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Pollution involving pharmaceutical components in bodies of water is an increasingly serious environ-
mental issue. Plasma discharge for the degradation of antibiotics is an emerging technology that may
be relevant toward addressing this issue. In this work, a plasma-assisted rotating disk reactor
(plasma-RDR) and a photocatalyst—namely, titanium dioxide (TiO2)—were coupled for the treatment
of metronidazole (MNZ). Discharge uniformity was improved by the use of a rotating electrode in the
plasma-RDR, which contributed to the utilization of ultraviolet (UV) light radiation in the presence of
TiO2. The experimental results showed that the degradation efficiency of MNZ and the concentration
of generated hydroxyl radicals respectively increased by 41% and 2.954mg∙L�1 as the rotational speed
increased from 0 to 500 r∙min�1. The synergistic effect of plasma-RDR plus TiO2 on the generation of
hydroxyl radicals was evaluated. Major intermediate products were identified using three-dimensional
(3D) excitation emission fluorescence matrices (EEFMs) and liquid chromatography–mass spectrometry
(LC-MS), and a possible degradation pathway is proposed herein. This plasma-catalytic process has bright
prospects in the field of antibiotics degradation.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metronidazole (1-hydroxyethyl-2-methyl-5-nitroimidazole;
MNZ), one of the most common nitroimidazole-based antibiotic
drugs, is widely used to treat infections by anaerobic bacteria
and protozoa, such as Trichomonas and Giardia lamblia [1,2]. MNZ
is also added to poultry and fish feed to eliminate parasites. More
importantly, MNZ possesses potential biological carcinogenicity
and mutagenicity [3–5]. As a pharmaceutical substance and a
potential carcinogen, MNZ tends to accumulate in aquatic environ-
ments, resulting in the pollution of surface water and groundwater
[6–8]. Due to the toxicity and high water solubility of MNZ [9], the
elimination of this compound from the environment has become a
significant issue. Hence, it is imperative to exploit new techniques
to remove MNZ pollution effectively.
Various technologies have been reported to degrade MNZ,
including ultraviolet (UV) irradiation [10], Fenton/UV [11], hetero-
geneous photocatalysis [12], nanoscale zero-valent metal reduc-
tion [13], and adsorption/bio-adsorption on activated carbon
[14]. Aside from these methods, non-thermal plasma generated
by electrical discharge in liquid or at the gas–liquid interface,
inducing a variety of chemical and physical effects in situ, has
attracted a considerable amount of attention [15]. These effects
include intense UV radiation, shockwaves, high-energy electrons,
and, especially, the formation of various reactive oxygen species
(i.e., ozone, hydrogen peroxide, hydroxyl radicals, and perhydroxyl
radicals) [16]. Therefore, plasma discharge has been widely used
for the removal of different antibiotics from aqueous solutions,
such as pentoxifylline [17], three b-lactam antibiotics [18], and car-
bamazepine [19]. However, there are few reports on the degrada-
tion of MNZ by plasma discharge, even though this technology
may be efficiently utilized as an environmentally friendly technol-
ogy for MNZ degradation.

Diverse plasma-discharge modes have been studied with differ-
ent electrode geometries (e.g., needle–needle, needle–plate, and
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wire–plate) for degrading different types of organic compounds
[20]. Recently, a plasma-assisted rotating disk reactor (plasma-
RDR), which involves the coupled fields of plasma and high gravity,
was innovatively developed to enhance the degradation efficiency
of organic dye compounds [21]. The main advantages of the
plasma-RDR are as follows: ① Because of the strong centrifugal
force, a micron-liquid film is obtained, which favors the renewal
of the plasma–liquid interface and thus increases the utilization
of the hydroxyl radicals; and ② all the involved energies produced
by plasma discharge can act directly on the liquid film.

Titanium dioxide (TiO2) is regarded as an ideal photocatalyst
due to its high charge separation efficiency and its effective utiliza-
tion of UV light radiation [22,23]. During photocatalytic processes,
reactive oxygen species—which are key active sources in the pho-
tocatalytic degradation of antibiotics—can be generated [24–26].
Thus, a high degradation efficiency of MNZ can be expected in a
plasma-RDR coupled with TiO2.

