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The past decade has seen a sharp increase in machine learning (ML) applications in scientific research.
This review introduces the basic constituents of ML, including databases, features, and algorithms, and
highlights a few important achievements in chemistry that have been aided by ML techniques. The
described databases include some of the most popular chemical databases for molecules and materials
obtained from either experiments or computational calculations. Important two-dimensional (2D) and
three-dimensional (3D) features representing the chemical environment of molecules and solids are
briefly introduced. Decision tree and deep learning neural network algorithms are overviewed to empha-
size their frameworks and typical application scenarios. Three important fields of ML in chemistry are
discussed: ① retrosynthesis, in which ML predicts the likely routes of organic synthesis; ② atomic sim-
ulations, which utilize the ML potential to accelerate potential energy surface sampling; and ③ hetero-
geneous catalysis, in which ML assists in various aspects of catalytic design, ranging from synthetic
condition optimization to reaction mechanism exploration. Finally, a prospect on future ML applications
is provided.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It has long been a dream in history for humans to invent machi-
nes with human-like intelligence that can automatically complete
complex tasks. This dream has never come so true as it has in the
past decade, which has witnessed the rapid applications of
machine learning (ML) techniques and artificial intelligence (AI)
machines in various areas of human activity. The development of
new ML models—particularly deep learning methods [1]—and
sharply increased data storage capability are key to the recent
surge in ML cases. Apart from successful ML achievements in
everyday life, such as image recognition [2] and speech recognition
[3], ML has drawn a great deal of attention in modern scientific
research; for example, the AlphaFold algorithm for predicting pro-
tein structure has demonstrated its power as a game-changer in
structural biology [4,5]. This review will focus on recent advances
of ML applications in chemistry research, which inherently con-
tains a huge amount of data, relating to the material complexity
and the huge variety of organic molecules.

Chemists are educated to perform experiments and collect data
but are generally much less familiar with modern ML algorithms
[6]. Unlike the computer-aided chemical research in the 1990s that
was largely based on theoretical/empirical rules [7], current ML
applications rely on big datasets carrying all the essential informa-
tion [8,9]. Poor quality of datasets may well create unnecessary dif-
ficulties for ML applications that should in principle be feasible and
straightforward [10]. A common problem with chemistry datasets
is the heavy bias toward successful experiments. In fact, not only
good data (e.g., producing the desired products) but also bad data
(e.g., failed experiments) are required in order to provide a
balanced view of the chemical space. In addition, due to the
complexity of chemical experiments, the synthetic conditions
documented in the literature are often incomplete, with important
variables being overlooked. For these reasons, it is no wonder
that—compared with experimental fields—ML applications are
much more popular in computational chemistry, where datasets
.1016/j.
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can be reliably and consistently constructed from quantum
mechanics (QM) calculations. These computed datasets can be uti-
lized to directly benchmark the physicochemical properties of
molecules and materials and to develop advanced computational
methods. Therefore, it is imperative for chemists to equip a basic
knowledge of ML, which would benefit them profoundly, from data
recording to practicing ML-guided experiments.

For this purpose, this review will first introduce popular chem-
istry databases, which provide a basis for practicing ML models.
Second, some widely-used two-dimensional (2D) and three-
dimensional (3D) features are presented, which transform molec-
ular structures into acceptable inputs for ML models. Third, pop-
ular ML algorithms are briefly overviewed, with a focus on their
basic theoretical framework and suitable application scenarios.
Finally, three chemistry fields with important progress in ML
are described in more detail, including retrosynthesis in organic
chemistry, ML-potential-based atomic simulation, and ML for
heterogeneous catalysis. These applications either greatly expe-
dite the original research by reducing the experimental/simula-
tion cost or provide a new route for solving complex problems
in a rational way. An outlook of future challenges is provided at
the end.
Table 1
A list of popular chemical databases commonly used in ML.

