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ABSTRACT

We aimed to develop a disease risk comorbidity index (DRCI) based on disease risk index (DRI) and
Hematopoietic Cell Transplantation-Specific Comorbidity Index (HCT-CI) in patients receiving haploiden-
tical hematopoietic stem cell transplantation (haplo-HSCT). We identified the prognostic factors of
disease-free survival (DFS) in a training subset (n = 593), then assigned a weighted score using these fac-
tors to the remaining patients (validation subset; n = 296). The multivariable model identified two inde-
pendent predictors of DFS: DRI and HCT-CI before transplantation. In this scoring system, we assigned a
weighted score of 2 to very high-risk DRI, and assigned a weighted score of 1 to high-risk DRI and
intermediate- and high-risk HCT-CI (i.e., haplo-DRCI). In the validation cohort, the three-year DFS rate
was 65.2% (95% confidence interval (CI), 58.2%-72.2%), 55.8% (95% CI, 44.9%-66.7%), and 32.0% (95% ClI,
5.8%-58.2%) for the low-, intermediate-, and high-risk group, respectively (P = 0.005). Haplo-DRCI can
also predict DFS in disease-specific subgroups, particularly in acute leukemia patients. Increasing score
was also significantly predictive of increased relapse, increased non-relapse mortality (NRM), decreased
DFS, and decreased overall survival (OS) in an independent historical cohort (n = 526). These data con-
firmed that haplo-DRCI could effectively risk stratify haplo-HSCT recipients and provide a tool to better

predict who will best benefit from haplo-HSCT.
© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is the most important curative options for patients with
hematologic malignances. Allo-HSCT using human leukocyte
antigen (HLA)-haploidentical related donor (haplo-HSCT) has
become one of the most important options in transplant
procedures [1,2] because HLA-identical sibling donors (ISDs) and
unrelated donors (URDs) were insufficient [3]. Several protocols,
such as ex vivo T cell depleted [4,5] and high-dose, post-
transplantation cyclophosphamide (PTCY), had been proposed to
overcome the HLA disparity [6,7]. Researchers from Peking
University established an unmanipulated haplo-HSCT protocol,
using antithymocyte globulin (ATG) and granulocyte
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colony-stimulating factor (G-CSF) to induce immune tolerance
(i.e., Beijing Protocol). Beijing Protocol was the most important
transplant protocol for haplo-HSCT in China [8-12] and it was also
reproduced successfully in other countries [13-15]. Thus, this
protocol is universal and has been widely used in haplo-HSCT [16].

However, relapse remains one of the most important causes of
transplant failure [17] and identifying patients with a higher risk
for relapse is important. We observed that patients with
advanced-stage leukemia had a higher risk of relapse after haplo-
HSCT [18,19]. Recently, Armand et al. [20,21] developed the
disease risk index (DRI), which was a tool to stratify patients
according to the disease type and status at the time of transplanta-
tion. Several studies reported that DRI can predict the clinical out-
comes in patients receiving ISD, URD, and umbilical cord blood
transplantation [22-25]. Among haplo-HSCT recipients, McCurdy
et al. [26] reported that DRI effectively risk stratified patients of
haplo-HSCT with PTCY. However, the efficacy of DRI had not been
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identified in patients of haplo-HSCT receiving Beijing Protocol. In
addition, DRI did not address other characteristics besides disease
characteristics, and it mainly predicted the risk of disease
progression after allo-HSCT.

Comorbidity was another factor which could significantly
influence the clinical outcomes of allo-HSCT. Many studies
reported that Hematopoietic Cell Transplantation-Specific
Comorbidity Index (HCT-CI) could predict the survival and
transplant-related mortality of allo-HSCT recipients [27-32]. We
also proved the predictive ability of HCT-CI in patients receiving
haplo-HSCT with Beijing Protocol [33]. However, HCT-CI does not
address characteristics of underlying disease, such as disease type,
disease stage, or cytogenetics.