This work studied the enhancement of the degradation effi-
ciency of MNZ. The effects of the operating conditions on the
energy yield were evaluated, and a correlation between the energy
yield and the operating conditions in the plasma-RDR was
obtained. A plasma-RDR and a TiO2 photocatalyst were coupled
in order to enhance the degradation efficiency of MNZ. The struc-
ture and morphology, catalytic performance, and reusability of
the TiO2 before and after discharge were systematically character-
ized. Three-dimensional (3D) excitation emission fluorescence
matrix (EEFM) spectroscopy was selected to qualitatively investi-
gate the concentration of MNZ. Major degradation intermediates
of MNZ were identified, and a possible degradation pathway for
MNZ was then proposed.
2. Experimental method and procedure

2.1. Plasma generator

The input voltage of the plasma generator (Beijing Ruiant Tech-
nology Co., Ltd., China) was an alternating current (AC) pulse sig-
nal. The voltage and current in the plasma-RDR were measured
by a Rigol PVP2150 high-voltage probe (RIGOL Technologies Co.,
Ltd., USA) and a Cybertek CP0030A current probe (Shenzhen
Zhiyong Electronics Co., Ltd., China) connected to a Tektronix
TDS3032C oscilloscope (Tektronix, Inc., USA). The average power
of the plasma-RDR, as determined by the voltage and current
waveforms, can be calculated using Eq. (1):
Fig. 1. Schematic diagram of the experimental setup.
P ¼
Z T

0
U � Idt

� �
� f ð1Þ
where P is the average power, U is the instantaneous voltage, I is the
instantaneous current, T is the pulse duration, and f is the pulse
repetition frequency. Considering previous reports on discharge
characteristics for the degradation of rhodamine B, the peak voltage
(Vpp) and electrode gap (d) were set as 44kV and 8mm, respectively
[21].

Energy yield, was adopted to illustrate the energy consumption
required to degrade MNZ, as calculated by Eq. (2) [27]:
Y ¼ C0 � V � g
100 � P � t ð2Þ
Fig. 2. Absorption spectra of MNZ solution before and after treatment. N: rotational
speed.
where Y is the energy yield (g∙(kW∙h)�1), C0 is the initial concentra-
tion of MNZ (g∙L�1), V is the volume of MNZ solution (L), g is the
degradation efficiency, and t is the treatment time (h).
1604
2.2. Experimental procedure

Fig. 1 shows the experimental setup for the degradation of MNZ.
Deionized water containing MNZ and oxygen was fed into the
plasma-RDR by gas–liquid co-current flow. In our previous
research, we provided details on plasma-RDR with gas–liquid co-
current flow [28]. Oxygen with a flow rate of 0.5m3∙h�1 was fed
into the plasma-RDR for 30min before the start of the experiments
in order to generate more reactive oxygen species. Then deionized
water containing MNZ was introduced into the plasma-RDR,
flowed radially outward through the rotating low-voltage
electrode, was collected in a fluid reservoir below, and was
circulated into the plasma-RDR by means of a pump. The MNZ
solution was sampled every 20min at the liquid outlet.

2.3. Analytical methods

The concentration of MNZ was determined by measuring the
absorption intensity of MNZ at the wavelength of 318nm with a
UV spectrophotometer (U-2800, Hitachi, Japan) [7,29]. The typical
absorption spectra of MNZ is shown in Fig. 2. The efficiency with
which the MNZ solution was degraded (herein referred to as the
degradation efficiency of MNZ) was calculated based on the follow-
ing equation:

g ¼ C0 � C
C0

� 100% ð3Þ

where C is the final concentrations of MNZ.
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The crystal structure of TiO2 was analyzed by X-ray diffraction
(XRD; D/max 2550, Rigaku Co., Japan) and the angular range of
2h was from 10� to 80�. The processes were carried out at 40kV
and 50mA.

Intermediates of MNZ degradation during the plasma treatment
process were identified through liquid chromatography–mass
spectrometry (LC-MS; Xevo G2 QTof, Waters Co., USA).

