and X, is not differentiable, and
the OT map Vu on them is discontinuous.

4. Computational algorithm

Brenier’s theorem can be directly generalized to the discrete
situation. In GAN models, the source measure y is given as a
uniform (or Gaussian) distribution defined on a compact convex
domain Q; the target measure v is represented as the empirical
measure, which is the sum of the Dirac measures:

v= Zl/ifs(.)’*%) (17)
pa

where Y = {yq, y», .., ¥n} are training samples, with the weights
S, vi = p(2); & is the characteristic function.

Each training sample y; corresponds to a supporting plane of the
Brenier’s potential, denoted as follows:

Thi(X) = (X,¥;) + hi (18)

where the height h; is an unknown variable. We represent all the
height variables as h = (hq, hy, ..., h,).

An envelope of a family of hyper-planes in the Euclidean space
is a hypersurface that is tangential to each member of the family at
some point, and these points of tangency together form the whole

Fig. 5. Singularity structure of an OT map.

envelope. As shown in Fig. 6, the Brenier’s potential up: 2 — Ris a
piecewise linear convex function determined by h, which is the
upper envelope of all its supporting planes:

U (%) = Max [1y;(x)] = max[(x.y;) + hy (19)

The graph of the Brenier’s potential is a convex polytope. Each
supporting plane mj; corresponds to a facet of the polytope. The
projection of the polytope induces a cell decomposition of €,
where each supporting plane m{(x) projects onto a cell Wi(h), p is

any point in R?:
Q = [JWi(h)nQ, Wi(h) = {p € R|Vuy(p) = y;} (20)
iZ1

The cell decomposition is a power diagram. The p-measure of
W; N Q is denoted as w;(h):

wih) = Wiy 02l = [ ap 1)
W;(h)n@

The gradient map Vu,: 2 — Y maps each cell Wi(h) to a single
point y;:

Vuy: With) >y, i=1,2,....n. (22)

Given the target measure v in Eq. (17), there exists a discrete
Brenier’s potential in Eq. (19) whose projected p volume of each
facet wi(h) is equal to the given target measure ;. This was proved
by Alexandrov [46] in convex geometry.

Theorem 4.1 (Alexandrov [46]). Suppose Q is a compact convex
polytope with a non-empty interior in R", ny, .., m, ¢ R™! are
distinct k unit vectors, the (n + 1)th coordinates are negative, and

", .., U > 0 so that Zf:] v; = vol(£2). Then there exists a convex
polytope P ¢ R™! with the exact k codimension-1 faces Fj, ..., F;
so that m; is the normal vector to F; and the intersection between
Q and the projection of F; has the volume ;. Furthermore, such P

is unique up to vertical translation.

Qu vy
(a) (b)

Fig. 6. (a) Piecewise linear Brenier’s potential (uy) and (b) its Legendre transfor-
mation u;j,. 7r;,;: the Legendre dual of 7y ;; Vuy: the gradient of up; Proj: project map;
Proj*: the projection map in the Legendre dual space.
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Alexandrov’s proof for the existence of the solution is based on
algebraic topology, which is not constructive. Recently, Gu et al. [6]
provided a constructive proof based on the variational approach.

Theorem 4.2 (Ref. [6]). Let i be a probability measure defined on a
compact convex domain Qin R?, and let Y = {y1, y>, ..., ¥} be a set of
distinct points in R% Then for any v;, %, .. v, > 0 with
ST v = W(R2), there exists h = (hy, hy, ..., h,) € R", which is unique
up to adding a constant (c, , ..., ¢), so that wi(h) = v, for all i. The
vector h is the unique minimum argument of the following convex
energy:

h n n
B = [ > windn =Y o, (23)
Jo i i=1
defined on an open convex set
h={heR":w;(h)>0,i=1,2,..,n} (24)
Furthermore, Vu, minimizes the quadratic cost
1
3 |16 Pdu) (25)
Q

among all transport maps T/t = v.
The gradient of the above convex energy in Eq. (23) is given by
the following:

VE(h) = [wi(h) — v1,Wa(h) — va, ..., Wa(h) — v,]" (26)

The ith row and jth column element of the Hessian of the energy
is given by the following:

ow; RWinW;nQ)  ow, i
owi KGN TVE) oW s oW 27
oh = vyl ok 2 oh 27

As shown in Fig. 6, the Hessian matrix has an explicit geometric
interpretation. Fig. 6(a) shows the discrete Brenier’s potential up,
while Fig. 6(b) shows its Legendre transformation u;, using Defini-
tion 3.8. The Legendre transformation can be constructed geomet-
rically: For each supporting plane 7 ; we construct the dual point

7, ; = (¥;, hi); the convex hull of the dual points {n;‘“ Ty o n,*,_n}

is the graph of the Legendre transformation u;,.

