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Many natural fibers are lightweight and display remarkable strength and toughness. These properties
originate from the fibers’ hierarchical structures, assembled from the molecular to macroscopic scale.
The natural spinning systems that produce such fibers are highly energy efficient, inspiring researchers
to mimic these processes to realize robust artificial spinning. Significant developments have been
achieved in recent years toward the preparation of high-performance bio-based fibers. Beyond excellent
mechanical properties, bio-based fibers can be functionalized with a series of new features, thus expand-
ing their sophisticated applications in smart textiles, electronic sensors, and biomedical engineering.
Here, recent progress in the construction of bio-based fibers is outlined. Various bioinspired spinning
methods, strengthening strategies for mechanically strong fibers, and the diverse applications of these
fibers are discussed. Moreover, challenges in reproducing the mechanical performance of natural systems
and understanding their dynamic spinning process are presented. Finally, a perspective on the develop-
ment of biological fibers is given.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-performance bio-based fibers hold promise for application
in many fields, including the textile industry, building construc-
tion, automobile manufacturing, and biomedical engineering
[1–9]. Over a long historical period that continues to the present
day, humans have acquired fibers directly from nature, including
animal fibers (e.g., silk, wool) and plant fibers (e.g., wood, cotton,
and flax). Such fibers are lightweight, strong, biocompatible, and
sustainable [10–13]. For example, silkworm fibers have been used
as the basis of textiles in China for over 5000 years, whereas the
first fully synthetic fiber, nylon, was invented in the 1930s. More
surprisingly, silk fibers show unrivalled mechanical properties,
with a toughness that is superior to that of steel, carbon fiber,
and any synthetic polymer fiber (Table 1) [12,14–19]. The proper-
ties of natural fibers have attracted scientists and engineers to
explore the relationship between fiber structures and mechanics,
and to learn from nature for the preparation of high-performance
fibers [2,16].

Like many other lightweight and strong biomaterials, such as
nacre and bone, natural fibers display hierarchical structures
assembled from the molecular to macroscopic scale [10,20,21].
As the basic components, protein molecules in animal fibers or cel-
lulose molecules in plant fibers form an aggregation state and then
assemble into nanofibrils, which further gather into macroscale
fibers (Fig. 1) [11]. Natural fibers usually combine stiff and soft
domains, as in the case of spider silk, in which the internal b-
crystalline region determines strength and the amorphous region
determines toughness. Beyond their excellent mechanical proper-
ties, natural fibers are multifunctional. For example, spider silk
webs can achieve water collection, due to their topological struc-
tures of periodic spindle-knots and joints [22], and the excellent
thermal insulation of polar bears’ hollow hair fibers keep the bears
warm in an extremely cold environment [23]. Over long-term evo-
lution, natural fibers have been optimized in terms of their struc-
tures and functions, although they typically feature a very
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Table 1
Mechanical properties of natural and synthetic fibers [12,14–19].

Fiber Density (g∙cm�3) Strength (MPa) Modulus (GPa) Elongation (%) Toughness (MJ∙m�3)

Natural fiber
Spider silk 1.30 900–1400 10–12 30–60 160–240
Bombyx mori silk 1.30 300–600 5–10 10–25 70
Antheraea pernyi silk 1.30 500–700 5–10 30–45 150
Flax 1.40 800–1500 60–80 1.2–1.6 7–14
Sisal 1.33 600–700 38 2–3 —
Cotton 1.51 400 12 3–10 —
Wood cellulose fiber 1.50 553–1300 15.4–27.5 3–7 —
Wool, 100% RH 1.30 200 0.5 50 60

Synthetic fiber
Kevlar 49 fiber 1.44 3600 130 2.7 50
Silicone rubber 0.98 50 0.001 850 100
Nylon fiber 1.14 950 18 5 80
Carbon fiber 1.80 3000–4000 230–550 0.7–1.9 25

Inorganic fiber
High-tensile steel 7.82 1650 190–210 0.8 6
E-glass fiber 2.50 2000–3500 70–85 2.5–5.3 40–50

RH: relative humidity.

Fig. 1. Hierarchical structures of nanofibrils in (a) spider silk and (b) wood. Reproduced from Ref. [11] with permission.
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limited number of components (i.e., proteins or polysaccharides)
[20,24]. Therefore, nature provides valuable and feasible strategies
to create functional materials through the manipulation of multi-
scale structure [25]. In addition, compared with synthetic fibers,
which require high temperature and pressure in their preparation
process, silk fibers are produced at ambient temperature and from
an aqueous solution, indicating the energy-efficient advantage of
natural spinning systems [26,27].

Learning from nature, researchers have developed numerous
mechanically strong bio-based fibers by mimicking natural fibers’
structure and duplicating natural spinning processes [3,28]. More-
over, these fibers can be functionalized to achieve enhanced ther-
mal, magnetic, optical, electrical, and biological functions, further
expanding their applications in smart textiles, electronic sensors,
and biomedical engineering [29,30]. In this work, we present an
overview of recent progress in the preparation and application of
high-performance bio-based fibers. Starting with a brief explana-
tion of the natural spinning process, we introduce various bioin-
spired spinning methods, including wet spinning, dry spinning,
microfluidics spinning, and interface wiredrawing. We next discuss
strengthening strategies to improve the fibers’ mechanics. Then,
we illustrate the functional fibers that have been achieved by
means of structure manipulation or nanomaterial incorporation
and describe their potential applications. We also present current
limitations and challenges in this field, and provide a perspective
on the development of high-performance fibers.
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2. Bioinspired spinning methods

