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Reviewing the history of the development of artificial intelligence (AI) clearly reveals that brain science
has resulted in breakthroughs in AI, such as deep learning. At present, although the developmental trend
in AI and its applications has surpassed expectations, an insurmountable gap remains between AI and
human intelligence. It is urgent to establish a bridge between brain science and AI research, including
a link from brain science to AI, and a connection from knowing the brain to simulating the brain. The first
steps toward this goal are to explore the secrets of brain science by studying new brain-imaging
technology; to establish a dynamic connection diagram of the brain; and to integrate neuroscience
experiments with theory, models, and statistics. Based on these steps, a new generation of AI theory
and methods can be studied, and a subversive model and working mode from machine perception and
learning to machine thinking and decision-making can be established. This article discusses the
opportunities and challenges of adapting brain science to AI.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The history of artificial intelligence (AI) clearly reveals the con-
nections between brain science and AI. Many pioneer AI scientists
are also brain scientists. The neural connections in the human
brain that were discovered using microscopes inspired the artificial
neural network [1]. The brain’s convolution property and multi-
layer structure, which were discovered using electronic detectors,
inspired the convolutional neural network and deep learning
[2,3]. The attention mechanism that was discovered using a posi-
tron emission tomography (PET) imaging system inspired the
attention module [4]. The working memory that was discovered
from functional magnetic resonance imaging (fMRI) results
inspired the memory module in machine learning models that
led to the development of long short-term memory (LSTM) [5].
The changes in the spine that occur during learning, which were
discovered using two-photon imaging systems, inspired the elastic
weight consolidation (EWC) model for continual learning [6].
Although the AI community and the brain science community cur-
rently appear to be unconnected, the results from brain science
reveal important issues related to the principles of intelligence,
which lead to significant theoretical and technological
breakthroughs in AI. We are now in the deep learning era, which
was directly inspired by brain science. It can be seen that the
increasing research findings in brain science can inspire new deep
learning modes. Furthermore, the next breakthrough in AI is likely
to come from brain science.
2. AI inspired by brain science

The goal of AI is to investigate theories and develop computer
systems that are able to conduct tasks that require biological or
human intelligence, with functions such as perceptrons, recogni-
tion, decision-making, and control [7]. Conversely, the goal of brain
science, which is also termed neuroscience, is to study the struc-
tures, functions, and operating mechanisms of biological brains,
such as how the brain processes information, makes decisions,
and interacts with the environment [8]. It is easy to see that AI
can be regarded as the simulation of brain intelligence. Therefore,
a straightforward way to develop AI is to combine it with brain
science and related fields, such as cognition science and
psychology. In fact, many pioneers of AI, such as Alan Turing [9],
Marvin Minsky and Seymour Papert [10], John McCarthy [11], and
Geoffrey Hinton [12], were interested in both fields and contributed
a great deal to AI thanks to their solid backgrounds in brain science.

Research on AI began directly after the emergence of modern
computers, with the goal of building intelligent ‘‘thinking”
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machines. Since the birth of AI, there have been interactions
between it and brain science. At the beginning of the 20th century,
researchers were able to observe the connections between neurons
in the neural system, including brains, due to the development of
microscopy. Inspired by the connections between neurons, com-
puter scientists developed the artificial neural network, which is
one of the earliest and most successful models in the history of
AI. In 1949, Hebbian learning was proposed [1]. This is one of the
oldest learning algorithms. Hebbian learning was directly inspired
by the dynamics of biological neural systems. In particular, based
on the observation that a synapse between two neurons is
strengthened when the neurons on either side of the synapse (in-
put and output) have highly correlated outputs, the Hebbian learn-
ing algorithm increases the connection weight between two
neurons if they are highly correlated. After this development, arti-
ficial neural networks received considerable research attention
from researchers. A representative work was the perceptron [13],
which directly modeled the information storage and organization
in the brain. The perceptron is a single-layer artificial neural net-
work with a multidimensional input, which laid the foundation
for the multilayer network.