The projection of u;, induces a triangulation of Y =
{¥1,¥2,.-,¥a}, which is the weighted Delaunay triangulation. As
shown in Fig. 7, the power diagram in Eq. (20) and the weighted
Delaunay triangulation are Poincaré dual to each other: If, in the
power diagram, Wi(h) and Wj(h) intersect at a (d - 1)-dimensional
cell, then in the weighted Delaunay triangulation, y; connects with
¥;- The element of the Hessian matrix in Eq. (27) is the ratio
between the u volume of the (d - 1) cell in the power diagram
and the length of the dual edge in the weighted Delaunay
triangulation.

The conventional power diagram can be closely related to the
above theorem.

Fig. 7. Power diagram (blue) and its dual-weighted Delaunay triangulation (black).

Definition 4.3 (power distance). Given a point y; ¢ R? with a
power weight /;, the power distance is given by the following:

pow(x.y,) = || x—; |I* = v (28)

Definition 4.4 (power diagram). Given the weighted points
¥1,¥1), -, Vi, ¥p), the power diagram is the cell decomposition

of R:
R? = _Uwi(lzf) (29)

where each cell is a convex polytope:

Wi(y) = {x € RY|pow(x,y,) < pow(x.y,)} (30)

The weighted Delaunay triangulation, denoted as T(y/), is the
Poincaré dual to the power diagram; if W;(y) N W;(y) # ¢, then
there is an edge connecting y; and y; in the weighted Delaunay tri-
angulation. Note that pow(x, y;) < pow(x, ¥;) is equivalent to

)+ (b 19 07) 2 )2 (- 13, 1) (31)

Let hj=1/2 (1//,- —ly; \|2); then we rewrite the definition of
Wi(y) as follows:

Wi(y) = {x € RYx,y:) + h > (x,3;) + hy, j} (32)

In practice, our goal is to compute the discrete Brenier’s poten-
tial Eq. (19) by optimizing the convex energy Eq. (23). For low-
dimensional cases, we can directly use Newton’s method by com-
puting the gradient Eq. (26) and the Hessian matrix Eq. (27). For
deep learning applications, direct computation of the Hessian
matrix is unfeasible; instead, we can use the gradient descend
method or quasi-Newton’s method with superlinear convergence.
The key of the gradient is to estimate the u volume w;(h). This
can be done using the Monte Carlo method: We draw n random
samples from the distribution g, and count the number of samples
falling within W;(h), which is the ratio converging to the y volume.
This method is purely parallel and can be implemented using a
GPU. Moreover, we can use a hierarchical method to further
improve the efficiency: First, we classify the target samples to clus-
ters, and compute the OT map to the mass centers of the clusters;
second, for each cluster, we compute the OT map from the corre-
sponding cell to the original target samples within the cluster.

In order to avoid mode collapse, we need to find the singularity
sets in Q2. As shown in Fig. 8, the target Dirac measure has two clus-
ters; the source is the uniform distribution on the unit planar disk.
The graph of the Brenier’s potential function is a convex polyhe-
dron with a ridge in the middle. The projection of the ridge on
the disk is the singularity set ~(u), and the optimal mapping is
discontinuous on X;. In general cases, if two cells W;(h) and
Wj(h) are adjacent, then we compute the angle between the nor-
mals to the corresponding support planes:

0. — ..¥;)
oyl

If 0;; is greater than a threshold, then the common facet
Wi(h) n Wj(h) is in the discontinuity singular set.