Spiders and silkworms can produce mechanically strong silk
fibers by means of their delicate and efficient spinning systems,
in which the spinning dope undergoes chemical and physical
changes [26,31,32]. The concentration of silk protein solution
increases along the glands, along with a decrease in pH value
and changes in cations (Ca2+ and K+) [33]. Meanwhile, the gradu-
ally changed shape of the spinning duct provides shearing and
stretching forces to the silk molecules, thereby promoting their
conformation transformation [34]. In the end, silk fibers are pulled
out by the legs of the spider or the head movement of the silk-
worm, and then solidify in air. The mechanical properties of silk
fibers can be influenced by the spinning conditions; for example,
silks from the domestic silk moth, Bombyx mori, produced by faster,
artificial reeling rates are stronger but more brittle than those pro-
duced by slower, natural reeling rates [27]. Inspired by natural
spinning processes, various solvent-based spinning methods have
been developed, including wet spinning, dry spinning, microflu-
idics spinning, and interface wiredrawing (Fig. 2). In addition, a
non-solvent-based method, melt spinning, serves as an efficient
method to produce bio-based fiber derived from bioresources with
high carbon content, such as lignin [35,36]. In this section, we
mainly focus on the abovementioned solvent-based spinning
methods, briefly discussing their working principles and providing
some related illustrations.



Fig. 2. Schematic illustrations of bioinspired spinning methods. (a) Schematic of natural silk spinning by a silkworm and spider; (b) various bioinspired spinning methods,
including wet spinning, dry spinning, microfluidics spinning, and interface wiredrawing.
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2.1. Wet spinning

In the wet spinning process, the pre-dissolved spinning dope is
extruded into a coagulating bath; it is then solidified via the double
diffusion effect between solvents. With choices of a proper solvent
and corresponding coagulant, the spinning dope can form fibers
under an appropriate extrusion speed. For silk spinning, fibroin
protein is dissolved in an organic solvent such as 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP), trifluoroacetic acid (TFA), or formic
acid, and alcohols (methanol, ethanol, isopropanol) are usually
selected as matched coagulants [37–40]; however, these combina-
tions result in undesired morphology and brittleness of the as-spun
fibers due to rapid precipitation of the silk proteins. In comparison,
a silk aqueous solution/ammonium sulfate combination is a better
alternative due to its relatively moderate solidification rate [41,42].
Another necessary procedure in wet spinning is post-drawing,
which can promote conformation transition and increase the align-
ment of the molecules, thus significantly improving the mechani-
cal properties of the resultant fibers [28]. For example, Zhou
et al. [41] constructed a small-scale industrial wet spinning appa-
ratus and prepared silk fibers with uniform diameter and a smooth
surface from silk aqueous solution/ammonium sulfate systems
(Fig. 3(a)). Moreover, the fibers that were obtained after being
post-drawn six times exhibited a breaking stress of 450 MPa and
a breaking strain of 27.7%, making them stronger and tougher than
natural cocoon silk.
2.2. Dry spinning

In the dry spinning process, the spinning dope is directly
injected into air and solidifies into fiber with the evaporation of
the volatile solvent, in what is fairly similar to the natural spinning
process. Artificial silk dry spinning was first reported in 2011 and
generally requires a relatively high concentration of fibroin protein
(>20 wt%) [43,44]. Sun et al. [45] developed custom-built capillary
dry spinning equipment and directly prepared silk fibers in air
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from a 50 wt% silk aqueous solution. Like wet spinning, dry spin-
ning requires post-drawing. After being stretched via post-
drawing four times, the breaking stress of the silk fibers increased
from 45.7 to 326.7 MPa, although it was still lower than that of
cocoon silk.

In addition to mimicking the natural dry spinning process, Ling
et al. [46] prepared fibers that retained the hierarchical structures
of natural silks (Fig. 3(b)). A partially dissolved silk microfibril solu-
tion, which showed a liquid-crystal-like texture analogous to the
nematic silk protein in silk glands, was selected as the spinning
dope. These microfibrils were able to flow and align along the shear
direction to fuse together into a long fiber, which allowed for easy
hand reeling. As this fiber maintained the structural hierarchy of
natural silks, its Young’s modulus reached 11 GPa, which was even
higher than that of spider dragline silk. Similarly inspired by the
natural formation of silk from liquid crystalline proteins, Ma
et al. [47] obtained continuous fibers by directly drawing smectic
engineered protein gels. The mechanical performance of the gel
fibers could be manipulated by genetically tuning the charge den-
sity of the protein backbones, thus offering great possibilities of
programmable design for biopolymeric fibers.
2.3. Microfluidics spinning

Microfluidics provides miniaturized channels to achieve precise
control from individual fluids to fiber formation, and can mimic the
hydrodynamic principles in natural spinning systems [48–53]. In
this process, the spinning dope is extruded into a shear fluid via
coaxial channels, and diffusion occurs at their interfaces. The inner
dope remains at laminar flow and can be solidified into fibers
in situ via polymerization, crosslinking, or solvent change. Using
sodium alginate as the inner phase and calcium chloride as the
outer stream, a range of hydrogel fibers with desirable features
have been fabricated. For example, by adjusting the micro-
fluidic channels design, Cheng et al. [49] and Yu et al. [51]
obtained alginate fibers with different morphologies, including
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multicompartmental and hollow fibers, as well as spring-like
helical fibers.

