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Finding energetic materials with tailored properties is always a significant challenge due to low research
efficiency in trial and error. Herein, a methodology combining domain knowledge, a machine learning
algorithm, and experiments is presented for accelerating the discovery of novel energetic materials. A
high-throughput virtual screening (HTVS) system integrating on-demand molecular generation and
machine learning models covering the prediction of molecular properties and crystal packing mode scor-
ing is established. With the proposed HTVS system, candidate molecules with promising properties and a
desirable crystal packing mode are rapidly targeted from the generated molecular space containing
25 112 molecules. Furthermore, a study of the crystal structure and properties shows that the good com-
prehensive performances of the target molecule are in agreement with the predicted results, thus verify-
ing the effectiveness of the proposed methodology. This work demonstrates a new research paradigm for
discovering novel energetic materials and can be extended to other organic materials without manifest
obstacles.
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Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Energetic materials are a class of special reactive substances
that can release enormous amounts of energy through intense
redox reactions under certain external stimuli. Such materials have
substantially contributed to the progress and prosperity of human-
kind since the discovery of black powder in ancient China more
than 2000 years ago [1,2]. In the use of advanced energetic
materials, energy, sensitivity, and thermostability are the three
properties of most concern [3–6]. However, a relationship of
mutual contradiction and restriction is always present between
energy, sensitivity, and thermostability. In general, high energy
of energetic materials is always accompanied by increased
mechanical sensitivity and decreased thermostability. Therefore,
it remains a great challenge to develop new energetic materials
that simultaneously possess high energy, low sensitivity, and good
thermostability.

Empirical models for guiding the design of energetic materials
have been developed, such as the Kamlet–Jacobs equation for pre-
dicting detonation properties and the nitro charge method for pre-
dicting mechanical sensitivity [7,8]. Nevertheless, these empirical
models are seldom used for the large-scale prescreening of ener-
getic materials before experimental synthesis, because the time-
consuming quantum calculations are unaffordable and the infer-
ence capabilities are indeterminable. For a long time, the discovery
of new energetic materials has relied heavily on scientific intuition
through experiments and traditional trial-and-error process [9],
which suffer from low efficiency and high uncertainty [10].

With the coming of the big data era, the research paradigm for
energetic materials has undergone profound changes [11,12]. Com-
pared with empirical models, machine learning models usually
have various advantages in terms of accuracy, generalization, and
the capacity to cope with nonlinear problems [13], and are there-
fore widely used in various fields of material science [14–22].
Herein, we demonstrate a machine learning-assisted high-
throughput virtual screening (HTVS) system for the accelerated
discovery of new energetic materials with well-balanced energy–
safety properties. This HTVS system integrates machine learning
models with high-throughput molecule generation and helps to
rapidly filter out promising target molecules from 25 112 gener-
ated molecular structures. The screened compounds also have a
relatively high possibility of possessing a graphite-like crystal
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structure, since this specific crystal packing mode generally
demonstrates better energy–safety characteristics. After further
evaluation of synthetic feasibility, a promising fused [5,6]bi-
heterocyclic backbone-based energetic material—namely 7,8-
dinitropyrazolo[1,5-a][1,3,5]triazine-2,4-diamine (herein referred
to as ICM-104)—was synthesized through three-step reactions. A
study of the properties of the synthesized material revealed that
this new energetic material has good comprehensive properties,
including high energy, low sensitivity, and good thermostability.
These findings demonstrate the effectiveness of the proposed HTVS
system, as well as the great potential of machine learning in
designing high-performance energetic materials.
2. Methods

2.1. Data preparation and augmentation

More than 1000 pieces of data on energetic materials were
gathered from the literature from the past few decades in order
to train the property regression models. The dataset contained
molecules with various structures and covered aliphatic, aromatic,
monocyclic, and polycyclic compounds (see Dataset1 in Appendix
A for detailed samples and data sources). More features about
the dataset, such as data distribution, are provided in Fig. S1 in
Appendix A. Before training the regression model, all data were
randomly split into training data and testing data in a ratio of
80:20. The training data was further split into a training set and
a validation set for the five-fold cross-validation of the training
models and tuning hyperparameters. That is, the validation set
comprised five sections, each of which was used once for valida-
tion, while the remaining four sections were used as the training
set. The final test scores were calculated on the hold-out testing
data, which had not been used in the training process.