3. Results and discussion

3.1. Enhanced degradation performance of plasma-RDR

As shown in Fig. 3(a), the effect of rotational speed (N) on the
degradation efficiency of MNZ was evaluated. The role of rotation
on MNZ degradation was found to be significant. The degradation
efficiency of MNZ was merely 9.5% at 0 r∙min�1 and increased by
24% at 400 r∙min�1. When the rotational speed was increased to
500 r∙min�1, the degradation efficiency was as high as 50.2%. The
degradation efficiency of MNZ changed slightly when the rota-
tional speed exceeded 500 r∙min�1. Due to the strong centrifugal
force, the plasma–liquid interface renewal was clearly enhanced,
followed by improvement in the utilization of the hydroxyl radi-
cals. As shown in Fig. 3(b), the concentration of hydroxyl radicals
generated in the plasma-RDR increased by 2.954 mg∙L�1 when
the rotational speed was increased from 0 to 500 r∙min�1.

3.2. Investigation of the degradation efficiency and energy yield of the
plasma-RDR

3.2.1. Effects of operating conditions on degradation efficiency
Fig. 4 illustrates the effects of the operating conditions on the

degradation efficiency. The effects of the initial concentration of
Fig. 3. Enhanced (a) degradation efficiency of MNZ and (b) product

Fig. 4. Effects of (a) initial concentration of MNZ, (b) pulse repetition frequ
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MNZ, pulse repetition frequency, and volume of solution were
evaluated when the rotational speed and liquid flow rate were
respectively set as 500 r∙min�1 and 80L∙h�1.

As shown in Fig. 4(a), the degradation efficiency of MNZ
decreased with the increase of the initial concentration of MNZ.
When there was a lower concentration of MNZ, the initial degrada-
tion efficiency was higher. The final degradation efficiency reached
73.1% and 68.1% for MNZ concentrations of 5.0mg∙L�1 and
7.5mg∙L�1, respectively. However, the degradation efficiency was
only 54.8% for an MNZ concentration of 15mg∙L�1. Thus, it can
be reasonably speculated that the degradation of high concentra-
tions of MNZ requires more energy and a longer treatment time.
Hence, a concentration of 7.5mg∙L�1 was selected as the experi-
mental condition for subsequent experiments using only plasma-
RDR.

Pulse repetition frequency was selected to change the average
power. Fig. 4(b) shows that the degradation efficiency of MNZ
increased with an increase in pulse repetition frequency. The
degradation efficiency increased slightly when the pulse repetition
frequency increased from 200 to 240Hz. The experimental results
can be explained as follows: At higher pulse repetition frequencies,
the electrical condenser had insufficient time to fully recharge;
therefore, the energy injected to the plasma-RDR decreased [30].

The volume of treated solution affected the capacity to degrade
MNZ. As shown in Fig. 4(c), the degradation efficiency reached 73%
with a solution volume of 1.75 L and then decreased slightly for
volumes ranging from 1.75 to 2.25 L. The degradation efficiency
decreased by 20.4% with an increase in the solution volume from
2.25 to 2.50 L. When the volume of the solution exceeded 2.25 L,
the capacity to treat MNZ was seriously restricted. Based on these
experimental results, a solution volume of 2.00 L was selected for
the subsequent experiments.
ion of hydroxyl radicals in the plasma-RDR. L: liquid flow rate.

ency, and (c) volume of solution on the degradation efficiency of MNZ.



Fig. 6. Comparison of the calculated and experimental energy yield, Y.

Fig. 5. Effects of operating conditions on the energy yield of the plasma-RDR.
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3.2.2. Effects of operating conditions on energy yield and a correlation
between energy yield and operating conditions

Degradation efficiency can be illustrated by the quantity of MNZ
decomposed per unit of energy (i.e., yield). The energy yield relies
on the type of plasma reactor, the initial concentration, and the
characteristics of the compound [31]. Approximately 70% degrada-
tion was obtained within 120min using the starting parameters
mentioned earlier. Fig. 5 presents detailed data on the energy yield
under different operating conditions. It was noted that the energy
yield as a function of time decreased and changed with the pulse
repetition frequency, the volume of solution, and the initial con-
centration of MNZ. When the pulse repetition frequency was
increased from 120 to 240Hz, the energy yield increased from
0.19 to 0.38g∙(kW∙h)�1 for an MNZ concentration of 7.5mg∙L�1

within 60min. Similarly, with an increase in the initial concentra-
tion of MNZ from 5.0 to 15.0mg∙L�1, the energy yield increased
from 0.28 to 0.44g∙(kW∙h)�1 within 60min. When the volume of
solution was increased from 1.75 to 2.50 L, the energy yield
decreased from 0.38 to 0.20 g∙(kW∙h)�1 for a concentration of
7.5mg∙L�1 within 60min.