Thus, developing a comprehensive pre-HSCT prognostic system
which accounts for both patient- and disease-related risk factors
would be of great clinical value for haplo-HSCT recipients. Bejanyan
et al. [34] tested the prognostic capability of a composite scoring
system including the DRI and HCT-CI (i.e., disease risk comorbidity
index, DRCI) in patients receiving peripheral blood (PB) or bone
marrow (BM) from ISD, URD, or umbilical cord blood. The DRCI
score categorized patients into six risk groups, with two-year over-
all survival (OS) ranging between 74% for the very low-risk DRCI
group and 34% for the very high-risk DRCI group. It is suggested that
DRCI can predict outcomes after allo-HSCT. However, this study did
not enroll the haplo-HCST recipients. How to develop an
appropriate DRCI for haplo-HSCT recipients was still unknown.

Thus, in this study, we aimed to validate the efficacy of DRI in a
large cohort of haplo-HSCT recipients with Beijing Protocol. What’s
more, we aimed to develop a DRCI (i.e., haplo-DRCI) which was
appropriate for patients receiving haplo-HSCT.

2. Materials and methods
2.1. Patients

A total of 889 patients with hematologic malignancies receiving
haplo-HSCT between January 2015 and December 2016 at the
Peking University Institute of Hematology were enrolled. The final
follow-up visits for endpoint analysis were conducted on
December 31, 2018. The study was conducted in accordance with
the Declaration of Helsinki, and the protocol was approved by
the ethics committee of Peking University People’s Hospital.

2.2. Transplant regimens

The major preconditioning treatment consisted of cytarabine,
busulfan, cyclophosphamide, and semustine, along with rabbit
ATG [8-10,18,19,35]. Twenty-five patients received total body irra-
diation (TBI)-based regimen. Patients who had relapsed/refractory
leukemia and without graft-versus-host disease (GVHD) or severe
infection after hematopoietic stem cell transplantation (HSCT)
can received prophylactic G-CSF-primed donor leukocyte infusion
at 45-60 days after haplo-HSCT (Supplementary methods in
Appendix A).

2.3. Donor selection

The methods for donor selection were showed in Supplemen-
tary methods [36,37].

2.4. Definitions and assessments

DRI was reported according to the criteria of Armand et al. [21].
For cytogenetic risk in de novo acute myeloid leukemia (AML),
t(8;21), inv(16), or t(15;17) is considered favorable in the absence
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of a complex karyotype, complex karyotype (>4 abnormalities) is
adverse, normal or other cytogenetic abnormality is intermediate.
For cytogenetic risk in myelodysplastic syndrome (MDS), adverse
risk refers to abnormalities in chromosome 7 or complex karyotype
(>4 changes), intermediate risk refers to normal cytogenetics or
any other chromosomal abnormalities. Particularly, for cytogenetic
risk in AML arising out of MDS, MDS cytogenetic risk criteria were
used. Advanced stage is defined as induction failure or relapse
before transplantation, including stable disease and untreated
relapse. Patients were categorized into low-, intermediate-, high-,
and very high-risk groups. The comorbidities of HCT-CI were
reported according to the criteria of Sorror et al. [27].

Relapse was defined as recurrence of bone marrow blasts >5%,
reappearance of blasts in the blood, development of
extramedullary disease, or by the recurrence and sustained
presence of pre-transplantation chromosomal abnormalities.
Non-relapse mortality (NRM) was defined as death without disease
recurrence. Disease-free survival (DFS) was defined as survival in
continuous complete remission. OS was defined as the time from
transplantation to mortality.