To train the classification model, we prepared 365 entries
labeled ‘‘0” (indicating not graphite-like) and 22 entries labeled
‘‘1” (indicating graphite-like) from the Cambridge Crystallographic
Data Centre (CCDC) (see Dataset2 in Appendix A). Obviously, the
amount of data was too small and not suitable for deep learning.
Therefore, we augmented the data using the simplified molecular
input line entry specification (SMILES) enumeration trick, which
generated multiple different SMILES strings that represented the
same molecule. SMILES enumeration, as proposed by Arús-Pous
et al. [23] and Bjerrum [24], is a novel data-augmentation technol-
ogy for molecular deep learning. The SMILES labelled as ‘‘0” and ‘‘1”
were enlarged by 10-fold and 30-fold, respectively. After augmen-
tation, the total sample size was enlarged to more than 4000.
When training the convolutional neural network (CNN) and long
short-term memory (LSTM) model, 400 samples were held back
to evaluate the performance of the proposed model.
2.2. Feature and model

Features (i.e., molecular descriptors) including custom descrip-
tors and electro-topological fingerprints were extracted using the
RDKit library. Property models were trained by means of a kernel
ridge regression (KRR) algorithm, which was implemented in the
Scikit-learn package. In the KRR algorithm, the prediction value
(y*) can be expressed as the weighted average (ai) of the inner pro-
duct between the new sample (x*) and the training samples (x),
given a kernel function (k) (Eq. (1)). Therefore, the learning process
involves calculating the coefficient matrix (a, and ai is the i-th
entry of a) using Eq. (2), in which X ,Y, k, and I are the sample
matrix, label matrix, regularization parameter, and identity matrix,
respectively. Hyperparameters including kernel function were
tuned using the grid-search method and five-fold cross-
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validation. The coefficient of determination (R2) was chosen as
the refit score (Eq. (3)), where y is mean value. The mean absolute
error (MAE) was used to evaluate the model performance, and is
given by Eq. (4). In all equations, i and N refer to i-th sample
and total number of samples.
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N
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The CNN and LSTM for the classification model were con-
structed using the Pytorch package. To prepare the inputs, a dic-
tionary was automatically abstracted from the SMILES of the
whole dataset. The details of the dictionary were as follows: [‘N’,
‘c’, ‘1’, ‘n’, ‘(‘, ’)’, ‘[‘, ‘+’, ’]’, ‘=’, ‘O’, ‘-’, ‘o’, ‘2’, ‘#’, ‘C’, ‘3’, ‘H’, ‘/’, ‘\\’,
‘4’, ‘5’, ‘None’] (none for padding). Accordingly, the SMILES string
was transformed into a two-dimensional (2D) array with a size
of [120, 23]. For the LSTM model, the length limit of the SMILES
was 120, and the allowed characters were identical to those of
the dictionary. Furthermore, the CNN contained two 2D convolu-
tional layers and three full-connection layers. The 2D convolutional
layers had filter sizes of 16 and 32, whereas the kernel sizes were 7
each. The max pooling layer had a kernel size of 2. The full-
connection layers had widths of 800, 100, and 2, respectively. A
rectified linear unit (ReLU) was used for the activation function.
The LSTM possessed a hidden size of 64 and a layer number of
20. For both the deep learning architectures, the loss function
was defined by cross-entropy, and an Adam optimizer with a learn-
ing rate of 0.001 was used to update the weights. Accuracy
(defined by Eq. (5)), balanced accuracy (defined by Eq. (6)), and
F1 score (defined by Eq. (7)) were chosen as the metrics for evalu-
ating the performance of the model, in which TP, FP, TN, and FN
represent the true positives, the false positives, the true negatives,
and the false negatives, respectively. To illustrate the necessity of
deep learning architectures, the K-nearest neighbor (KNN) based
on the descriptors was tested as the baseline. However, the SMILES
enumeration was not applied to train the KNN model, since the
descriptors based on different SMILES representing the same mole-
cule were completely identical.

Accuracy ¼ 1
N

XN�1
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To score the possibility, the SMILES enumeration trick was used
in the prediction process. Out of 20 SMILES representing the same
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molecule, the proportion of molecules with graphite-like struc-
tures (p) could be obtained after classification (Eq. (10)). The above
process was repeated ten times to alleviate the randomness in the
SMILES enumeration, and the sum of p was taken as the final score
(Eq. (11)).

p ¼
P20

i¼1y
�
i

20
; y�i 2 0;1f g ð10Þ

Score ¼
X10
i¼1

pi ð11Þ
2.3. Preparation and characterization

Although the compounds reported here have quite low sensitiv-
ity to external mechanical stimuli (e.g., impact and friction), highly
corrosive concentrated sulfuric acid is used in the synthesis pro-
cess. Thus, we recommend the use of safety equipment such as
protective gloves, coats, face shields, and explosion-proof baffles.