Classification Name Content

Chemical reaction databases SciFinder Information on chemica
data, and chemical reac

Reaxys Chemical reaction and b
(commercial database)

USPTO Chemical structure and

ORD Organic chemical reacti
NextMove Chemical reaction data

Chemical property databases PubChem Chemical and physical p
and toxicity of substanc

NIST Standard physicochemi
ChemSpider Structure and property
ChemBL Drug-like properties of
DrugBank Properties of drug mole
Tox21 Toxic effects of substan

ESOL Water solubility of com
FreeSolv Water solubility of sma
Lipophilicity Lipid solubility of organ

Material databases CSD Organic and metal–orga
ICSD Inorganic and metal–or
PDF Diffraction data of inorg
MatWeb The thermoplastic and t

and other engineering m
Li-ion Battery Aging
Datasets

Charge and discharge cu

HTEM Experimental informati
materials

Computational chemistry
database

GDB-17 Structures of organic m
QM9 Quantum chemical prop
ANI-1 Energy and force of non
Materials Project DFT relaxed material st

electronic, and elastic p
OQMD DFT relaxed material st

electronic, and elastic p
Aflowlib DFT relaxed material st

electronic, and elastic p
MD17/ISO-17 Energy and force of non
LASP Global PES dataset of m
OC20 Adsorption energy of m
Atom3D 3D structure of molecul

URL: uniform resource locator; USPTO: United States Patent and Trademark Office; ORD:
Cambridge Structural Database; ICSD: Inorganic Crystal Structure Database; PDF: Powd
Quantum Materials Database; OC20: Open Catalyst 2020; DFT: density functional theor
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2. Data

There is no artificial intelligence (AI) without data. Thus, the
availability of data is the prerequisite for modern ML applications,
where both the size and the quality of the dataset matter. In the
field of chemistry, there has been a long tradition of collecting
and compiling data, ranging from element atomic spectra to mate-
rial macroscopic properties. The data science in chemistry has cre-
ated the subject of chemical informatics, which further greatly
benefits the applications of ML in chemistry. In fact, although it
may appear to be daunting to build a large dataset from scratch,
many chemical databases were available well before the ML era.
Table 1 lists selected popular databases in chemistry, many of
which have a long history of data collection and compilation. The
sources of these data include open patents and research articles,
high-throughput experiments toward specific properties, and QM
calculations, typically based on density functional theory (DFT).

2.1. Chemical reaction databases

Chemical reaction databases hold high value for experimental-
ists in the design of synthetic routes and are particularly useful
URL

l compounds, bibliographic
tions (commercial database)

https://scifinder.cas.org/

ibliographic information https://www.reaxys.com/

reaction https://www.repository.cam.ac.uk/handle/
1810/244727

on data https://github.com/open-reaction-database
https://www.nextmovesoftware.com/about.
html

roperties, biological activities,
es

https://pubchem.ncbi.nlm.nih.gov/

cal properties of compounds https://webbook.nist.gov/chemistry/
of compounds https://www.chemspider.com
bioactive molecules https://www.ebi.ac.uk/chembl/
cules https://go.drugbank.com/releases/latest
ces https://ntp.niehs.nih.gov/whatwestudy/tox21/

index.html
pounds https://doi.org/10.1021/ci034243x
ll neutral molecules https://github.com/MobleyLab/FreeSolv
ic compounds https://doi.org/10.1002/cem.2718
nic crystal structures https://www.ccdc.cam.ac.uk/
ganic crystal structures https://icsd.products.fiz-karlsruhe.de/
anic and organic compounds https://www.icdd.com/pdfsearch/
hermoset of polymers, metals,
aterials

https://matweb.com/

rves of lithium batteries https://data.nasa.gov/dataset/Li-ion-Battery-
Aging-Datasets/uj5r-zjdb

on of inorganic thin-film https://htem.nrel.gov/

olecules up to 17 atoms https://www.gdb.unibe.ch/downloads/
erties of organic molecules https://quantum-machine.org/datasets/
-equilibrium molecules https://github.com/isayev/ANI1_dataset
ructures and their thermal,
roperties

https://next-gen.materialsproject.org/

ructures and their thermal,
roperties

https://oqmd.org/

ructures and their thermal,
roperties

https://aflowlib.org/

-equilibrium molecules https://quantum-machine.org/datasets/
olecules/materials https://www.lasphub.com
olecules in catalysts https://opencatalystproject.org/
es, RNA, and proteins https://www.atom3d.ai/