2.5. Statistical analysis

In the present study, the primary endpoint was DFS, and the
secondary endpoints included OS, relapse, and NRM. Patients
without death or relapse were censored at last follow-up. A total
of 889 patients were randomly assigned to a training data set
and a validation data set, comprising 67% (n = 593) and 33% of
the cohort (n = 296), respectively. We used training cohort to
develop the haplo-DRCI, and the validation cohort to assess the
efficacy of haplo-DRCI. Hazard ratios (HRs) for DFS were estimated
from univariate and multivariate Cox regression analyses. Based on
the magnitude of the HRs associated with variables, a weighted
score was assigned to factors which could predict DFS in the
training cohort and created the haplo-DRCI scoring system. Then
haplo-DRCI scoring system was further validated in the validation
cohort and in an independent historic cohort which had been
reported by Mo et al. (n = 526) [33].

The probabilities of survival were calculated using the
Kaplan-Meier estimator. Competing risk analysis was used to
calculate the cumulative incidence of relapse and NRM [38]. P
values were two-sided. The SPSS Statistics 20 (IBM, USA) and the
R software package (version 2.6.1; http://www.r-project.org) were
used for data analysis.

3. Results
3.1. Patients

Table 1 showed the patients’ characteristics. The median
follow-up of the total patients was 865 days (range, 18-1498 days),
and was 865 days (range, 18-1498 days) and 875 days (range,
24-1456 days) in training and validation cohorts, respectively.
The cumulative incidence of relapse (CIR) and NRM at three years
after haplo-HSCT was 15.6% (95% confidence interval (CI),
13.1%-18.1%) and 20.5% (95% CI, 17.8%-23.2%), respectively. The
probabilities of DFS and OS at three years after haplo-HSCT were
64.0% (95% CI, 60.7%-67.3%) and 66.8% (95% CI, 63.6%-70.0%),
respectively. The clinical outcomes were all comparable between
the training and validation cohort (Table S1 in Appendix A).

3.2. Validation of DRI in haplo-HSCT recipients

The clinical outcomes were comparable between low- and
intermediate-risk DRI patients. The CIR, DFS, and OS rates of
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Table 1
Characteristics between training and validation cohorts.
Characteristics Training cohort Validation cohort P value
(n=593) (n=296)

Age at HSCT, n (proportion) 0.610
< 16 years 129 (21.8%) 60 (20.3%)
> 16 years 464 (78.2%) 236 (79.7%)

Male sex, n (proportion) 360 (60.7%) 189 (63.9%) 0.363

Time from diagnosis to HSCT, n (proportion) 0.364
<12 months 482 (81.3%) 233 (78.7%)
>12 months 111 (18.7%) 63 (21.3%)

KPS at HSCT, n (proportion) 0.571
90-100 536 (90.4%) 271 (91.6%)
<90 57 (9.6%) 25 (8.4%)

Underlying disease, n (proportion) 0.085
Acute leukemia 497 (83.8%) 240 (81.1%)
Myelodysplastic syndrome 54 (9.1%) 30 (10.1%)
Myeloproliferative neoplasms 17 (2.9%) 15 (5.1%)
Non-Hodgkin lymphoma 19 (3.2%) 4(1.3%)
Plasma cell disease 6 (1.0%) 7 (2.4%)

HCT-CI scores before HSCT, n (proportion) 0.897
0 (low risk) 425 (71.7%) 210 (70.9%)
1-2 (intermediate risk) 121 (20.4%) 64 (21.6%)
>3 (high risk) 47 (7.9%) 22 (7.4%)

DRI before HSCT, n (proportion) 0.111
Low risk 41 (6.9%) 29 (9.8%)
Intermediate risk 464 (78.2%) 233 (78.7%)
High risk 73 (12.3%) 32 (10.8%)
Very high risk 15 (2.5%) 2 (0.7%)

Donor-recipient relationship, n (proportion) 0.162
Father-child 285 (48.1%) 132 (44.6%)
Mother-child 30 (5.1%) 22 (7.4%)
Sibling-sibling 156 (26.3%) 65 (22.0%)
Child-parent 110 (18.5%) 70 (23.6%)
Collateral related donor 12 (2.0%) 7 (2.4%)