Apart from hydrogel fibers, microfluidics is a useful tool for the
preparation of mechanically strong fibers [54–56]. Mittal et al. [56]
reported a flow-assisted technique to organize cellulose nanofibrils
into macroscale fibers by means of microfluidics spinning
(Fig. 3(c)). A charged cellulose nanofibril suspension was injected
into the core channel and then successively surrounded by two
sheath flows of deionized water and low-pH acid. In the core flow,
cellulose nanofibrils exhibited poor alignment, as a result of
Brownian motion and the electrostatic repulsions caused by car-
boxyl groups on the fibril surface. The first flow of deionized water
supported electrostatic repulsion and aligned the cellulose
nanofibrils in the flow direction; before this alignment was lost,
the second flow of acid diffused into the dispersions and initiated
a gel transition, thereby locking the well-organized structure of
cellulose nanofibrils. The resultant fibers possessed nearly perfect
unidirectional alignment of cellulose nanofibrils; thus, they had a
Fig. 3. Illustrations of bio-based fibers prepared via different spinning methods. (a) P
(1: nitrogen gas cylinder; 2: pressure regulator; 3: dope storage cylinder; 4: spinning do
rpm: revolutions per minute); (ii) optical photograph of the lustrous silk fibers; (iii) sca
cross-section of the silk fibers. (b) Preparation of silk fiber by dry spinning: (i) optical phot
(iii, iv) SEM images showing the fiber constituted by oriented silk microfibrils (scale bar
cellulose fiber by flow-assisted microfluidics spinning: (i) schematic of cellulose nanofi
nanofibrils (scale bars are 3 lm for (ii) and (iii), and 400 nm for insets). (d) Preparat
photographs of gently pulling the viscous thread from the interface of the cellulose nan
images showing fibrils aligned along the fiber direction. (a) Reproduced from Ref. [41] w
Ref. [56] with permission; (d) reproduced from Ref. [58] with permission.
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Young’s modulus of about 70 GPa and a strength of about
1200 MPa, surpassing most reported nanocellulose-based fibers.

2.4. Interface wiredrawing

Interface wiredrawing uses the electrostatic interaction
between components with opposite charges: The pulling process
at their interfaces induces the orientation of molecules along the
fiber axis [57–59]. Zou and Kim [57] found that graphene oxide
and chitosan generated strong interactions, so they mixed a gra-
phene oxide nanosheets suspension with chitosan solution and
assembled them into long fibers by simply pulling the mixture
upward in air. In another study, Grande et al. [58] deposited a drop
of chitosan solution and a drop of a cellulose nanofiber suspension
onto a plate, which placed the two liquids in lateral contact
(Fig. 3(d)). The primary amino groups of the chitosan were proto-
nated after dissolving in acidic aqueous media, while the surface
of the cellulose nanofibers was modified with carboxyl groups.
reparation of silk fiber by wet spinning: (i) schematic of a small-scale apparatus
pe; 5: extrusion die; 6: heated coagulation bath; 7: draw rollers; 8: take-up roller;
nning electron microscope (SEM) images showing the smooth surface and circular
ograph showing the hand-reeling process; (ii) polarized image of the as-spun fibers;
s are 100 lm for (ii), 20 lm for (iii) and (iv), and 2 lm for inset). (c) Preparation of
brils flowing in the channel; (ii, iii) SEM images showing good alignment of the
ion of cellulose nanofiber/chitosan fiber via interface wiredrawing: (i, ii) optical
ofiber suspension (clear liquid) and chitosan solution (cloudy liquid); (iii, iv) SEM
ith permission; (b) reproduced from Ref. [46] with permission; (c) reproduced from
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Due to complexation between the cationic macromolecules and
anionic nanofibers, composite fibers could be continuously drawn
from the drop interface. The drawing process ensured very good
alignment of the cellulose nanofibers surrounded by chitosan,
which endowed the compact fibers with a very high tensile
modulus of about 22 GPa.
3. Strengthening strategies for mechanically strong fibers

Many natural fibers display remarkable mechanical properties,
which originate from the ways in which the fibers’ building blocks
are assembled and arranged at multiple scales [20]. In both animal
and plant fibers, the orientations of molecular chains or fibrils have
a significant influence on the fibers’ mechanical performance. For
example, flax and sisal possess similar contents of cellulose and
hemicellulose, but flax shows a higher strength and stiffness than
sisal, mainly due to the lower fibril angel along the fiber axis of flax
(8�–11�) than sisal (�20�) [12]—a finding that provides a valuable
reference for the preparation of mechanically strong fibers. The
nanofibrils in natural fibers are usually compactly connected by
hydrogen bonds [10,60]; thus, enhancing inter-fibrillar interac-
tions via physical or chemical crosslinking will significantly
improve a fiber’s mechanical properties. As another example, wood
is a tri-component biomaterial composed of cellulose, hemicellu-
lose, and lignin. These three components are systematically inte-
grated, which indicates that the natural strategy of combination
can serve as an effective means of producing strong fibers. In this
section, we briefly summarize the dominant strengthening mecha-
nisms of natural fibers (Table 2) [10,12,20,60] and discuss various
artificial strategies based on these mechanisms, including post-
drawing, twisting, crosslinking, and incorporating fillers (Fig. 4)
[56,61–63]. These strategies can be used alone or together, from
the preparation of spinning dopes to the post-treatment of as-
spun fibers.