5. GANs and optimal transportation

OT theory lays down the theoretical foundation for GANs. Many
recent works, such as the WGAN [1], gradient penalty WGAN
(WGAN-GP) [27], and relaxed Wasserstein with applications to
GAN (RW-GAN) [47], use the Wasserstein distance to measure
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Fig. 8. Singularity set of the Brenier’s potential function and discontinuity set of the
OT map.

the deviation between the generated data distribution and the real
data distribution.

From the OT perspective, the optimal solutions for the genera-
tor and discriminator are related by a closed form; hence, the gen-
erator and the discriminator should collaborate instead of
compete. More details can be found in Ref. [11]. Furthermore, the
regularity theory of the solutions to the Monge-Ampére equation
can explain the mode collapse in GANs [48].

5.1. Competition versus collaboration

The OT view of the WGAN [1] is illustrated in Fig. 2. According
to the manifold distribution hypothesis, the real data distribution v
is close to a manifold > embedded in the ambient space y. The
generator computes the decoding map g, from the latent space Z
to the ambient space, and transforms the white noise ¢ (i.e., the
Gaussian distribution) to the generated distribution, u,. The
discriminator computes the Wasserstein distance between L,
and the real data distribution », Wy, v), by computing the
Kantorovich’s potential ¢.. Both g, and ¢. are realized by DNNs.

In the training process, the generator improves g, in order to
better approximate v by (gy)«(; the discriminator refines the
Kantorovich’s potential ¢: to improve the estimation of the
Wasserstein distance. The generator and the discriminator
compete with each other, without sharing intermediate
computational results. Under the L! cost function, the alternative
training process of the WGAN can be formulated as the min-max
optimization of expectations:

mﬂin méaXEzN;{@g[go(Z)}} +Ey [0 )]

But if we change the cost function to be L? distance, then
according to Theorem 3.10, at the optimum, the Brenier’s potential
u and the Kontarovich’s potential ¢ are related by a closed form of
Eq. (16), u(x) = 1/2|| x|* — @(x). The generator pursues the OT
map Vu; the discriminator computes ¢. Hence, once the generator
reaches the optimum, the optimal solution for the discriminator
can be obtained without any training, and vice versa.

In more detail, suppose at the kth iteration, the generator map is
gk. The discriminator computes the Kontarovich’s potential ¢,
which gives the Wasserstein distance between the current gener-
ated data distribution (gj) ¢ and the real data distribution »; Vu

gives the OT map from (g¥) ,{ to v Therefore, we obtain the
following:

v = (Vu), [(g’;)#g] = (Vu-gh) L= [(id - vq,{) Qg;;]#g

This means that the generator map can be updated by the
following:

g =(id-Ve,)-g (33)

This conclusion shows that, in principle, the training process of
the generator can be skipped; in practice, the efficiency can be
improved greatly by sharing the intermediate computational
results. Therefore, in designing the architectures of GANs, collabo-
ration is better than competition.

5.2. Mode collapse and regularity

Although GANs are powerful for many applications, they have
critical drawbacks: First, the training of GANs is tricky, sensitive
to hyperparameters, and difficult to converge; second, GANs suffer
from mode collapsing; and third, GANs may generate unrealistic
samples. The difficulties of convergence, mode collapse, and
the generation of unrealistic samples can be explained by the
regularity Theorem 3.15 of the OT map.

According to Brenier’s polar factorization, Theorem 3.9, any
measure-preserving map can be decomposed into two maps, one
of which is an OT map, which is a solution to the Monge-Ampére
equation. According to the regularity Theorem 3.15, if the support
A of the target measure v has multiple connected components—
that is, if » has multiple modes, or A is non-convex—then the OT
map T: 2 — A is discontinuous on the singular set X .

Fig. 9 shows the multi-cluster case: A has two connected com-
ponents, where the OT map T is discontinuous along X;. Fig. 10
shows that even A is connected, albeit non-convex. €2 is a rectan-
gle, A is a dumbbell shape, the density functions are constants, the
OT map is discontinuous, and the singularity set X; =7, U ,.