Donor-recipient sex matched, n (proportion) 0.385
Male-male 276 (46.5%) 151 (51.0%)
Male-female 183 (30.9%) 76 (25.7%)
Female-male 91 (15.3%) 44 (14.9%)
Female-female 43 (7.3%) 25 (8.4%)

Number of HLA-A, HLA-B, HLA-DR mismatches, n (proportion) 0.496
0-2 107 (18.0%) 59 (19.9%)
3 486 (82.0%) 237 (80.1%)

Donor-recipient blood type matched, n (proportion)® 0.599
Matched 297 (50.1%) 161 (54.4%)
Major mismatched 122 (20.6%) 60 (20.3%)
Minor mismatched 143 (24.1%) 61 (20.6%)
Major-minor mismatched 31 (5.2%) 14 (4.7%)

Conditioning regimen, n (proportion) 0.889

Chemotherapy based regimen
TBI based regimen

576 (97.1%)
17 (2.9%)

288 (97.3%)
8 (2.7%)

KPS: Karnofsky performance status.

Minor ABO mismatched indicated that donor possessed isohemagglutinins against recipient red cells, including the following blood group combinations: O (donor) into A,
B, or AB (recipient), and A or B (donor) into AB (recipient). Major ABO mismatched indicated that recipient possessed isohemagglutinins against donor red cells, including the
following blood group combinations: A, B, or AB (donor) into O (recipient), and AB (donor) into A or B (recipient). Major-minor mismatched indicated that both donor and

recipient possessed isohemagglutinins to each other: A into B and vice versa.

high-risk DRI patients were significantly poorer than those of low-
risk DRI patients. All the clinical outcomes of very high-risk DRI
patients were significantly poorer than those of low-risk DRI
patients (Table S2 in Appendix A). Thus, low-risk and
intermediate-risk DRI groups were combined in the following
analysis.

3.3. HCT-CI in haplo-HSCT recipients

The probabilities of DFS at three years after haplo-HSCT were
comparable between intermediate- and high-risk HCT-CI groups
(P = 0.438), which were both significantly poorer than those of
low-risk patients (high-risk vs low-risk: P = 0.009; intermediate-
risk vs low-risk: P = 0.017) (Fig. S1(a) in Appendix A). The
probabilities of OS at three years after haplo-HSCT were
comparable between intermediate- and high-risk HCT-CI groups

(P = 0.203), which were both significantly poorer than those of
low-risk HCT-CI patients (high-risk vs low-risk: P = 0.003;
intermediate-risk vs low-risk: P = 0.033) (Fig. S1(b) in Appendix
A). Thus, intermediate- and high-risk HCT-CI groups were
combined in the following analysis.

3.4. Development and validation of haplo-DRCI scoring system

We constructed a Cox proportional hazards model using the
training cohort. The following variables were included: patient
age at HSCT (<16 years vs >16 years), gender, Karnofsky
performance status at transplantation (90-100 vs < 90), DRI before
transplantation (low- and intermediate-risk vs high-risk vs very
high-risk), HCT-CI before transplantation (low-risk vs
intermediate- and high-risk), time from diagnosis to transplanta-
tion (>12 months vs <12 months), donor-recipient sex
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combination (female-male vs others), donor-recipients relation
(mother-child vs others), donor-recipient blood type matched
(major mismatched or major-minor mismatched vs matched or
minor mismatched), and HLA disparity (<2 loci vs 3 loci).

Gender, DRI, and HCT-CI at transplantation could predict the
DFES in the univariate analysis (Table S3 in Appendix A), which
were included in the multivariate analysis. The multivariate model
identified two independent predictors of DFS: DRI and HCT-CI at
transplantation (Table 2). Thus, we assigned a weighted score of
2 to very high-risk DRI, and a weighted score of 1 to high-risk
DRI and intermediate- and high-risk HCT-CI (Table S4 in Appendix
A). Then we created the haplo-DRCI scoring system: low risk
(score = 0, n = 370), intermediate risk (score = 1, n = 179), and high
risk (score > 2, n = 44). The HR for relapse or death (i.e., treatment
failure as defined by DFS) was 1.76 (95% CI, 1.30-2.39) for the
intermediate-risk group and 4.22 (95% CI, 2.80-6.36) for the
high-risk group (using the low-risk group as reference, overall
P < 0.001, Table S5 in Appendix A).