3.1. Post-drawing

As mentioned in the discussion on spinning methods, post-
drawing plays an important role in producing mechanically strong
fibers, because it can promote molecular orientation along the fiber
axis [43,64,65]. The as-spun silk fibers produced by wet or dry
spinning generally have poor strength but good extensibility, due
to the disorder of the curly molecular chains. During the drawing
process, the molecular chains are extensively stretched and
arranged along the axis, which can increase the intermolecular
interactions and fiber crystallinity. Zhang et al. [65] prepared silk
fibers by wet spinning. The as-spun fibers had a Young’s modulus
of 3.9 GPa and a strength of 95.1 MPa. After drawing the fibers four
times, these values significantly increased to 6.9 GPa and
470.4 MPa. X-ray diffraction (XRD) and Fourier-transform infrared
spectroscopy (FTIR) results indicated that the amorphous structure
of the silk had been transformed into a silk II structure, and Raman
Table 2
Spinning methods and strengthening mechanisms of natural fibers [10,12,20,60].

Fiber Spinning/producing method

Animal fiber
Spider silk Dry spinning
Bombyx mori silk Dry spinning
Hair Natural growth
Wool Natural growth

Plant fiber
Flax Natural growth
Sisal Natural growth
Cotton Natural growth
Wood Natural growth
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spectra changes revealed an increase in the alignment of protein
chains. In another study, the tensile strength of silk fibers similarly
improved from less than 100 to 420 MPa with increasing draw
ratios (Fig. 4(b)) [61]. Post-drawing can drastically decrease fiber
diameter, which may contribute to defect reduction and structure
densification. However, excessive draw ratios will cause unex-
pected breakage of fibers, so the draw ratio should be controlled
within a reasonable range to achieve the optimal outcome.

3.2. Twisting

Over the long history of fiber- and rope-making, twisting has
been used as a simple yet useful method to produce mechanically
strong textiles and ropes. Short fibers such as cotton can be inte-
grated into continuous threads with a certain degree of strength
by twisting, and long fibers such as silk can form strong yarns with
a dense structure; both of these processes are very mature tech-
niques in the textile industry. Mimicking this procedure, Kamada
et al. [62] prepared strong and tough fibers based on protein
nanofibrils by twisting two single fibers together into a tight com-
bination (Fig. 4(c)). Cellulose nanofibers are also promising build-
ing blocks for strong fibers due to their extraordinary mechanical
properties; however, their poor alignment, as well as the bound-
aries and voids among them, often leads to a significant loss of
mechanics in the transition from nanoscale to macroscale
[21,66–68]. Wang et al. [69] reported the creation of super-
strong and super-stiff fibers from the direct assembly of bacterial
cellulose nanofibers by means of drawing and twisting. These
two steps not only achieved good alignment of the cellulose nano-
fibers but also reduced the inter-filament pores and induced strong
inter-filament hydrogen bonding. The Young’s modulus and tensile
strength of the obtained fibers reached 65.7 GPa and 826 MPa,
respectively, and the specific tensile strength was as high as
598 MPa∙cm3∙g�1, substantially exceeding that of lightweight steel
(227 MPa∙cm3∙g�1).

3.3. Crosslinking

Interactions between the building blocks of fibers can be
strengthened by crosslinking via ions or covalent bonds, which
can effectively improve the mechanical properties of fibers
[70,71]. Yao et al. [71] used Fe3+ ions to crosslink cellulose fibers,
with the carboxyl groups on the fiber surfaces forming metal–
carboxylate bonds with the metal ions. The Young’s modulus and
tensile strength increased from 16.4 GPa and 248.6 MPa to
22.9 GPa and 357.5 MPa, respectively, as a result of stronger
intra- and inter-fibrillar interactions. In another study, 1,2,3,4-
butane tetracarboxylic acid (BTCA) was used to crosslink cellulose
fibers by creating bridges between cellulose nanofibrils, replicating
to some extent the interactions between cellulose and hemicellu-
lose/lignin in natural plant fibers [56]. The tensile strength of the
fiber increased from about 1200 to 1570 MPa after covalent
Dominating strengthening mechanisms

Well-oriented fibrils along fiber axis, strong inter-fibrillar interactions
Well-oriented fibrils along fiber axis, strong inter-fibrillar interactions
Hierarchical structures, multi-component combination
Hierarchical structures, multi-component combination

Hierarchical structures, strong inter-fibrillar interactions
Hierarchical structures, strong inter-fibrillar interactions
Hierarchical structures, strong inter-fibrillar interactions
Multi-component combination, strong inter-fibrillar interactions



Fig. 4. Strengthening strategies for bio-based fibers. (a) Schematic of various strengthening strategies including post-drawing, twisting, crosslinking, and incorporating fillers.
(b) Stress–strain curves of silk fibers (i) without drawing and (ii–iv) with different draw ratios of (ii) 2, (iii) 6, and (iv) 9. (c) Stress–strain curves of single and twisted
b-lactoglobulin fibers. (d) Stress–strain curves of cellulose fibers before and after crosslinking by 1,2,3,4-butane tetracarboxylic acid. (e) Stress–strain curves of silk fibers with
and without graphene oxide (RSF: regenerated silk fibroin; GO: graphene oxide). (b) Reproduced from Ref. [61] with permission; (c) reproduced from Ref. [62] with
permission; (d) reproduced from Ref. [56] with permission; (e) reproduced from Ref. [63] with permission.
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crosslinking (Fig. 4(d)), achieving a record high for cellulose-based
fibers.