Fig. 11 shows an OT map between two probability measures in
R3. Both the source measure y and the target measure v are uni-
form distributions; the support of €2 is the unit solid ball, and the
support of A is the solid Stanford bunny. We compute the Brenier’s
potential u: Q — R based on Theorem 4.2. In order to visualize the
mapping, we interpolate the probability measure as follows:

pei=[(1-6)id+tVul,p, 0<t<1

Fig. 11 shows the support of the interpolated measure p,. The
foldings on the surface are the singularity sets, where the OT
map is discontinuous.

In a general situation, due to the complexity of the real data dis-
tributions, the embedding manifold X, and the encoding/decoding
maps, the supports of the target measures are rarely convex; there-
fore, the transportation mapping cannot be globally continuous.

On the other hand, general DNNs, such as rectified linear unit
(ReLU) DNNs, can only approximate continuous mappings. The
functional space represented by ReLU DNNs does not contain the
desired discontinuous transportation mapping. The training pro-
cess or, equivalently, the searching process will lead to three alter-
native situations:

(1) The training process is unstable, and does not converge.

(2) The searching converges to one of the multiple connected
components of A, and the mapping converges to one continuous
branch of the desired transportation mapping. This means that a
mode collapse is encountered.

(3) The training process leads to a transportation map, which
covers all the modes successfully, but also covers the regions
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Fig. 9. Discontinuous OT map, produced by a GPU implementation of an algorithm based on Theorem 4.2: (a) is the source domain and (b) is the target domain. The middle

line in (a) is the singularity set X;.
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Fig. 10. Discontinuous OT map, produced by a GPU implementation of an algorithm based on Theorem 4.2: (a) is the source domain and (b) is the target domain. y; and 7, in

(a) are two singularity sets.
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Fig. 11. OT from the Stanford bunny to a solid ball. The singular sets are the foldings on the boundary surface. (a-d) show the deformation procedure.

outside A. In practice, this will induce the phenomenon of gener-
ating unrealistic samples, as shown in the middle frame of Fig. 12.

Therefore, in theory, it is impossible to approximate OT maps
directly using DNNSs.

5.3. AE-OT model

As shown in Fig. 4, we separate the two main tasks of GANSs:
manifold learning and probability distribution transformation.
The first task is carried out by an AE to compute the encoding/
decoding maps fj, g:; the second task is accomplished using the
explicit variational method to compute the OT map T in the latent
space. The real data distribution v is pushed forward by the encod-
ing map fy, inducing (f;)«v. In the latent space, T maps the uniform
distribution p to (fy)xv.

The AE-OT model has many advantages. In essence, finding the
OT map is a convex optimization problem; the existence and the
uniqueness of the solution are guaranteed. The training process

is stable and has superlinear convergence by using quasi-
Newton’s method. The number of unknowns is equal to that of
the training samples, avoiding over-paramerization. The parallel
OT map algorithm can be implemented using a GPU. The error
bound of the OT map can be controlled by the sampling density
in the Monte Carlo method. The hierarchical algorithm with self-
adaptivity further improves the efficiency. In particular, the AE-
OT model can eliminate mode collapse.

6. Experimental results
In this section, we report our experimental results.
6.1. Training process
The training of the AE-OT model mainly includes two steps:

training the AE and finding the OT map. The OT step is accom-
plished using a GPU implementation of the algorithm, as described
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Fig. 12. Facial images generated by an AE-OT model. (a) Generated realistic facial
transportation map is discontinuous.

in Section 4. In the AE step, during the training process, we adopt
the Adam algorithm [49] to optimize the parameters of the neutral
network, with a learning rate of 0.003, 3, = 0.5, and 8, = 0.999.
When the L2 loss stops descending, which means that the network
has found a good encoding map, we freeze the encoder part and
continue to train the network for the decoding map. The training
loss before and after the freezing of the encoder is shown in Table 1.
Next, in order to find the OT map from the given distribution (here,
we use uniform distribution) to the distribution of latent features,
we randomly sample 100N random points from the uniform distri-
bution to compute the gradient of the energy. Here, N is the num-
ber of latent features of the dataset. Also, in the experiment, 0;; is
set to be different for different datasets. To be specific, for the
MNIST and Fashion-MNIST datasets, 6;; is set to be 0.75, while
for the CIFAR-10 and CelebA datasets, it is set to be 0.68 and
0.75, respectively.