Table 2
Multivariable analysis of factors associated with DFS in the training cohort.
Outcome HR (95% CI) P value
Disease risk index before HSCT
Low and intermediate risk 1 (reference)
High risk 2.48 (1.75-3.53) <0.001
Very high risk 4.98 (2.82-8.81) <0.001
HCT-CI before HSCT
0 (low risk) 1 (reference)
>1 (intermediate and high risk) 1.45 (1.08-1.94) 0.013
1.0+
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In the validation cohort, the probabilities of DFS at 3 years after
haplo-HSCT were 65.2% (95% CI, 58.2%-72.2%), 55.8% (95% CI,
44.9%-66.7%), and 32.0% (95% Cl, 5.8%-58.2%) for the low-,
intermediate-, and high-risk group, respectively (overall
P = 0.005). The HR for relapse or death (i.e., treatment failure as
defined by DFS) was 1.40 (95% CI, 0.94-2.09) for the
intermediate-risk group and 2.75 (95% CI, 1.41-5.37) for the
high-risk group (using the low-risk group as reference, overall
P =0.007, Table S5).

3.5. Application of haplo-DRCI in total population

We applied the haplo-DRCI in the total population for analysis
of secondary endpoints. We observed that haplo-DRCI was associ-
ated with relapse (overall P < 0.001), NRM (overall P < 0.001), DFS
(overall P < 0.001), and OS (overall P < 0.001) in total population
(Figs. 1(a)-(d)). In addition, haplo-DRCI could predict DFS in chil-
dren (< 16 years, overall P = 0.010) and adults (> 16 years, overall
P <0.001, Figs. S2(a) and (b) in Appendix A). Haplo-DRCI could also
predict DFS in AML (overall P < 0.001), acute lymphoblastic leuke-
mia (ALL, overall P < 0.001), MDS/myeloproliferative neoplasms
(overall P =0.021), and non-Hodgkin lymphoma (NHL)/plasma cell
disease (overall P = 0.001) (Figs. S3(a)-(d) in Appendix A).

3.6. Validation of haplo-DRCI in an independent historical cohort

We also validated the haplo-DRCI in an independent historical
cohort (n = 526). The burdens of comorbidities in the historical
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Fig. 1. Clinical outcomes after haplo-HSCT according to haplo-DRCI in current cohort: (a) relapse, (b) NRM, (c) DFS, and (d) OS.
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cohort were significantly higher than those of the current cohort.
In addition, patients with high- and very high-risk DRI were more
common in the historical cohort. Patient’s age, HLA disparity, and
donor-recipient relation were also significantly different
between current and historical cohort (Table S6 in Appendix A).
However, increasing haplo-DRCI scores were also predictive of
increased relapse (overall P < 0.001), increased NRM (overall
P = 0.001), decreased DFS (overall P < 0.001), and decreased
OS (overall P < 0.001) in this independent historical cohort
(Figs. 2(a)-(d)).

4. Discussion

In this study, we observed that haplo-DRCI, which combined
DRI and HCT-CI together, could significantly predict the relapse,
mortality, and survival of haplo-HSCT recipients, particularly for
the patients with acute leukemia. Thus, this study firstly developed
a comprehensive scoring system which can address the character-
istics of both comorbidities and diseases in patients receiving
haplo-HSCT.