Crosslinking is also an effective strategy for the mechanical
enhancement of protein-based fibers. Recently, He et al. [72],
Zhang et al. [73], and Li et al. [74] developed a series of mechani-
cally strong fibers from both widely available proteins and recom-
binant chimeric proteins by means of the introduction of
glutaraldehyde (GA) crosslinking. For example, bovine serum albu-
min (BSA) is generally not regarded as a good candidate for fiber
production because of its intrinsic structural defects; however, a
network of BSA molecules became highly condensed after
crosslinking with GA. Compared with pristine BSA fibers, the
breaking strength and toughness of the double GA-crosslinked
BSA fibers improved significantly from only about 14 MPa and
0.17 MJ∙m�3 to 130 MPa and 143 MJ∙m�3, respectively [72]. GA is
a common protein crosslinker, so it was also used to enhance fibers
based on recombinant chimeric proteins consisting of a squid ring
teeth (SRT) segment and a cationic elastin-like polypeptide (ELP)
sequence (Fig. 5) [74]. As in the study described above, GA
crosslinking led to the formation of imine bonds among SRT–ELP
molecules, thus strengthening their interactions. The breaking
strength and toughness of 36mer SRT–ELP fibers, which are already
as high as 550 MPa and 109 MJ∙m�3, further increased to 603 MPa
and 113 MJ∙m–3 after dimerization via disulfide linkages, making
the fibers superior to many recombinant spider silks and even
comparable to native spider silks.

3.4. Incorporating fillers

Nanomaterials can usually function as reinforcing fillers in com-
posites due to their large surface area and outstanding intrinsic
properties [75–77], and the same applies to nanomaterial fillers
in bio-based fibers. Among them, carbon nanotubes [61], nanomin-
erals [78], and graphene oxide [63,79] have been added to silk
spinning dope with the aim of obtaining stronger and tougher
fibers. Due to interactions between nanomaterials and silk protein
through coordination complexes or intermolecular forces, the
mechanical properties of the composite fibers were strengthened;
this effect could be influenced by filler content and spinning
method. For example, Zhang et al. [63] prepared silk fibers that
incorporated graphene oxides by means of dry spinning: The fibers
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exhibited a breaking strength of 435.5 MPa at 0.1 wt% filler con-
tent, which was significantly higher than that of pure silk fibers
(�252 MPa) (Fig. 4(e)). In another study, the breaking strength of
wet-spun silk fibers increased from 439 MPa without filler to
697 MPa with 0.3 wt% of graphene oxide filler [79].

Aside from artificial spinning, silk fibers containing fillers can be
directly produced by silkworms fed with nanomaterials [80–85]. In
this process, nanoparticle dispersions are generally sprayed onto
mulberry leaves and then eaten by silkworm larvae. Although most
of this diet is digested and excreted, a fraction of the nanomaterials
is still incorporated into the silk fibers, which has been confirmed
through elemental or spectral analysis. Because the silk fibroin and
nanomaterials go through a natural spinning process, stronger
interactions can be generated [85]. A study by Wang et al. [85]
demonstrated significant improvement in the breaking strength
of cocoon silk—from 360 MPa on a normal diet to 570 MPa on a
diet containing 0.2 wt% carbon nanotubes and 590 MPa on a diet
containing 0.2 wt% graphene. More importantly, this feeding pro-
cedure is easy to handle and scale up, thus paving a new path for
the production of mechanically strong silk fibers by taking full
advantage of a natural spinning system.
4. Applications of bio-based fibers

For thousands of years, people have directly utilized natural
fibers for textiles, sutures, and building materials. With the devel-
opment of industry and progress in technology, various high-
performance synthetic fibers have been created, most of which
are petrochemical-based products. Given the concerns of resource
sustainability and environmental issues [86,87], bio-based fibers
are gaining increasing attention. They are lightweight, mechani-
cally strong, and biocompatible, and can be functionalized with a
series of new features by means of structural manipulation or
nanomaterial incorporation, which greatly expands their applica-
tions. In addition, some bio-based fibers can be carbonized into
high-quality carbon fibers due to their carbon frameworks. For
example, Xia et al. [35] and Ouyang et al. [36] were the first to pre-
pare continuous precursor fibers based on modified lignin via wet
spinning, which were then converted into carbon fibers through
thermal stabilization and carbonization. In another study, Wang



Fig. 5. Preparation of non-spider chimeric protein fibers with high strength and high toughness. (a) Schematic of the construction and expression of recombinant proteins
consisting of an SRT protein segment and a cationic ELP sequence (E. coli: Escherichia coli). (b) Schematic of SRT–ELP fiber preparation via wet spinning. (c) Schematic of
SRT–ELP fiber formation via GA crosslinking and post-stretching treatment: Amino groups on the ELP lysine residues are highly reactive sites for covalent crosslinking with
GA. (d) Schematic of SRT–ELP chimera dimerization via disulfide linkage of the fibers. (e) Stress–strain curves of the fiber spun from SRT–ELP Cys-36mer. (f) Spider chart
representing the mechanical performance evolution of SRT–ELP fibers formed from Cys-36mer chimeras. Reproduced from Ref. [74] with permission.
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et al. [88] directly carbonized silk fibers through thermal treatment
under an inert atmosphere and then fabricated a wearable strain
senor with good electrical conductivity and high sensitivity. In this
section, we illustrate the potential applications of bio-based fibers
in terms of their enhanced thermal, magnetic, optical, electrical,
and biological functions.