2.3.1. Preparation of 4-nitro-1H-pyrazole-3,5-diamine hydrochloride
4-Nitro-1H-pyrazole-3,5-diamine was prepared according to a

previously reported route [25]. Concentrated hydrochloric acid
(3 mL) was added to a suspension of 4-nitro-1H-pyrazole-3,5-
diamine (3 mmol, 0.429 g) in methanol (5 mL). After stirring for
10 min, the resulting light yellow solid was filtered and washed
using ethyl acetate (EtOAc) to obtain 4-nitro-1H-pyrazole-3,5-
diamine hydrochloride (a yield of 80%).

2.3.2. Preparation of 8-nitropyrazolo[1,5-a][1,3,5]triazine-2,4,7-
triamine

This intermediate was prepared according to a previously
reported route with slight changes [26]. First, 4-nitro-1H-
pyrazole-3,5-diamine hydrochloride (3 mmol, 0.54 g) was sus-
pended in ethanol (11 mL). Then, dicyandiamide (4 mmol,
0.33 g) was added to the suspension. The mixture was refluxed
at 80 �C for 6 h. During the refluxing, an orange solid gradually
appeared in the solution. The orange solid was filtered and recrys-
tallized using water at 80 �C to obtain a yellow solid
(8-nitropyrazolo[1,5-a][1,3,5]triazine-2,4,7-triamine; yield of 60%).

2.3.3. Preparation of ICM-104
In an ice-water bath, 8-nitropyrazolo[1,5-a][1,3,5]triazine-

2,4,7-triamine (3 mmol, 0.63 g) was added to concentrated sulfuric
acid (6 mL) in portions. Then, 30% hydrogen peroxide (2.5 mL) was
added dropwise to the solution. After stirring at room temperature
for 3 h, the reaction was quenched using crushed ice, and the solu-
tion was extracted using EtOAc. Then, EtOAc was removed using
rotary evaporation. A light yellow solid was collected as the target
compound (ICM-104; yield of 42%). The nuclear magnetic reso-
nance (NMR) data for the target compound was as follows: 1H
NMR (dimethyl sulfoxide (DMSO)-d6, 400 MHz) d: 8.81 ppm (s,
1H, NH2), 8.56 ppm (s, 1H, NH2), 8.04 ppm (s, 1H, NH2), 7.77
ppm (s, 1H, NH2); 13C NMR (DMSO-d6, 100 MHz) d: 162.41,
153.61, 150.44, 147.42, 109.47 ppm (Fig. S12 in Appendix A). The
high-resolution electrospray ionization mass spectrometry (ESI-
HRMS) data was as follows: ESI-HRMS:m/z calculated for [M�H]�:
239.0283; found: 239.0282(1). Infrared (IR; KBr, cm�1): 3483.42,
3431.90, 3333.44, 3205.61, 1684.94, 1633.17, 1605.24, 1565.96,
1523.60, 1491.91, 1453.41, 1396.89, 1340.13, 1291.72, 1242.11,
1220.57, 1091.12, 983.45, 881.85, 851.93, 807.86, 784.96, 775.28,
728.80, 714.26, 600.36, 550.32. The calculated elemental analysis
was C 25.01%, H 1.68%, and N 46.66%; the found elemental analysis
was C 24.67%, H 1.82%, and N 46.40%.
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1H and 13C spectra were collected on a Bruker (USA) Avance Neo
400 NMR spectrometer operating at 400 and 100 MHz, respec-
tively. High-resolution mass spectra (HRMS) were collected using
a Shimadzu LCMS-IT-TOFTM mass spectrometer with electrospray
ionization (ESI). Impact and friction sensitivity measurements
were conducted using a standard BAM Fall hammer and a BAM
friction tester. The heat of formation of the compound was calcu-
lated from the heat of combustion, which was measured using an
oxygen bomb calorimeter. The standard detonation properties
were calculated using Explo5 (version 6.02) software.
3. Results and discussion