In 1959, Hubel and Wiesel [14]—the recipients of the 1981
Nobel Prize in Physiology or Medicine—utilized electronic signal
detectors to capture the responses of neurons when a visual sys-
tem saw different images. The single-cell recordings from the
mammalian visual cortex revealed how visual inputs are filtered
and pooled in simple and complex cells in the V1 area. This
research demonstrated that the visual processing system in the
brain conducted convolutional operations and had a multilayered
structure. It indicated that biological systems utilized successive
layers with nonlinear computations to transform raw visual
inputs into an increasingly complex set of features, thereby mak-
ing the vision system invariant to the transformations, such as
pose and scale, in the visual inputs during the recognition task.
These observations directly inspired the convolutional neural net-
work [2,3], which was the fundamental model for the recent,
ground-breaking deep learning technique [15]. Another key com-
ponent of artificial neural networks and deep learning is the
back-propagation algorithm [16], which addresses the problem
of how to tune the parameters or weights in a network. Interest-
ingly, the basic idea of back propagation was first proposed in the
1980s by neuroscientists and cognitive scientists [17], rather than
by computer scientists or machine learning researchers. The sci-
entists observed that the microstructures of neural systems and
the neural system of the biological brain were gradually tuned
using a learning procedure with the purpose of minimizing the
error and maximizing the reward of the output. The attention
mechanism was first introduced in the 1890s as a psychological
concept, and was designed such that an intelligent agent selec-
tively concentrated on certain important parts of the informa-
tion—instead of concentrating on all of the information—in
order to improve the cognition process [4]. In the 1990s, studies
began using new medical imaging technologies, such as PET, to
investigate the attention mechanism in the brain. In 1999, PET
was utilized to study selective attention in the brain [18]. Then,
using other imaging technologies, researchers discovered more
about the attention mechanism in a biological brain [19]. Inspired
by the attention mechanism in a biological brain, AI researchers
began incorporating attention modules into artificial neural net-
works in temporal [20] or spatial [21] ways, which improved
the performance of deep neural networks for natural language
processing and computer vision, respectively. With an attention
module, the network is able to selectively focus on important
objects or words and ignore irrelevant ones, thereby making the
training and inferential processes more efficient than those of a
conventional deep network.
Amachine learning model usually forgets the information in the
data that it has processed, whereas biological intelligence is able to
maintain such information for a period of time. It is believed that
there is working memory in a biological brain that remembers past
data. The concept of working memory was first introduced in the
1970s and was summarized from cognition experiments [22,23].
Since 1990, researchers have used PET and fMRI to study the work-
ing memory in biological brains, and have found that the prefrontal
cortex in the brain is a key part [24–26]. Inspired by the working
memory research from brain science, AI researchers have
attempted to incorporate a memory module into machine learning
models. One representative method is LSTM [5], which laid the
foundation for many sequential processing tasks, such as natural
language processing, video understanding, and time-series analy-
sis. A recent study also showed that with a working memory mod-
ule, a model can perform complicated reasoning and inference
tasks, such as finding the shortest path between specific points
and inferring the missing links in randomly generated graphs
[27]. By remembering previous knowledge, it is also possible to
perform one-shot learning, which requires just a few labeled sam-
ples to learn a new concept [28].

Continual learning is a basic skill in biological intelligence that
is used to learn a new task without forgetting previous ones. How a
biological neural system learns multiple tasks at different times is
a challenging research topic. In 1990, the two-photon microscopy
technique [29] made it possible to observe the in vivo structures
and functions of dendritic spines during learning at the spatial
scale of single synapses [30]. With this imaging system, research-
ers in the 2010s studied neocortical plasticity in the brain during
continual learning. The results revealed how neural systems
remember previous tasks when learning new tasks by controlling
the growth of neurons [31]. Inspired by the observation of
biological neural systems, a learning algorithm termed EWC was
proposed for deep neural networks. This algorithm controlled the
changes in the network parameters when learning a new task, such
that older knowledge was preserved, thereby making continual
learning in deep learning possible [6].

Reinforcement learning (RL) is a widely used machine learning
framework that has been utilized in many applications, such as
AlphaGo. It relates to how AI agents take action and interact with
the environment. In fact, RL is also strongly related to the biological
learning process [32]. One important RL method—which was also
one of the earliest methods—is temporal-difference learning
(TDL). TDL learns by bootstrapping from the current estimate of
the value function. This strategy is similar to the concept of
second-order conditioning that has been observed in animal
systems [33].
3. Brain projects

Many countries and regions have conducted projects to acceler-
ate brain science research, as shown in Table 1 [34–39]. Despite
different emphases and routes, the development of the next
generation of AI based on discoveries in brain science is a common
objective of all brain research projects. Governments and most sci-
entists seem to have reached a consensus that advancing neural
imaging and manipulating techniques can help us explore the
working principles of the brain, which will allow us to design a bet-
ter AI architecture, including both hardware and software. During
such studies, mutual collaboration between multiple disciplines
including biology, physics, informatics, and chemistry are neces-
sary to enable new discoveries in different aspects.