4.1. Thermal function

The use of bio-based fibers with excellent mechanical proper-
ties as yarns has been reported [66,70], including the twisting
and dying of cellulose fibers, as shown in Fig. 6(a). However, bio-
based fibers generally exhibit high flammability due to their inher-
ent nature, which severely limits their applications in certain areas
[89,90]. Nechyporchuk et al. [91] prepared flame-resistant cellu-
lose fibers by coating them with a shell of silica nanoparticles
(Fig. 6(b)). When burned directly by fire, pure cellulose fiber could
only remain unburned for 0.3 s, whereas the silica/cellulose fiber
remained unburned for 4.21 s. The silica shell provided a good
thermal shield by acting as a barrier to heat transfer, which was
important for the protection of the inner cellulose.
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Efficient thermal insulation is very important for personal ther-
mal management in a cold environment [92–94]. Inspired by the
hollow structure of polar bear hairs, we recently developed a
‘‘freeze-spinning” technique to fabricate biomimetic silk fibers
with excellent thermal insulation [95]. The resultant fibers pos-
sessed an aligned porous structure (Fig. 6(c)), and the pore size
could be regulated by choosing different freezing temperatures,
as the temperature was closely related to the thermal performance.
When the textile fibers had smaller pores and more layers, the
absolute temperature difference between the stage and the fiber
surface became greater, indicating a better ability to passively keep
warm through dissipation via the structural design. A rabbit wear-
ing the biomimetic porous textile became almost invisible under
infrared camera, as its surface temperature became extremely
close to that of the background, making it possible to achieve ther-
mal stealth (Fig. 6(d)). In addition, the textile was capable of active
electroheating when doped with carbon nanotubes to induce a fast
thermal response (Figs. 6(e) and (f)). More importantly, the textile
woven with biomimetic fibers showed good wearability and
breathability for wearing, suggesting its great potential as a smart
and multifunctional material for personal thermal management.



Fig. 6. Illustrations of bio-based fibers with excellent thermal functions for textile use. (a) Strong bacterial cellulose fibers can be made into yarns and easily dyed into blue.
(b) Cellulose fibers coated with silica nanoparticles can be used as flame-retardant materials. (c–f) Thermal insulating silk textile inspired by polar bear hair: (c) SEM and
X-ray computed microtomography images of the porous biomimetic fiber showing the aligned lamellar pores along the axial direction; (d) optical photographs and infrared
images of a rabbit before and while wearing different textiles, demonstrating the excellent thermal stealth function of the biomimetic porous textile; (e) optical photograph
and SEM images of the porous biomimetic silk textile incorporated with carbon nanotubes (CNTs); (f) infrared images of the carbon nanotubes and silk textile during the
electroheating process, indicating the material’s fast and active thermal response capability. (a) Reproduced from Ref. [70] with permission; (b) reproduced from Ref. [91]
with permission; (c–f) reproduced from Ref. [95] with permission.
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4.2. Magnetic, optical, and electrical functions

Magnetic fibers can be produced by incorporating magnetic
components within the fibers, allowing the fibers to display
stimuli-responsive behaviors. He et al. [96] prepared alginate fibers
with a spider-silk-like structure via microfluidic spinning; spindle-
knots containing magnetic Fe3O4 nanoparticles were generated via
solvent evaporation. The size of the spindle-knots and the distance
between them could be precisely adjusted. These functionalized
fibers exhibited excellent stimuli-triggered responses, as they
could move directionally following the rotation of external mag-
netic fields (Fig. 7(a)). Moreover, the fibers could be guided mag-
netically to form patterns and to assemble into various structures
according to magnetic arrays, indicating their potential application
as intelligent stimuli-responsive materials.

Fluorescent silk-based materials have been applied in biomedi-
cal engineering, optics, and photonics [97,98]. In general, fluores-
cent silk fibers can be produced by the genetic modification of
silkworms or via dying treatment [99,100]. However, transferring
the transgene to the next generation remains a problem, while
dying often results in unstable fluorescence. Therefore, obtaining
fluorescent silk fibers with both good mechanical properties and
highly stable fluorescence has become an important issue. By
directly feeding silkworm larvae with CdSe/ZnS core–shell quan-
tum dots, Cheng et al. [101] obtained luminescent silkworm
cocoons. Compared with normal or fluorescent-dyed silk, the resul-
tant fibers had superior mechanical strength and toughness due to
the reinforcing effect of the quantum dots. More importantly, the
luminescent silk fibers exhibited decent fluorescent stability even
after soaking in water for 720 h (Fig. 7(b)).
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In recent years, wearable electronics have attracted increasing
attention for their wide applications in signal sensing and health
monitoring [102,103]. Due to their good flexibility and stitchabil-
ity, bio-based textile fibers have become a promising base material
in this area [46,104]. Ling et al. [46] first prepared silk fibers via dry
spinning and then coated carbon nanotubes onto their surface. The
obtained conductive silk fibers responded very quickly to humidity
and temperature changes; they could be woven into masks as a
form of smart fabric in order to monitor touching and breathing
(Fig. 7(c)). Qi et al. [105] also used carbon nanotubes as the conduc-
tive component to fabricate functional cellulose fibers. According
to scanning electron microscope (SEM) observations, the carbon
nanotubes were well dispersed within the cellulose matrix rather
than remaining on the fiber surface and thus promoted the forma-
tion of conductive networks. The electrical resistance of such fibers
could change under external stimuli, including tensile strain, tem-
perature, and environmental humidity; therefore, they have poten-
tial for use in the design of various sensors to perceive body
movement or monitor body sweat.