3.1. HTVS system

The framework and components of the HTVS system are shown
in Fig. 1. The HTVS system functions as follows (Fig. 1(a)). First, a
large number of energetic molecules can be generated by the
high-throughput molecular generation module (Fig. 1(b)). Then,
the generated molecules are imported into the property predictor
to undergo rapid and accurate property calculations. The property
predictor contains four trained models for density, detonation
velocity, detonation pressure, and decomposition temperature,
using the same composite molecular descriptors set as the input
(Fig. 1(c)). By virtue of this property predictor, potential molecules
with relatively high energy, low sensitivity, and good thermosta-
bility can be filtered out based on the predicted properties. The
preliminarily screened molecules with the desired properties are
then fed into the crystal structure classifier to further evaluate
the possibility of forming a graphite-like layered crystal structure.
Finally, after evaluating the feasibility of synthesis, molecules with
promising properties and a high probability of forming a graphite-
like layered crystal structure are selected for experimental synthe-
sis and characterization. This HTVS system can help experimental
chemists customize energetic materials through the molecular
generation and screening process, rather than spending a great
deal of time and effort on trial and error.
3.2. Feature set and property models

Aside from the data, the feature (i.e., the molecular descriptor)
is another factor that determines the accuracy of the machine
learning model. Our composite feature set (CDS) is composed of
two parts. The first part comprises the fingerprints related to car-
bon (C), hydrogen (H), oxygen (O), nitrogen (N), and the halogen
elements from the electro-topological state (E-state) fingerprint,
which have been widely used to construct different models for pre-
dicting molecular properties [27–29]. However, domain knowl-
edge can reduce the learning complexity and improve the
accuracy for a specific task; therefore, we defined a custom
descriptor set containing another 29 molecular descriptors
(Table S2 in Appendix A). This custom descriptor set enhances
the description of molecular shape and composition, such as the
plane of best fit (PBF) and oxygen balance (OB), which will be help-
ful in learning about the properties of energetic materials. The cor-
relation of the custom descriptors on the density data was
visualized using a heat map (Fig. 2(a)). The heat map demonstrates
that most of the custom descriptors are not significantly correlated,
which is beneficial for the training model.

Principal component analysis (PCA) was used to visualize the
capacity of our CDS for capturing the underlying model in density
data [30]. When the features were combined into 45 principal
components, the cumulative variance reached the value of 0.993
(Fig. 2(b), left). Furthermore, the most informative projections of
principal components (PC14 and PC2) were visualized (Fig. 2(b)).



Fig. 1. Framework and components of the HTVS system. (a) Framework of machine learning-assisted HTVS; (b) schematic of molecule generation using heuristic
enumeration; (c) schematic of the training of property models and the graphite-like structure classification model; (d) one-hot encoding for the input of the CNN;
(e) architecture of the CNN.
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Sample distributions with different densities were relatively con-
centrated and an obvious color gradient was observed, implying
that the features were effective in capturing the underlying model
in the density data.

After training the model using the KRR algorithm [31], we val-
idated the performance of the model for predicting density by
comparing the observed and predicted values on the training and
test sets, respectively (Fig. 2(c)). We found a remarkable agreement
between the observed and predicted values (Fig. 2(c), left), and the
deviation between them followed an almost normal distribution
(Fig. 2(c), right). In the learning curves, with the increase in
the training sample, both the training (red) and cross-
validation (green) curves gradually approached the same asymp-
tote (Fig. 2(d)), indicating that our model was trained well (i.e.,
over-fitting or under-fitting was not observed). The coefficient of
determination (R2) and MAE for the test dataset were 0.93 and
0.042 g∙cm�3, respectively (Fig. 2(e)). The high accuracy of the
density model may stem from the large amount of data and the
reasonable featurization method, which can capture both mole-
cular and crystal characteristics to some degree. With the same
composite molecular descriptor set as the input, the prediction
models for the detonation velocity (Dv), detonation pressure (P),
and decomposition temperature (Td) were all trained. As shown
in Fig. 2(e), the R2 values for the test dataset of the Dv, P, and Td
models were 0.83 (MAE: 236.3 m∙s�1), 0.82 (MAE: 2.379 GPa),
and 0.62 (MAE: 30.8 �C), respectively. (For the training and evalu-
ation of these models, see Fig. S2 in Appendix A.) More results for
the cross-validation score and training stability test are summa-
rized in Table S3 in Appendix A. It is noticeable that, compared
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with past works, our models show a competitive performance in
terms of accuracy, effectiveness, and comprehensiveness
(Table S4 in Appendix A). Apart from the above four properties
(e.g., density, detonation velocity, detonation pressure, and decom-
position temperature), sensitivity is a core property for energetic
materials. However, training a general model for sensitivity is still
difficult, since sensitivity is correlated with multiscale factors
including the electronic structure, crystal structure, and even
measurement conditions. Therefore, an alternative method for
tackling sensitivity prediction remains highly desired.