Based on the above experimental data, a correlation between
the energy yield, Y, and the other operating conditions in a
plasma-RDR was proposed, as shown in Eq. (4):

Y ¼ 4:39� 10�4f 1:213V�1:465 � C0:587
0 � t0:228 ð4Þ

It can be seen that the pulse repetition frequency and the volume of
the solution have a greater impact on energy yield, whereas the
treatment time has the smallest effect among the operating condi-
tions. Fig. 6 shows the values of energy yield obtained experimen-
Fig. 7. Effects of TiO2 dosage on (a) degradation efficien
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tally versus the values predicted by Eq. (4), which exhibits a
deviation of ±15%.

3.3. Degradation of MNZ in a plasma-RDR coupled with TiO2

3.3.1. Effect of TiO2 additive amount
The effect of the amount of TiO2 added to the solution in the

plasma-RDR on the degradation efficiency of MNZ is exhibited in
Fig. 7(a). The experiments were conducted with a liquid flow rate
of 80 L∙h�1, an initial MNZ concentration of 15.0mg∙L�1, and a
cy of MNZ and (b) production of hydroxyl radicals.
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pulse repetition frequency of 200Hz. The experimental results
revealed that 0.2 g∙L�1 was the optimal TiO2 additive amount for
a higher degradation efficiency of MNZ. When the additive amount
of TiO2 exceeded this value, the degradation efficiency induced by
the plasma discharge decreased. It can be understood that an
increase in TiO2 particles improved the number of photons that
were absorbed. When the concentration of TiO2 particles exceeded
0.2 g∙L�1, light scattering and screening effects ensued. Excessive
opacity of the suspension restricted the TiO2 nanoparticles that
were furthest in from being irradiated [32]. Due to the scattering
and screening effects, the catalytic activity of the TiO2 particles
was reduced [33]. Particle aggregation always occurs at high con-
centrations [34]. The optimum amount of TiO2 for degrading
MNZ was deemed to be 0.2 g∙L�1. Furthermore, the synergistic
effect of the plasma-RDR plus TiO2 was significant in generating
hydroxyl radicals. As shown in Fig. 7(b), the concentration of
hydroxyl radicals increased by 0.671mg∙L�1 within 120min with
the aid of the TiO2 photocatalyst.
3.3.2. Characteristics of TiO2 before and after plasma discharge
To examine the morphology and structural features of the TiO2

particles before and after discharge in the plasma-RDR, scanning
electron microscope (SEM) and transmission electron microscope
(TEM) patterns of TiO2 were obtained for comparison, as shown
in Figs. 8(a)–(f). Figs. 8(a) and (c) respectively show the SEM and
TEM images of the original TiO2 particles, from which it can be
clearly concluded that many of the TiO2 particles were irregularly
spherical. After discharge for the treatment of MNZ, the surface
morphology of the TiO2 particles (Figs. 8(b) and (d)) was found
to be almost identical to that of the original TiO2 particles. Figs.
8(e) and (f) indicate nearly the same plane spacing, which was
approximately 0.350nm both before and after discharge, corre-
sponding to the spacing of the (101) plane of anatase TiO2 [35,36].
Fig. 8. SEM images of TiO2 (a) before and (b) after discharge; TEM images of TiO2 (c)
(HRTEM) images of TiO2 (e) before and (f) after discharge; (g) XRD patterns of TiO2 befo
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Fig. 8(g) also shows the XRD patterns of anatase TiO2 before and
after discharge. After plasma discharge, the TiO2 particles retained
the same anatase-phase diffraction peaks as the original TiO2 par-
ticles, which verified that the TiO2 particles were not destroyed
during the plasma discharge.