During the past five years, important achievements in brain
research have been made with the support of brain research pro-
jects. The development of optogenetics has made it possible to



Table 1
Overview of brain science research projects around the world.

Project Timeline Funding amount
(billion USD)

Main objectives

United States 2013–2025 ~4.5 � Discovering diversity: identify different brain cell types and determine their roles in health and
disease

� Maps at multiple scales: generate circuit diagrams with varying resolutions from the synapses to the
whole brain

� The brain in action: produce a dynamic picture of the functioning brain through large-scale monitor-
ing of neural activity

� Demonstrating causality: link brain activity to behavior with precise interventional tools that change
neural circuit dynamics

� Identifying fundamental principles: produce conceptual foundations for understanding mental pro-
cesses by developing new theoretical and analytical tools

� Advancing human neuroscience: develop innovative technologies to understand the human brain
and treat its disorders, and create and support human brain research networks

� From BRAIN Initiative to the brain: apply new technological/conceptual approaches to discover how
neural activity patterns transform into cognitions, emotions, perceptions, and actions

National Institutes
of Health
BRAIN
Initiative [34]

Korea 2018–2027 > 1.2 � Decipher the brain functions and mechanisms that mediate the integration and control of brain func-
tions underlying decision-making

� Map a functional connectome with searchable, multidimensional, and information-integrated
features

� Develop novel technologies and neuro-tools for integrated brain mapping
� Enable socioeconomic ramifications that not only facilitate global collaboration in the neuroscience
community, but also develop various brain science-related industrial and medical innovations

Korea Brain
Initiative [35]

Europe 2013–2023 > 1 � Develop a scientific infrastructure for brain research and cognitive neuroscience
� Gather and disseminate data describing the brain and related diseases
� Simulate the brain
� Build theories and models of the brain
� Develop brain-inspired computing, data analytics, and robots

Human Brain
Project [36]

Japan 2014–2024 > 0.3 � Use the marmoset, a small primate with a short life cycle, for functional and structural brain mapping
and genetic studies

� Develop innovative tools to monitor and manipulate different aspects of neural activity
� Establish biomarkers for brain disorders

Brain/MINDS [37]

Canada 2006–unknown > 0.24 � Understand the brain in health and illness, improve lives, and achieve societal impact
� Increase the scale and scope of funding to accelerate the pace of Canadian brain research
� Create a collective commitment to brain research across the public, private, and voluntary sectors
� Deliver transformative, original, and outstanding research programs

Brain Canada [38]

Australia 2016–2026 > 0.2 � Health: develop new treatments by revealing the mechanisms of brain abnormalities in neuropsychi-
atric diseases

� Education: help improve brain growth by coding the cognitive functions of neural circuits and brain
networks

� New industry: develop new drugs, medical devices, and wearable technologies by promoting the
combination of industrial collaborators and brain research

Australian Brain
Initiative [39]
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manipulate neural activities at a single-cell resolution [40].
Large-scale manipulation can be further accomplished using
advanced beam-modulation techniques [41,42]. In the meantime,
various methods have been proposed to record large-scale neural
activities in three dimensions (3D) [43–45]. The number of neu-
rons that can be recorded at the same time has increased rapidly
from tens to thousands, and may be increased to millions in the
near future with the increasing technological developments in
wide-field high-resolution imaging [46–48]. Such significant
improvements in the field of neurophotonics provide a basis for
important discoveries in neuroscience [49,50]. For example, the
emphasis in the BRAIN Initiative will be gradually moved to
discovery-driven science.

One typical case in the BRAIN Initiative, which aims to revolu-
tionize machine learning through neuroscience, is machine intelli-
gence from cortical networks (MICrONS). With serial-section
electron microscopy, complicated neural structures can be recon-
structed in 3D at unprecedented resolutions [51]. In combination
with high-throughput data analysis techniques for multiscale data
[52,53], novel scientific questions can be developed to explore
fundamental neuroscience problems [54]. With this improved
understanding, researchers have proposed novel architectures for
deep neural networks, and have tried to understand the working
principles of current architectures [55,56]. In addition, the current
deep learning techniques can help to accelerate the massive
amount of data processing that is necessary in such research, thus
forming a virtuous circle.

Thanks to technological developments in recent years, it is now
possible to observe neural activities in a systematic view at
unprecedented spatial–temporal resolutions. Many large-scale
data analysis techniques have been proposed in the meantime to
solve the challenges that result from the massive amount of data
produced by such technologies. Following this route, various brain
projects can exponentially accelerate brain research. By achieving
an increasing number of discoveries, we can develop a better pic-
ture of the human brain. There is no doubt that the working prin-
ciples of the brain will inspire the design of the next generation of
AI, just as past discoveries in brain research have inspired today’s
AI achievements.