3.3. Classification model for a graphite-like layered crystal structure

To find a more reliable method for rapidly screening potential
energetic molecules with low sensitivity, we tried transferring
the direct prediction of impact sensitivity into a special structural
identification of graphite-like layered crystal packing, as there is a
widely recognized close correlation between a graphite-like lay-
ered crystal structure and low impact sensitivity in energetic mate-
rials [32–34]. The crystal structure is related to the molecular
structure; in particular, certain functional groups that tend to form
strong non-bonding interactions may dominate the formation of
crystals. In some previous studies, a deep neural network was used
for predicting the crystal structure, which inspired us to seek help
from deep learning [35,36].

From the above considerations, a CNN and LSTM [37,38] were
chosen to capture the chemical intuition that can distinguish
among molecules with regards to possible graphite-like crystal
structures. The CNN was trained using the one-hot encoding of



Fig. 2. Feature distribution and model evaluation of property models. (a) Custom descriptor set and its heatmap of feature distribution on density data; (b) PCA of features
and scatter for most informative components on density data; (c) parity plot and deviation distribution on the training set (green) and test set (purple) of density data, where
the red (orange) dashed line is the normal distribution curve of deviation for the training (test) data; (d) learning curves (training curve in red and cross-validation curve in
green) of density model; (e) test scores for the four trained models (Dv: detonation velocity; P: detonation pressure; Td: decomposition temperature).
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molecular SMILES strings as input (Figs. 1(c, d)) [39,40], and bears a
typical architecture (Fig. 1(e)). The LSTM was directly trained using
SMILES as the input. In addition, a KNN model using CDS as the
103
input (the CDS + KNN model) was trained as a baseline. A compari-
son of the training process, as shown in Fig. 3, indicates that the
SMILES_Onehot + CNN model was better than the SMILES + LSTM



Fig. 3. Comparison among classification models. (a) Training process and confusion matrix for the SMILES_Onehot + CNNmodel; (b) training process and confusion matrix for
the SMILES + LSTM model; (c) confusion matrix for the CDS + KNN model; (d) model metrics for the test data.
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model, because the train and test losses for the former were lower,
whereas the accuracy/balanced accuracy of the former model was
higher than that of the latter model. The confusion matrix of the
dumped model for SMILES_Onehot + CNN (epoch 15) with the low-
est test loss also behaved better than that of SMILES + LSTM, since
the latter had a stronger tendency to misclassify graphite-like (1)
as non-graphite-like (0) molecules. In contrast, the CDS + KNN
model demonstrated poor performance, especially in terms of the
balanced accuracy (0.65) and confusion matrix. This phenomenon
is understandable, since in the CNN and LSTM models, more infor-
mation about the molecular structure (e.g., the arrangement of
atoms and substituted groups, which we consider to be vital for
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predicting crystal packing) remained, while in the CDS + KNN
model, these pieces of information were compressed during the
featurization process. We also tried simpler architectures (e.g.,
decision tree and neural network based on CDS, as shown by the
data presented in Table S5 in Appendix A), which showed that
SMILES_Onehot + CNN exhibited an absolute advantage with
regards to accuracy.

Finally, the SMILES_Onehot + CNN model was integrated with
the SMILES enumeration trick to evaluate the possibility of poten-
tial molecules having a graphite-like crystal structure [41]. The
possibility value indicates the tendency of one molecule to form
a graphite-like layered structure; therefore, it helps us to sort
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and assess these molecules from high to low likelihood. In this
way, the screening step for graphite-like layered crystal structures
became more robust.

3.4. High-throughput generation and screenings of energetic molecules

We used a heuristic enumeration method to generate the mole-
cules (Fig. 1(b)) through homemade scripts (Fig. S3 in Appendix A)
[42,43]. In recent years, researchers have shown increasing interest
in fused heterocycle ring-based energetic materials (e.g., fused
[5,5]biheterocyclic and [5,6]biheterocyclic energetic molecules).
In this regard, a series of promising fused-ring energetic molecules
have been reported [44–48]. Herein, we focus on energetic mole-
cules that are constructed from a fused [5,6]biheterocyclic back-
bone and substituted nitro/amino groups.