Our AE-OT model was implemented using PyTorch on a Linux
platform. All the experiments were conducted on a GTX1080Ti.

6.2. Transportation map discontinuity test

In this experiment, we want to test our hypothesis: In most real
applications, the support of the target measure is non-convex, the
singularity set is non-empty, and the probability distribution map
is discontinuous along the singularity set.

As shown in Fig. 12, we use an AE to compute the encoding/
decoding maps from the CelebA dataset (X, v) to the latent space
Z; the encoding map fy: 2 — Z pushes forward v to (fy)sv on the
latent space. In the latent space, we compute the OT map based
on the algorithm described in Section 4, T: Z — Z, where T maps
the uniform distribution in a unit cube { to (fy)#2. Then we
randomly draw a sample z from the distribution { and use the
decoding map g:: Z —» 2 to map T(z) to a generated human facial
image g;- T(z). Fig. 12(a) demonstrates the realistic facial images
generated by this AE-OT framework.

Table 1
The L? loss of the AEs before and after the freezing of the encoder.
Situation Dataset
MNIST Fashion-MNIST CIFAR-10 CelebA
Before 0.0013 0.0026 0.0023 0.0077
After 0.0005 0.0011 0.0018 0.0074

images; (b) a path through a singularity. The image in the center of (b) shows that the

If the support of the push-forward measure (fp)z in the latent
space is non-convex, there will be a singularity set X, where
k > 0. We would like to detect the existence of X. We randomly
draw line segments in the unit cube in the latent space, and then
densely interpolate along this line segment to generate facial
images. As shown in Fig. 12(b), we find a line segment }, and gen-
erate a morphing sequence between a boy with a pair of brown
eyes and a girl with a pair of blue eyes. In the middle, we generate
a face with one blue eye and one brown eye, which is definitely
unrealistic and outside X. This result means that the line segment
7 goes through a singularity set X, where the transportation map T
is discontinuous. This also shows that our hypothesis is correct:
The support of the encoded human facial image measure on the
latent space is non-convex.

As a byproduct, we find that this AE-OT framework improves
the training speed by a factor of five and increases the convergence
stability, since the OT step is a convex optimization. Thus, it pro-
vides a promising way to improve existing GANSs.

6.3. Mode collapse comparison

Since the synthetic dataset consists of explicit distributions and
known modes, mode collapse can be accurately measured. We
chose two synthetic datasets that have been studied or proposed
in prior works [50,51]: a 2D grid dataset.

For a choice of the measurement metric of mode collapse, we
adopted three previously used metrics [50,51]. Number of modes
counts the quantity of modes captured by the samples produced
by a generative model. In this metric, a mode is considered as lost
if no sample is generated within three standard deviations of that
mode. Percentage of high-quality samples measures the proportion
of samples that are generated within three standard deviations of
the nearest mode. The third metric, used in Ref. [51], is the reverse
Kullback-Leibler (KL) divergence. In this metric, each generated
sample is assigned to its nearest mode, and we count the his-
togram of samples assigned on each mode. This histogram then
forms a discrete distribution, whose KL divergence with the his-
togram formed by real data is then calculated. Intuitively, this
measures how well the generated samples balance among all
modes regarding the real distribution.

In Ref. [51], the authors evaluated GAN [26], adversarially
learned inference (ALI) [52], minibatch discriminati (MD) [30],
and PacGAN [51] on synthetic datasets with the above three
metrics. Each experiment was trained under the same generator
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architecture with a total of approximately 4 x 10° training param-
eters. The networks were trained on 1 x 10° samples for 400
epochs. For the AE-OT experiment, since the source space and tar-
get space are both 2D, there is no need to train an AE. We directly
compute a semi-discrete OT that maps between the uniform distri-
bution on the unit square and the empirical real data distribution.
Theoretically, the minimum amount of real sample needed for OT
to recover all modes is one sample per mode. However, this may
lead to the generation of low-quality samples during the interpola-
tion process. Therefore, for OT computation, we take 512 real sam-
ples, and new samples are generated based on this map. We note
that, in this case, there are only 512 parameters to optimize in
OT computing, and the optimization process is stable due to the
existence of the convex positive-definite Hessian. Our results are
provided in Table 2, and benchmarks of previous methods are
copied from Ref. [51]. For illustration purposes, we plotted our
results on synthetic datasets along with those of GAN and PacGAN
in Fig. 13.