4.3. Biological function

One of the outstanding advantages of bio-based fibers is their
good biocompatibility both in vitro and in vivo, which is important
in biomedicine [7,50,106–108]. For example, microfluidics-spun
collagen microfibers exhibited good cytocompatibility due to the
low immunogenicity of collagen itself, and the well-oriented fibers
were able to guide the migration of neuronal cells along the fiber
axes (Fig. 8(a)). The axons grew up to 100 lm in length and
were aligned along the fiber direction, suggesting the potential



Fig. 7. Illustrations of bio-based fibers with excellent magnetic, optical, and electrical functions for various applications. (a) Magnetic alginate fibers can be used as stimuli-
responsive materials: (i–iv) optical photographs of hydrated fibers with magnetic oil cores and a 3D textile-like pattern constructed via magnetic arrays; (v, vi) schematic and
photograph of the magnetic manipulation of a fiber (scale bars are 1 cm for (i) and (vi), and 1 mm for (ii) and (iv)). (b) Silk incorporated with CdSe/ZnS quantum dots can be
used as fluorescent fibers: (i) SEM image of cocoon silk fibers; (ii, iii) photoluminescence images of silk fibers after soaking in water for 0 and 720 h; (iv) fluorescent image of
the ‘‘THU” logo (scale bars are 200 lm for (i), 500 lm for (ii) and (iii), and 1 cm for (iv)). (c) Regenerated silk fibers with wall carbon nanotube (WCNT) coating can be used as
wearable sensors: (i, ii) schematic and optical photographs of the conductive core–shell fiber; resistance response of conductive silk fibers to (iii) finger–touching and
(iv) breathing. (a) Reproduced from Ref. [96] with permission; (b) reproduced from Ref. [101] with permission; (c) reproduced from Ref. [46] with permission.
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application of such fibers in peripheral nerve repair [109]. Apart
from straight fibers, heteromorphic fibers could also be used in
biomedicine. Alginate microfibers with gelatin methacrylate
spindle-knots were able to work as cell carriers (Fig. 8(b)), because
the knots could be adjusted to suit the cell dimensions and
promote cell adhesion and growth [110]. The spring-like helical
alginate fiber was able to be stretched under external stimuli, so
it could function as a mechanical sensor for cardiomyocytes. When
connecting to an elastic hydrogel film seeded with cardiomyocytes,
the fiber underwent cycles of elongation and contraction following
the beating of the cardiomyocytes (Fig. 8(c)). The frequency of the
transformation cycle of the helical fiber corresponded to the beat-
ing frequency of the cardiomyocytes. The mechanical behavior of
the cardiomyocytes could be estimated from changes in the helical
pitches of the fiber, which might be useful for visually monitoring
the real-time bioactivity of cardiomyocytes [51].

Bacterial infection is another serious issue in biomedical appli-
cations. As a biopolymer with intrinsic antibacterial activity, chi-
tosan can not only be used as an antibacterial coating but also be
prepared in the form of antibacterial fibers. Wang et al. [111]
reported a chitosan-based hydrogel fiber produced via microflu-
idics spinning (Fig. 8(d)); they found that the fiber exhibited good
in vitro antibacterial activity against both Gram-positive and
Gram-negative bacteria, especially when incorporated with Zn2+.
In addition, bio-based fibers could be used in vivo for biomedical
applications. For example, when chitosan/heparin fiber was used
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for wound suturing [59], the suture retained its effective tissue-
ligation capability after two weeks, and no infection was observed,
according to the stained sections. More interestingly, due to the
high affinity of functional proteins with heparin, the composite
fiber could bind adeno-associated virus (AAV) to achieve localized
AAV-mediated gene delivery, thus further expanding the fiber’s
applications in regenerative medicine. Zhang et al. [73] prepared
alginate/BSA composite fibers, which were also applied as a surgi-
cal suture. As shown in Fig. 8(e), the alginate/BSA suture closed the
wound incision on the rat abdomen and liver without breakage,
indicating its admirable mechanics and biocompatibility.
5. Conclusions and outlook

Nature provides not only abundant resources but also a great
deal of inspiration for creating high-performance fibers. Table 3
[45,46,55,56,58,59,61,63,65,71–74,78,79,91,96,105,109,112,113,117,
123–125] presents a summary of various fibers in terms of their raw
materials, spinning methods, mechanical properties, and potential
applications. In recent years, great progress has been achieved in
the preparation of mechanically strong and multifunctional bio-
based fibers by mimicking the structures of natural fibers and dupli-
cating natural spinning processes. However, it is still challenging to
produce bio-based fibers with mechanical properties that are close
or even superior to dragline spider silk [28]. Spider silk displays both



Fig. 8. Illustrations of bio-based fibers with excellent biological functions toward biomedical applications. (a) Collagen microfibers can be used for nerve repair:
(i–iv) fluorescence microscope images of stained neuronal cells cultured on fibers showing axon growth along the fiber axes (white arrows; scale bars are 75 lm). (b) Alginate
microfibers with gelatin methacrylate spindle-knots can be used as cell carriers: (i–iv) images of cell-loaded fibers showing their good biocompatibility (scale bars are
200 lm). (c) Helical alginate microfibers can be used as mechanical sensors for cardiomyocytes: (i–v) changes in helical pitches corresponding to the beating activity of
cardiomyocytes cultured on a fiber-film complex (scale bars are 100 lm for (i) and (ii) and 150 lm for (iv) and (v)). (d) Chitosan-based hydrogel fibers show antibacterial
properties: (i–iii) optical photographs and SEM image (scale bar is 200 lm; UV: ultraviolet); (iv, v) fluorescence photographs of the inhibition zones of E. coli in contact with
fibers after 1 min and 24 h. (e) Alginate/BSA fibers can be used as surgical sutures: (i–iv) optical photographs of fiber bundles and wound suture on a rat skin and liver, with
white and black arrows indicating the suturing positions (scale bars are 3 cm, 1 cm, 0.5 cm, and 0.3 cm, respectively). (a) Reproduced from Ref. [109] with permission;
(b) reproduced from Ref. [110] with permission; (c) reproduced from Ref. [51] with permission; (d) reproduced from Ref. [111] with permission; (e) reproduced from Ref. [73]
with permission.
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very high strength and extraordinary toughness, two properties that
are mutually exclusive in many artificial fibers. Therefore, the key
issue is to achieve a favorable combination of these two properties.