Initially, the input structure for the molecular generation mod-
ule contained five different [5,6]bicyclic carbon rings. After the N-
substitution (from 1N to 7N) process, we obtained 355 different
fused [5,6]biheterocyclic skeletons (Fig. 4(a)). Based on the accept-
able time consumption for molecular generation and the feasibility
of experimental synthesis, the most substituent sites in the fused
[5,6]biheterocyclic skeleton were limited to four (see scatter plots
in Fig. S2). Consequently, 25 112 possible fused [5,6]biheterocyclic
molecules were generated, which involved the introduction of
Fig. 4. Process of generating and screening the molecules. (a) Illustration of the generatio
the molecules in original and different screening steps (black, green, and pink dots re
respectively); (c) proportions of different nitro-atom-substituted fused [5,6]biheterocyc
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nitro/amino groups into 355 different fused [5,6]biheterocyclic
skeletons after structure sanitization and deduplication. As shown
in Fig. S4 in Appendix A, the generated molecules were close to the
domains of applicability of the models.

The generated 25 112 energetic molecules were then fed into
the property predictor to predict their properties (including den-
sity, Dv, P, and Td) and screen them (see the predicted results in
the Supplementary Data 1 in Appendix A). The whole explored
molecular space and the step-by-step screening can be visualized
in color-mapped three-dimensional (3D) scatter plots (Fig. 4(b))
and doughnut charts (Fig. 4(c)). The predicted properties of the
25 112 molecules were in accordance with some common rules
for energetic materials, such as a linear correlation between the
density and Dv/P. A negative correlation between the density and
the decomposition temperature (Fig. 4(b)) was observed. We took
the density (1.80 g∙cm�3) of a typical energetic material (1,3,5-
trinitro-1,3,5-triazinane, RDX) as the first criterion to screen. The
number of molecules with a density greater than 1.80 g∙cm�3 shar-
ply decreased from the original 25 112 molecules to only 3141
(Fig. 4(b)). The color-mapped 3D scatter plot shows that the mole-
cules with Td above 280 �C (red dots) were mostly located in the
region with relatively low Dv values (around 8000 m∙s�1). How-
ever, the molecules with Dv greater than 8800 m∙s�1 (blue dots)
were mostly located in the region with relatively low Td values
n process of the [5,6]biheterocyclic backbone; (b) color-mapped 3D scatter plots of
present the projections on the density/Dv plane, density/P plane, and Dv/P plane,
lic molecules in original and different screening steps.
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(around 160 �C) (Fig. 4(b)). When the screening criteria for energy
(Dv > 8400 m∙s�1) and thermostability (Td > 280 �C) (for criteria
determination, see Fig. S5 in Appendix A) were separately intro-
duced, the number of molecules satisfying the requirements
decreased from 3141 to 1144 (Fig. 4(b)); finally, they reached the
value of 99 (Fig. 4(b) and Appendix A Fig. S6).

The color-filled doughnut charts clearly show the variations in
the proportions of the different nitrogen-substituted [5,6]bihetero-
cyclic molecules with the gradual introduction of the screening cri-
teria (Fig. 4(c)). After introducing the screening criteria for density
(> 1.80 g∙m�3) and energy (Dv > 8400 m∙s�1), the proportions of
five- (sky blue color), six- (orange color), and seven- (navy blue
color) nitrogen-atom-substituted fused [5,6]biheterocyclic mole-
cules increased from 5.31%, 0.84%, and 0.06% to 20.10%, 4.02%,
and 0.61%, respectively, which implies that a high content of nitro-
gen in the molecular skeleton is beneficial for increasing the
energy (high density and Dv) of the fused [5,6]biheterocyclic mole-
cules. However, a high nitrogen content will decrease the molecu-
lar thermostability, causing the decomposition temperatures to be
lower than 280 �C. In contrast, the proportions of one- (blue color)
and two- (red color) nitrogen-atom-substituted fused [5,6]bihete-
rocyclic molecules decreased from 10.35% and 30.72% to 0 and
0.96%, respectively, under the screening criteria for density
(> 1.80 g∙cm�3) and energy (Dv > 8400 m∙s�1), indicating the nega-
tive influence of low nitrogen content on the energy of the mole-
cules. After screening by density (> 1.80 g∙cm�3) and energy
(Dv > 8400 m∙s�1), three-nitrogen-atom-substituted fused [5,6]bi-
heterocyclic molecules (green color) showed a relatively high per-
centage (26.84%) among the filtered 1144 candidates; however,
Fig. 5. Score for forming a special graphite-like layered crystal structure. (a) Average sco
indicate the mean deviation for five predictions); (b) structures for the first five molecu
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their decomposition temperatures could not satisfy the criterion
for high thermostability (Td > 280 �C), mainly because the nitrogen
content for three-nitrogen-atom-substituted fused [5,6]bihetero-
cyclic molecules is still relatively low. The screened molecules that
meet the criteria of both density and energy usually contain mul-
tiple nitro groups (around three or four) (Fig. S7 in Appendix A),
although the strong electron-withdrawing effect of multiple nitro
groups will reduce the molecular stability to dissatisfy the criterion
of decomposition temperature (Td > 280 �C). Overall, after three-
step screening, all 99 screened molecules had four nitrogen atoms
(violet color; 4N) substituted into the fused [5,6]biheterocyclic
molecules, because both the nitrogen content in their molecular
skeletons and the number of nitro groups were reasonable.