Open Reaction Database; NIST: National Institute of Standards and Technology; CSD:
er Diffraction File; HTEM: High-Throughput Experimental Materials; OQMD: Open
y; PES: potential energy surface.
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in organic chemistry. Before the Internet was available, reactions in
the literature had already been indexed by the Chemical Abstracts
Service (CAS). These data can now can be accessed from SciFinder,
which includes chemical and bibliographic information from jour-
nals, patents, books, and other sources. However,
SciFinder, along with a similar commercial database, Reaxys, are
unable to export large amounts of chemical compound and chem-
ical reaction data in batches, which limits the size of the training
datasets required for deep ML. For this reason, researchers use text
processing techniques to extract reaction information from United
States Patent and Trademark Office (USPTO) patents [11], which
are open source and downloadable from the Internet. More
recently, the Open Reaction Database (ORD) [12] established a data
format template for chemical reaction storage that supports the
data sharing of public chemical reaction datasets. It should be
mentioned that an increasing number of researchers in the field
of computer-aided synthesis now make their databases publicly
available—such as by using NextMove software [13], which pro-
vides open-source text mining tools for identifying chemicals—
and share their datasets for downloading and online querying.

2.2. Chemical property databases

There are many databases in the category of chemical property
databases, due to the wide variety of chemical properties. Pub-
Chem [14] is an open chemical database that focuses on chemical
and physical properties, biological activities, and the toxicity of
substances. Since 1996, the National Institute of Standards and
Technology (NIST) has released the Chemistry WebBook [15],
which collects the spectroscopic and thermodynamic data initially
published in handbooks and tables; it also includes other basic
data on physics and chemistry, such as ionization energetics, solu-
bility, and spectroscopic, chromatographic, and computational
data. These datasets are available for batch download on the web-
site. Similarly, ChemSpider [16] compiles publicly available web
databases that provide the structure and properties of molecules.
Apart from general databases, there are also a number of datasets
focusing on specific properties, such as the biological activity of
drugs in ChemBL [17] and DrugBank [18], the toxic effects of com-
pounds in the Tox21 dataset [19] (covering 12 707 representative
chemical compounds and 12 different toxic effects) obtained via
high-throughput toxicity assays, the experimental solubility of
small molecules in ESOL [20] (covering the water solubility data
for organic small molecules), data on the solubility and calculated
hydration free energy of small molecules in water in FreeSolv [21],
and experimental data on the octanol–water partition coefficient
for organic small molecules in Lipophilicity [22].

2.3. Material databases

For solid materials, the Cambridge Structural Database (CSD)
[23] is the most recognized; it collects organic crystal structure
information from the literature, including X-ray or neutron diffrac-
tion data, crystallization conditions, and experiment records on the
conformation determination. The Inorganic Crystal Structure Data-
base (ICSD) [24] contains more than 272000 crystal structures,
along with the molecular formula, atomic coordinates, cell param-
eters, space groups, and other information, mostly determined by
experiments. The Powder Diffraction File (PDF) [25] database pro-
vides the diffraction and crystallographic data of 1 143236 materi-
als (Release 2023). The PDF was originally a collection of single-
phase X-ray powder diffraction patterns; however, in recent years,
it has also partly included atomic coordinates entries from the CSD,
ICSD, NIST, and so forth. The MatWeb database covers a wide range
of engineering materials, such as thermoplastic and thermoset
polymers, metallic materials, and ceramic materials, recording
3