To this end, more research efforts are needed in the whole fiber
production procedure, from structural design and material selec-
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tion to spinning devices, spinning methods, and post-treatments.
A deeper understanding of the structure–mechanics relationship
of natural biomaterials will provide new insights into the design
of bioinspired fibers. As the spinning dope plays a basic and vital
role in fiber performance, it is important to select and optimize



Table 3
A brief summary of bio-based fibers in terms of raw materials, spinning methods, post-treatments, mechanical properties, and potential applications.

Raw materials Spinning methods Post-treatments Strength
(MPa)a

Modulus
(GPa)a

Elongation (%)a Applications Ref.

Cellulose Wet spinning Crosslinking 1570 86 �3.0 Mechanically strong fiber [56]
Bacterial cellulose Wet spinning Post-drawing & crosslinking 357.5 22.9 2.3 Textile [71]
Silica/cellulose Wet spinning Post-drawing 270 18.2 5.4 Flame-retardant fiber [91]
CNT/cellulose Wet spinning — 120.9 6.9 9.4 Wearable electronics [105]
GO/cellulose Wet spinning — 360 �1.56 — Thermal insulation fiber [123]
Silk fibroin/cellulose Wet spinning Post-drawing 235.7 7.83 7.7 Mechanically strong fiber [124]
Silk fibroin Wet spinning Post-drawing 470.4 6.9 38.6 Textile [65]
Recombinant silk fibroin Wet spinning Post-drawing 508 21 15 Biomedical application [112]
Recombinant silk fibroin Wet spinning — 162 6 37 Mechanically strong fiber [113]
CNT/silk fibroin Wet spinning Post-drawing 420 — 59 Mechanically strong fiber [61]
GO/silk fibro in Wet spinning Post-drawing 697 7.6 — Antibacterial material [79]
BSA Wet spinning Crosslinking & post-drawing 279.4 4.4 28.3 Mechanically strong fiber [72]
Alginate/BSA Wet spinning Crosslinking & post-drawing 420 10 �14 Medical suture [73]
Chimeric proteins Wet spinning Crosslinking & post-drawing 650 8.5 30 Mechanically strong fiber [74]
Collagen Wet spinning Post-drawing & crosslinking 151 0.888 20.5 Tissue engineering [125]
Silk microfibrils Dry spinning — 133 11 8.1 Wearable sensors [46]
Silk fibroin Dry spinning Post-drawing 614 19 27 Mechanically strong fiber [117]
Silk fibroin Dry spinning Post-drawing 150.8 3.93 31.1 Mechanically strong fiber [45]
TiO2/silk fibroin Dry spinning Post-drawing 218.5 5.9 37.7 Mechanically strong fiber [78]
GO/silk fibroin Dry spinning Post-drawing 435.5 4.8 21 Bioelectronic device [63]
Cellulose/silk fibroin Microfluidics spinning — 1015 55 10 Biomedical application [55]
Alginate Microfluidics spinning — 15.39 0.53 25.28 Water collection [96]
Collagen Microfluidics spinning — 383 4.138 25 Nerve repair [109]
Cellulose/chitosan Interface wiredrawing Post-drawing 220 22 �3.5 Mechanically strong fiber [58]
Chitosan/heparin Interface wiredrawing — 220 — �11.5 Medical suture [59]

a The values of strength, Young’s modulus, and elongation are all mean values derived from references.
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recombinant silk proteins by means of genetic engineering [112–
114]. For example, engineered non-spider chimeric proteins can
be regarded as a choice for mechanically strong fibers. In this strat-
egy, diverse combinations of sequences and structures offer many
options, aside frommolecular weight regulation [1,74]. Replicating
the fine structure of a natural spinning system is also very impor-
tant, as a great difference exists between current artificial spinning
devices and the spinning ducts in spiders and silkworms [115–
117]. To address this issue, ultrahigh-resolution 3D imaging and
printing systems can be introduced to design and reconstruct a
‘‘natural” spinning system. Rheology studies of the silk dope in nat-
ural spinning ducts [34,118–121] may lead to new discoveries,
which will further guide and promote the preparation of high-
performance fibers. Strengthening strategies are a conventional
choice; for example, crosslinking and the incorporation of fillers
can be expanded to different fibers. In addition, blending recombi-
nant silk proteins with cellulose nanofibers for co-spinning would
be a good trial, as such a complexation might offer a balance
between structure and functional properties [55,122]. Forced reel-
ing is an effective approach to directly obtain silk fibers with sur-
prising strength [27], but the industrial scale-up issues tend to
be unsolvable. In this regard, feeding silkworms with nanomateri-
als may be promising for harvesting high-performance fibers on a
large scale; however, the possible toxicity of excess nanomaterials
should be considered. To sum up, there is still quite a long way to
go in developing bio-based fibers. Nevertheless, after obtaining a
better understanding of the spinning mechanisms that produce
natural fibers and after a series of optimizations of spinning proce-
dures, it will hopefully be possible to produce bio-based fibers that
exceed their natural counterparts.
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