These 99 energetic molecules were then imported into the
graphite-like structure classifier to evaluate their score for forming
a special graphite-like layered crystal structure. The prediction for
each molecule was repeated five times; the results are summarized
in Fig. 5(a) and Dataset2. Based on the sorted averaged score,
from high to low, the first five molecular structures are shown in
Fig. 5(b). After evaluating the synthetic accessibility of these five
molecules (Fig. S8 in Appendix A), it was found that molecule 2
(as shown in Fig. 5(b); ICM-104) had never been reported and
was synthetically feasible. Therefore, molecule 2 was selected for
subsequent experimentation.

3.5. Synthesis and property studies

Encouragingly, according to the designed synthetic route, we
successfully prepared the target molecule ICM-104 by three-step
re for forming a graphite-like layered crystal structure for 99 candidates (error bars
les sorted according to their respective averaged score.
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reactions (Section 2.3). After slow solvent evaporation of its EtOAc
solution, single crystals of ICM-104 suitable for X-ray diffraction
were obtained (Table S6 in Appendix A). As expected, ICM-104
had a graphite-like layered crystal stacking structure with a P21/c
space group (Fig. 6(a)). In the molecular structure, one nitro group
was out of the supramolecular plane (with an angle of 66.7�),
which was due to the repulsive interaction of the two adjacent
nitro groups (Fig. 6(a)). The supramolecular plane of ICM-104
Fig. 6. Crystal structure and properties of ICM-104. (a) 3D graphite-like layered cr
(b) comparison between the predicted and measured/calculated properties of ICM-104, 2
oxide (LLM-105) (blackish green represents the properties measured by experiments or ca
by the proposed machine learning models); (c) comparison of nitro group charges, maxim
TATB (1 kcal = 4.19 � 103 J); (d) energy change for the layer sliding of ICM-104, LLM-10
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was constructed by the hydrogen bonds between the amino and
nitrogen groups (Fig. 6(a)). This result indicates that our trained
graphite-like structure classification model is helpful in identifying
new energetic molecules with unique graphite-like crystal packing.

After the structural characterizations of ICM-104, our attention
turned to evaluating the practicability of the prediction models by
comparing the experimental/calculated results with those
predicted using the proposed models. As shown in Fig. 6(b), the
ystal stacking, 2D supramolecular plane, and molecular geometry of ICM-104;
,4,6-triamino-1,3,5-trinitrobenzene (TATB), and 2,6-diamino-3,5-dinitropyrazine-1-
lculated using Explo5 (v6.02), whereas lavender represents the properties predicted
um of electrostatic potential (ESP), and balance of charges of ICM-104, LLM-105, and
5, and TATB, where deep yellow indicates the chosen sliding layer.
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predicted density, Dv, and P of ICM-104 were 1.828 g∙cm�3, 8422
m∙s�1, and 29.8 GPa (green histogram in Fig. 6(b)), respectively, all
of which were close to the experimental density (1.825 g∙cm–3)
and calculated Dv and P values (8551 m∙s�1 and 29.8 GPa; obtained
using Explo5 v6.02) (lavender histogram in Fig. 6(b)). The decom-
position temperature (Td) exhibited a clear deviation of around
40 �C between the experimental (326 �C) and predicted (286 �C)
results. The main reason for this deviation is that the crystal of
ICM-104 is constructed by strong intermolecular hydrogen bonds,
whereas our present composite descriptor set is mostly focused on
molecular level and has a weak capability for describing inter-
molecular interactions. The decomposition temperature of ICM-
104 was impressive at 326 �C (Fig. S9 in Appendix A), which is
close to those of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-
105; 342 �C) and 2,4,6-triamino-1,3,5-trinitrobenzene (TATB;
350 �C). The non-isothermal kinetic apparent activation energy
(Ea) of ICM-104, as obtained using the Kissinger and Ozawa meth-
ods, was 615 and 594 kJ∙mol�1, respectively (Fig. S9), indicating
the excellent thermal stability of ICM-104. The high decomposition
temperature of ICM-104 can be attributed to its graphite-like crys-
tal structure, which is beneficial in providing a better thermostabil-
ity and relatively stronger trigger bonds (with a bond dissociation
enthalpy of 260.63 kJ∙mol–1) than that of LLM-105 (247.72
kJ∙mol�1; Fig. S10 in Appendix A) [49]. In addition, ICM-104 exhib-
ited low impact (a measured value of 35 J) and friction (a measured
value > 360 N) sensitivities. Meanwhile, our predicted results for
TATB (1.882 g∙cm�3, 7964 m∙s�1, 26.8 GPa, and 317 �C) and LLM-
105 (1.906 g∙cm�3, 8537 m∙s�1, 31.5 GPa, and 289 �C) were close
to their measured/calculated results (Fig. 6(b)). Through detailed
experimental evaluation and a comparison of properties with TATB
and LLM-105 (Fig. 6(b) and Table S7 in Appendix A), it was found
that ICM-104 is a promising heat-resistant insensitive energetic
material.