6.4. Comparison with the state of the art

We designed experiments to compare our proposed AE-OT
model with state-of-the-art generative models, including the
adversarial models evaluated by Lucic et al. in Ref. [33], and the
non-adversarial models studied by Hoshen and Malik in Ref. [36].

For the purpose of fair comparison, we used the same testing
datasets and network architecture. The datasets included MNIST
[53], Fashion-MNIST [54], CIFAR-10 [55], and CelebA [56], similar
to those tested in Refs. [31,36]. The network architecture was
similar to that used by Lucic et al. in Ref. [33]. In particular, in
our AE-OT model, the network architecture of the decoder was
the same as that of the generators of GANs in Ref. [33], and the
encoder was symmetric to the decoder.

We compared our model with state-of-the-art generative mod-
els using the FID score [31] and PRD curve as the evaluation crite-
ria. The FID score measures the visual fidelity of the generated
results and is robust to image corruption. However, the FID score
is sensitive to mode addition and dropping [33]. Hence, we also

Table 2
Mode collapse comparison for the 2D grid dataset.
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used the PRD curve, which can quantify the degree of mode drop-
ping and mode inventing on real datasets [32].

6.4.1. Comparison with FID score

The FID score is computed as follows: (D Extract the visually
meaningful features of both the generated and real images by run-
ning the inception network [30], @ fit the real and generated fea-
ture distributions with Gaussian distributions; and @ compute the
distance between the two Gaussian distributions using the follow-
ing formula:

2 1/2
FID = | g — pig I+ Te[ 20 + 2 — 2(2:5) (34)
where u; and g represent the means of the real and generated dis-
tributions, respectively; and X, and X, represent the variances of
these distributions.

The comparison results are summarized in Tables 3 and 4. The
statistics of various GANs come from Lucic et al. [33], and those
of the non-adversarial generative models come from Hoshen and
Malik [36]. In general, our proposed model achieves better FID
scores than the other state-of-the-art generative models.

Theoretically, the FID scores of our AE-OT model should be
close to those of the pre-trained AEs; this is also validated by our
experiments.

The fixed network architecture of our AE was adopted from
Lucic et al. [33]; its capacity is not large enough to encode
CIFAR-10 or CelebA, so we had to down-sample these datasets.
We randomly selected 2.5 x 10* images from CIFAR-10 and 1 x 10*
images from CelebA to train our model. Even so, our model
obtained the best FID score in CIFAR-10. Dut to the limited capacity
of the InfoGAN model, the performance of the AE of CelebA, whose
FID of 67.5 is not ideal, further caused the FID of the generated
dataset to be 68.4. By adding two more convolutional layers to
the AE architecture, the L? loss in CelebA was less than 0.03, and
the FID score beat all other models (28.6, as shown in the bracket
of Table 4).

6.4.2. Comparison with the PRD curve

The FID score is an effective method to measure the difference
between the generated distribution and the real data distribution,
but it mainly focuses on precision, and cannot accurately capture
what portion of real data a generative model can cover. The
method proposed in Ref. [32] disentangles the divergence between
distributions into two components: precision and recall.