Although HCT-CI and DRI could predict the survival after haplo-
HSCT [26,33] HCT-CI was concerned about comorbidities and DRI
was concerned about the disease characteristics, which suggested
that using DRI or HCT-CI alone could only partially predict the
DES after haplo-HSCT. Because DRI and HCT-CI were the only
two risk factors predicting the DFS in multivariate analysis, we
combined them organically and found that haplo-DRCI could
effectively distinguish the DFS among low-, intermediate-, and

1.0
Low risk vs intermediate risk: P = 0.309
9 Low risk vs high risk: P < 0.001
2 0.8 [ Intermediate risk vs high risk: P =0.001
©
G
806
=
[0]
2
o
S04 o
2 | e LGN s
ki PENIT A
g 02| o Intermediate risk
S o= - —— - — -
(@) . o e S
:: LT Low risk
0f; 1 1 1 1
0 500 1000 1500 2000
Days after transplantation
(a)
1.0
08| Low risk
$ Intermediate risk
[a)] . = S
5 0.6 5
= H
% ' 5 High risk
L igh ris|
_E 04 TR e e |--g.1 ..... Iote e s MI
o
02 . ) ' .
Low risk vs intermediate risk: P = 0.008
Low risk vs high risk: P < 0.001
ok Intermediate risk vs high risk: P < 0.001
1 | 1 1 1 1

0 500 1000 1500 2000
Days after transplantation

(c)

2500

Engineering 7 (2021) 162-169

high-risk patients. Thus, haplo-DRCI can help to evaluate patients
receiving haplo-HSCT more comprehensively.

In the high-risk haplo-DRCI groups, the relapse and NRM rate
was 36.6% and 33.4%, respectively, and DFS rate was only 30.0%.
These patients had advanced-stage disease (high- or very high-
risk DRI) and/or high comorbidities burden (HCT-CI > 1) before
haplo-HSCT, which suggested that they had a higher risk of disease
progression and may be vulnerable to drug toxicities and trans-
plant complications. Similarly, Bejanyan et al. [34] reported that
the survival of patients who had both high-risk DRI and high-risk
HCT-CI were the worst. Reducing the intensity of conditioning
regimen may help to prevent the chemotherapeutic toxicities;
however, the relapse rate of patients receiving nonmyeloablative
regimen was higher than that of myeloablative regimen, particu-
larly for those with relapse/refractory leukemia [39,40|. Thus,
how to prevent post-HSCT relapse on the basis of controlling the
toxicities of conditioning regimen was important to improve the
clinical outcomes of the high-risk haplo-DRCI patients.

European Group for Blood and Marrow Transplantation (EBMT)
risk score is the most common prognostic scoring systems for pre-
dicting clinical outcomes after allo-HSCT. EBMT score was based on
an analysis of patients transplanted for chronic myeloid leukaemia
(CML) [41] and could predict the survival and mortality in a variety
of hematologic malignances [42]. Wang et al. [43] proposed the
haplo-EBMT score on the basis of the EBMT score, which included
disease stage, patient’s age at HSCT, time from diagnosis to HSCT,
donor-recipient sex combination, and HLA disparity. Disease stage
before HSCT was the most important prognostic factor [18,19,44];
however, the prognostic values of the other four factors were
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Fig. 2. Clinical outcomes after haplo-HSCT according to haplo-DRCI in historical cohort: (a) relapse, (b) NRM, (c) DFS, and (d) OS.
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controversial. Some authors reported that time from diagnosis to
transplantation, patient’s age, female donor/male recipient, and
HLA disparity did not influence the survival after haplo-HSCT
[18,45-48] and we did not observe the associations between these
four factors and DFS in the present studies. Thus, we suggested that
the prognostic effect of haplo-EBMT score may mainly due to the
prognostic effect of disease stage. On the other hand, it is suggested
that comorbidities and DRI were more important prognostic fac-
tors for haplo-HSCT recipients, and most of them were not
included in the haplo-EBMT score. Thus, EBMT and haplo-EBMT
risk scores may not comprehensively reflect the characteristics of
patients receiving haplo-HSCT.