By considering the molecular structure and crystal packing, we
qualitatively elucidated the cause of the low sensitivity of ICM-
104. Three molecular factors, including the nitro group charge,
maximum of electrostatic potential (ESP), and balance of charges,
were utilized to assess the stability of the molecules under
mechanical stimulus (these factors were calculated using Gaussian
09 D.01 and Multiwfn 3.7) [50,51]. As shown in Fig. 6(c), among the
three compounds, TATB undoubtedly possessed the lowest sensi-
tivity from the molecular aspect. Comparing LLM-105 with ICM-
104, the maximum of ESP and balance of charges of LLM-105
(44.6 kcal∙mol�1 and 0.243, respectively) were better than those
of ICM-104 (60.7 kcal∙mol–1 and 0.219, respectively). Although
the nitro group charge of LLM-105 (–0.393e) was a little higher
than that of ICM-104 (–0.485e) [52], the molecular structure of
LLM-105 tended to be more stable than that of ICM-104. Further-
more, we calculated the energy change during the layer sliding
using the force-field method, so as to evaluate the contribution
of crystal packing to low sensitivity. As shown in Fig. 6(d), the
intensity of the energy change followed the descending order of
LLM-105 > ICM-104� TATB. Its graphite-like layered crystal struc-
ture endowed ICM-104 with a better buffering effect for external
mechanical force than the wave-like crystal structure of LLM-
105. However, the twisted nitro groups may induce a strong repul-
sive force between the layers during sliding. Therefore, the energy
change of ICM-104 was still more violent than that of TATB. Based
on the above analysis, it is reasonable that the mechanical sensitiv-
ities of ICM-104 were found to lie between those of LLM-105 and
TATB. The distinguished comprehensive properties of ICM-104
can be further highlighted through a comparison with recently
reported fused-ring compounds, as shown in Fig. S10. Our machine
learning-assisted HTVS system has also been applied to the explo-
ration of energetic melting-castable materials in our recent work
[53]. Overall, our self-established machine learning-assisted HTVS
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system has demonstrated great potential for guiding the discovery
of new energetic materials with desired structures and properties.
4. Conclusions

In this work, a machine learning-assisted HTVS system was
developed and applied to guide the discovery of energetic materi-
als. This HTVS system integrates high-throughput molecular gen-
eration and machine learning models. The high-throughput
molecular generation module is responsible for the rapid and
extensive generation of suitable molecular structures through
heuristic enumeration. The machine learning models are com-
posed of a property predictor and a graphite-like structure classi-
fier. The property predictor contains four well-trained regression
models (density, detonation velocity, detonation pressure, and
decomposition temperature), and the structure classifier, which
is derived from a CNN classification model, is in fact a possibility
predictor for a graphite-like layered crystal structure. Based on this
HTVS system, we rapidly targeted the promising energetic mole-
cule ICM-104 out of a possible 25 112 [5,6]biheterocyclic molecu-
lar structures. Further experimental studies showed that ICM-104
exhibited the expected good performance, including good detona-
tion properties (density = 1.825 g∙cm�3, Dv = 8551 m∙s�1, and P =
29.8 GPa), low sensitivity (impact sensitivity is 35 J and friction
sensitivity is more than 360 N), and good thermostability (onset
at 326 �C). This work demonstrates the potential of our machine
learning-assisted HTVS system for quickly finding new energetic
materials with promising properties. Moreover, the proposed sys-
tematic method may be expanded to the discovery of other organic
functional materials.
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