Method Modes Samples Reverse KL . R R
Given a reference distribution P and a learned distribution Q,
GAN 17.3+0.8 94.8 + 0.7% 0.70 £ 0.07 th ision intuitivel th litv of les f
ALl 241404 95.7 + 0.6% 0.14 % 0.03 e precision intuitively measures the quality of samples from Q
MD 23.8+05 79.9 + 3.2% 0.17 + 0.03 while the recall measures the proportion of P that is covered by Q.
PacGAN2 23.8+0.7 91.3 £ 0.8% 0.13 £ 0.04 We used the concept of (Fg, Fyjg) introduced by Sajjadi et al. in
PacGAN3 246 £ 04 94.2 £ 04% 0.06 +0.02 Ref. [32] to quantify the relative importance of precision and recall.
PacGAN4 24802 93.6 £ 0.6% 0.04 £ 0.01 Fig. 14 summarizes the comparison results. Each dot represents a
AE-OT 25.0+0.0 99.8 £ 0.2% 0.007 + 0.002 . R .
specific model with a set of hyperparameters. The closer a dot is
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Fig. 13. Mode collapse comparison on a 2D grid dataset. (a) GAN; (b) PacGAN4; (c) AE-OT. Orange marks are real samples and green marks are generated ones.
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Table 3
Quantitative comparison with FID-I.
Dataset Adversarial
MM GAN NS GAN LSGAN WGAN BEGAN
MNIST 9.8 6.8 7.8 6.7 13.1
Fashion-MNIST 29.6 26.5 30.7 215 229
CIFAR-10 72.7 58.5 87.1 55.2 71.4
CelebA 65.6 55.0 53.9 41.3 38.9
The best result is shown in bold. MM: manifold matching; NS: non-saturating; LSGAN: least squares GAN; BEGAN: boundary equilibrium GAN.
Table 4
Quantitative comparison with FID-IL
Dataset Non-adversarial Reference
VAE GLO GLANN AE AE-OT
MNIST 23.8 49.6 8.6 55 6.4
Fashion-MNIST 58.7 57.7 13.0 4.7 10.2
CIFAR-10 155.7 65.4 46.5 28.2 38.1
CelebA 85.7 524 46.3 67.5 68.4 (28.6)
The best result is shown in bold.

to the upper-right corner, the better the performance of the model
is. The blue and green dots show the GANs and VAEs evaluated in
Ref. [32], the khaki dot represents the GLANN model in Ref. [36],
and the red dot is our AE-OT model.

It is clear that our proposed model outperforms others for
MNIST and Fashion-MNIST. For the CIFAR-10 dataset, the precision
of our model is slightly lower than those of GANs and GLANN, but
the recall is the highest. For the CelebA dataset, due to the limited
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capacity of the AE, the performance of our model is not impressive.
However, after adding two more convolutional layers to the AE, our
model achieves the best score.

6.4.3. Visual comparison

Fig. 15 shows a visual comparison between the images gener-
ated by our proposed method and those generated by the GANs
studied by Lucic et al. in Ref. [33] and the non-adversarial models
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Fig. 14. A comparison of the precision-recall pair in (Fg, Fy/s) in the four datasets. (a) MNIST; (b) Fashion-MNIST; (c) CIFAR-10; (d) CelebA. The khaki dots are the results of Ref.
[36]. The red dots are the results of the proposed method. The purple dot in the fourth subfigure corresponds to the results of the architecture with two more convolutional

layers.
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Fig. 15. A visual comparison of the four datasets. The first column (a) shows the real data; the second column (b) is generated by an AE; the third column (c) illustrates the
generating results of the GANs [33] with the highest precision-recall scores of (Fg, Fy/s), corresponding to the B dots in Fig. 14; the fourth column (d) gives the results of Ref.

[36]; and the last column (e) shows the results of the proposed method.

studied by Hoshen and Malik in Ref. [36]. The first column shows
the original images, the second column shows the results gener-
ated by the AE, the third column shows the best generating results
of the GANSs in Lucic et al. [33], the fourth column displays the
results generated by the models of Hoshen and Malik [36], and
the fifth column displays the results from our method. It is clear
that our method generates high-quality images and covers all
modes.

7. Conclusion

This work uses OT theory to interpret GANs. According to
the data manifold distribution hypothesis, GANs mainly
accomplish two tasks: manifold learning and probability distri-
bution transformation. The latter task can be carried out using
the OT method directly. This theoretical understanding explains
the fundamental reason for mode collapse, and shows that the
intrinsic relation between the generator and the discriminator
should be collaboration instead of competition. Furthermore,
we propose an AE-OT model, which improves the theoretical
rigor, training stability, and efficiency, and eliminates mode
collapse.

Our experiment validates our assumption that if the distribu-
tion transportation map is discontinuous, then the existence of
the singularity set leads to mode collapse. Furthermore, when
our proposed model is compared with the state of the art, our
method eliminates the mode collapse and outperforms the other
models in terms of the FID score and PRD curve.

In the future, we will explore the theoretical understanding of
the manifold learning stage, and use a rigorous method to make
this part of the black box transparent.
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