4. Instrumental bridges between brain science and AI

Instrumental observations of the brain have made enormous
contributions to the emergence and advancement of AI.
Modern neurobiology started from the information acquisition
of microstructures across the subcellular to tissue levels, and
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benefited from the inventions of microscopy and the biased stain-
ing of substances in cells and tissues. The renowned neu-
roanatomist Santiago Ramón y Cajal was the first to use Golgi
staining to observe a large number of tissue specimens of the ner-
vous system, and put forward the fundamental theories on neurons
and neural signal transduction. Cajal and Golgi shared the Nobel
Prize in Physiology or Medicine in 1906. Cajal is nowwidely known
as the father of modern neurobiology.

Our ever-growing understanding of the human brain has bene-
fitted from countless advances in neurotechnology, including the
manipulation, processing, and information acquisition of neurons,
neural systems, and brains; and cognitive and behavioral learning.
Among these advances, the development of new technologies and
instruments for high-quality imaging acquisition has been the
focus of the past era and is expected to attract the most attention
in the future. For example, the BRAIN Initiative, which was
launched in the United States in 2013, aims to map dynamic brain
images that exhibit the rapid and complex interactions between
brain cells and their surrounding nerve circuits, and to unveil the
multidimensional intertwined relationships between neural orga-
nizations and brain functions. Such advances are also expected to
make it possible for us to understand the processes of recording,
processing, applying, storing, and retrieving large amounts of
information in the brain. In 2017, the BRAIN Initiative sponsored
a number of interdisciplinary scientists at Harvard, who undertook
to research the understanding of the relationship between neural
circuits and behavior, mainly by acquiring and processing large
datasets of neural systems under various conditions using high-
quality imaging.

Traditional neuroscience researchmostly uses electrophysiologi-
cal methods, such as the use of metal electrodes for nerve excitation
and signal acquisition, which have the advantages of high sensitivi-
ty and high temporal resolution. However, electrophysiology is
invasive and is not suitable for long-term observation. In addition,
it has a low spatial resolution and limited expansion ability for the
parallel observations that are required to extract the global neural
activities at a single neuron resolution of the brain. In contrast, opti-
cal methods are noninvasive and have high spatial and temporal
resolution and high sensitivity. These methods are capable of
acquiring dynamic and static information from individual neurons,
nerve activities, and interactions and expanding our analyses of the
nervous system from the subcellular level to—potentially—the
whole brain. Furthermore, optical methods have been developed
as manipulating tools to control nerve activities at high spatial–
temporal resolutions by using optogenetics.

It is very urgent to develop technology and instruments with
large fields of view and high spatial–temporal resolutions. On the
spatial scale, imaging must span from submicron synapses and
neurons that are tens of microns in size to brains that are a few
millimeters across. On the temporal scale, the rate of frame
acquisition should be higher than the response rate of the probing
fluorescent proteins that are used. However, due to the intrinsic
diffraction limit of optical imaging, there is an inherent contradic-
tion among large fields of view, high resolution, and large depths of
view. High-resolution imaging of single neurons or even smaller
features usually cannot see brain tissue features that are larger
than a few millimeters, and dynamic imaging is often accompanied
by higher noise. Live and noninvasive imaging for real-time and
long-term acquisition is, however, limited to the superficial layer
due to tissue granules that scatter light. How to break through
the above bottlenecks and realize a wide field of view, high spa-
tiotemporal resolution, and large depth of view will be the biggest
challenge of microscopic imaging in the coming decade.

It is conclusive that exploring from the microstructure dimen-
sion may lead to a new type of neurocomputing unit, whereas
exploring from the macrostructure dimension in real time may
enable an understanding of trans-brain operations and reveal the
comprehensive decision-making mechanisms of the brain using
multiple information sources (auditory, visual, olfactory, tactile,
etc.) in complex environments. The binary ability of the whole
brain to explore both the micro- and macro-dimensions in real
time will, beyond any doubt, promote the development of the next
generation of AI. Therefore, the developmental goal of a micro-
scopic imaging instrument is to possess broader, higher, faster,
and deeper imaging from pixels to voxels and from static to
dynamic. Such an instrument could establish a direct link between
biological macro-cognitive decision-making and the structure and
function of a neural network, lay a foundation for revealing the
computational essence of cognition and intelligence, and ulti-
mately promote human self-recognition, thereby filling the
research gap between AI and human intelligence.
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