In the process of catalytic degradation, it was important to
study the stability of the catalysts in long-term reactions, in order
to evaluate the catalysts’ applicability for water treatment. Fig. 8(h)
shows the degradation efficiency of MNZ with used TiO2 that was
recovered by filtration and thoroughly dried. The degradation effi-
ciency of MNZ dropped slightly after four cycles, which indicates
that the plasma discharge has little influence on the photocatalytic
property of TiO2.
3.4. 3D EEFMs analysis, degradation intermediates, and a possible
degradation pathway

3D EEFMs were adopted to analyze the fluorescent information
of MNZ based on the conjugated heterocyclic structures in the
organic compounds [37]. Fluorescence in various regions indicates
different components of the molecules. The fluorescence intensity
qualitatively reflects the concentration of organic compounds.
Therefore, 3D EEFM analysis was implemented to illustrate
changes in the molecular structure and concentration of MNZ. As
shown in Fig. 9, the fluorescent peaks were situated in the follow-
ing ranges for the excitation over emission wavelengths (EX/EM, EX
denotes excitation wavelength, EM denotes emission wavelength):
(200–500nm)/(300–600nm). As exhibited in Figs. 9(b) and (c),
the fluorescent peaks disappeared gradually, suggesting that the
conjugated heterocyclic structures in MNZ were destroyed. The
experimental results show that the plasma-RDR/TiO2 system can
be used for MNZ removal.

Table 1 lists the major intermediates that were detected by
LC-MS. The results revealed that the degradation of MNZ was
before and (d) after discharge; high-resolution transmission electron microscope
re and after discharge; (h) cycling tests of TiO2 particles.



Table 1
Intermediates identified by LC-MS.

No. Molecular weight Molecular formula Chemical structure

1 171 C6N3H9O3

2 185 C6N3H7O4

3 156 C6N2H8O3

4 127 C4N3H5O2

5 98 C4N2H6O

Fig. 9. 3D EEFMs of MNZ solution after treatment times of (a) 0min, (b) 60min, and
(c) 120min in the plasma-RDR/TiO2 system. EX: excitation wavelength; EM:
emission wavelength.
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complex. Heterocyclic intermediates were mainly formed by
hydroxylation with denitration (No. 3 and No. 5), oxidation of
the lateral N-ethanol to an N-acetic acid group (No. 2 and No. 3),
and the loss of these lateral groups (No. 4 and No. 5). It is
Fig. 10. Possible degradation pathway of M
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anticipated that further breakage of the imidazole portion and oxi-
dation of the resulting linear compounds would produce a mixture
of short linear aliphatic carboxylic acids. The presence of oxalic,
oxamic, formic, and acetic acids was corroborated by high-
performance liquid chromatography (HPLC) analysis [38,39]. These
aliphatic acids can be mineralized into CO2 and H2O. According to
the above experimental results, a possible degradation pathway is
proposed, as shown in Fig. 10.

3.5. Degradation mechanism of MNZ in the plasma-RDR/TiO2 system

Based on the experimental results described above, a schematic
diagram of the MNZ degradation mechanism by the plasma-RDR/
TiO2 system is exhibited in Fig. 11. UV–visible light generated by
the plasma-RDR induced TiO2 particles and caused the separation
of electron–hole pairs. The produced h+ was able to react with
H2O and OH� to form ∙OH. The generated conduction electrons
were trapped by both the O2 and the O3 produced by the discharge,
further generating ∙OH. The produced ∙OH bymeans of photocataly-
sis, together with the formed reactive oxygen species by plasma
discharge, jointly reacted with MNZ to produce intermediates.
NZ in the plasma-RDR/TiO2 system.



Fig. 11. Degradation mechanism of MNZ in the plasma-RDR/TiO2 system. UV-Vis: ultraviolet–visible; VB: valence band; CB: conduction band.
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4. Conclusions

This work studied the degradation of MNZ in aqueous solution.
The degradation efficiency of MNZ and the concentration of hydro-
xyl radicals generated in the plasma-RDR respectively increased by
41% and 2.954mg∙L�1 with an increase in the rotational speed from
0 to 500 r∙min�1. A higher pulse repetition frequency favored the
degradation efficiency, whereas a higher initial concentration of
MNZ and a greater volume of MNZ solution were unfavorable to
the degradation efficiency. Based on the experimental data, the
energy yield was calculated and a correlation was proposed. The
deviation between the predicted values and the experimental data
was within ±15%. The enhanced degradation performance of the
plasma-RDR plus TiO2 was significant, as the concentration of
hydroxyl radicals increased by 0.671mg∙L�1 within 120min. 3D
EEFMs and LC-MS demonstrated that the conjugated heterocyclic
structures of MNZ were destroyed and small molecules were pro-
duced. The plasma-RDR/TiO2 system is thus a promising technol-
ogy for antibiotic wastewater treatment.
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