We observed that the relapse, NRM, and survival were all com-
parable between low- and intermediate-risk DRI groups. In the
study of Armand et al. [21], the OS of low-risk DRI group was better
than that of intermediate-risk DRI group (P < 0.001). However,
Beauverd et al. [22] observed that OS for low- and intermediate-
risk DRI groups was 63% and 54%, respectively, in patients
receiving T-cell-replete HSCT. To6rlén et al. [24] reported that clinical
outcomes were all comparable between low- and intermediate-risk
DRI groups, most of whom had leukemia (337/521) and received
ATG-based conditioning regimen (371/521). Paviglianiti et al.
[25] reported that OS for low- and intermediate-risk DRI groups
was comparable in patients receiving myeloablative conditioning.
Thus, the fact that most of the patients had acute leukemia and
all of them receiving haplo-HSCT with ATG-based myeloablative
conditioning in the present study may contribute to the compara-
ble clinical outcomes between low- and intermediate-risk DRI
groups. Although McCurdy et al. [26] observed that the HR of OS
was more than two-fold greater in the intermediate-risk group
compared with the low-risk DRI group (HR = 2.11; P = 0.0009) in
a cohort enrolling haplo-HSCT recipients, all of them received non-
myeloablative regimen with PTCY and only one third of the
patients had leukemia, which were significantly different from
the present study.

We had reported that although HCT-CI could predict the clinical
outcomes of haplo-HSCT, the relapse, NRM, and survival rates were
all comparable between low- and intermediate-risk HCT-CI groups
[33]. However, in the present study, survival rates of intermediate-
risk HCT-CI group were worse than those of low-risk HCT-CI group.
We observed that the comorbidity burdens were lower in the cur-
rent cohort compared to those of our historical cohort (Table S6),
which may be due to the fact that we strengthened comorbidity
screening before HSCT and some patients with high comorbidity
burdens did not receive HSCT after our previous study. Whatever,
the efficacy of DRCI was also proved in the historical cohort with
higher comorbidity burdens.

There were several limitations in this study. First, this is a single
center study, and despite enrolling 889 patients and validated in a
relatively large independent historical cohort, the sample of very
high-risk DRI patients was relatively small, which might influence
the validity of the haplo-DRCI for outcome prediction. Second, more
than 80% of the patients had acute leukemia, and the sample of
patients with other diseases (e.g., myeloproliferative neoplasms,
lymphoma, and plasma cell disease) was relatively small. Thus, the
efficacy of haplo-DRCI should be further identified in these patients.
Lastly, several molecular markers may predict the relapse and sur-
vival of acute leukemia patients. It may help to further risk stratify
the patients with normal cytogenetics and modify the haplo-DRCI.

5. Conclusion

These data confirmed that haplo-DRCI can effectively risk strat-
ify haplo-HSCT recipients. The scoring system can be calculated

167

Engineering 7 (2021) 162-169

quickly, providing the tool to better predict who will best benefit
from haplo-HSCT.
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Nomenclatures

ALL acute lymphoblastic leukemia

Allo-HSCT allogeneic hematopoietic stem cell
transplantation

AML acute myeloid leukemia

ATG antithymocyte globulin

BM bone marrow

Cl confidence interval

CIR cumulative incidence of relapse

CML chronic myeloid leukaemia

DFS Disease-free survival

DRCI disease risk comorbidity index

DRI disease risk index

EBMT European Group for Blood and Marrow
Transplantation

G-CSF granulocyte colony-stimulating factor

GVHD graft-versus-host disease

Haplo-HSCT haploidentical related donor hematopoietic
stem cell transplantation

HCT-CI Hematopoietic Cell Transplantation-Specific
Comorbidity Index

HLA human leukocyte antigen

HSCT hematopoietic stem cell transplantation

HR hazard ratio

ISD identical sibling donor
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MDS myelodysplastic syndrome

NHL non-Hodgkin lymphoma

NRM non-relapse mortality

0s overall survival

PB peripheral blood

PTCY post-transplantation cyclophosphamide
TBI total body irradiation

URD unrelated donor
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