the physical properties (e.g., water absorption, specific gravity),
mechanical properties (e.g., modulus of elasticity), thermodynamic
properties (e.g., melting point), and electrical properties (e.g.,
dipole moment, electrical resistance). Other more specific data-
bases include the Lithium-Ion Battery Aging Datasets [26] for
lithium (Li)-ion battery materials from the National Aeronautics
and Space Administration (NASA) Ames Prognostics Center and
the High-Throughput Experimental Materials (HTEM) dataset
[27] for inorganic thin-film materials. The former collects operat-
ing profiles, such as the charging, discharging, and electrochemical
impedance spectroscopy of the battery material, while the latter
includes information on the synthetic conditions, chemical compo-
sition, crystal structure, and characteristics of thin-film materials.

2.4. Computational chemistry database

For the ease of first-principles calculations, computational
chemistry databases are becoming a major source of chemistry
data nowadays. The obvious advantages of computational data
include their high accuracy, self-consistency, and good repro-
ducibility (even for compounds that are difficult to synthesize in
experiments). The GDB-17 database [28] has often been utilized
in the literature for ML applications, as it contains 166.4 billion
organic molecules with up to 17 atoms of carbon (C), nitrogen
(N), oxygen (O), sulfur (S), and halogens. These molecules are enu-
merated and filtered by the strain topology and stability criteria,
which are indexed using the simplified molecular-input line-
entry system (SMILES) [29] name to differentiate by molecular
composition and connection. The QM9 dataset [30] is a benchmark
dataset for quantum chemical properties; it is made up of equilib-
rium organic compounds from the GDB-17 database with up to
nine ‘‘heavy” atoms from the range of C, N, O, and fluorine (F)
[30]. It also offers comparable harmonic frequencies, dipole
moments, polarizabilities, energies, enthalpies, and free energies,
in addition to energy minima, which are calculated at DFT
B3LYP/6-31G (2df, p) level. In parallel with small-molecule data-
bases, there are many material datasets as well, including the
Materials Project [31], the Open Quantum Materials Database
(OQMD) [32], and the Aflowlib database [33,34], which provide
web-based open access to the DFT-optimized (mostly Perdew–
Burke–Ernzerhof (PBE) functional) structures and computed
properties of millions of known or predicted materials. These pro-
jects are often accompanied by Python packages, such as pymatgen
[35] for the Materials Project, qmpy [32] for OQMD, and AFLOW
[33] for Aflowlib, which offer a high-throughput DFT calculation
framework to expand the dataset, as well as post-processing tools
to analyze the data.

To expand the chemical space, significant efforts have been
made to create off-equilibrium datasets, such as by using molecu-
lar dynamics (MD) simulations. The ANI-1 dataset [36], which is
one such example, contains 20 million non-equilibrium molecules.
This dataset was created from 57 000 different molecular configu-
rations comprising the chemical components C, hydrogen (H), N,
and O. The MD17 [37] and ISO-17 datasets [38] are other examples
of the benchmark for quantum chemical properties; they contain
off-equilibrium molecules, which are obtained from finite-
temperature MD simulations of molecules with different confor-
mations. Moreover, LASP software [39] provides a global potential
energy surface (PES) dataset for molecules and materials obtained
from stochastic surface walking (SSW) global PES exploration, and
contains reaction configurations and high-energy structures. These
datasets have been utilized to construct ML potentials (see below).
In addition to general datasets of molecules, datasets for specific
applications are available, such as the Open Catalyst 2020 (OC20)
dataset [40], with 872 000 adsorption states of saturated or unsat-
urated molecular fragments on a wide variety of surfaces, and the
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Atom3D database [41], which has 3D structures of biomolecules,
including molecules, RNA, and protein.
3. Features

Data and features determine the upper limit of ML models. Fea-
tures—also commonly known as representations or descriptors—
that are preprocessed from the source data are the input for the
ML model. The selection of important features (called feature engi-
neering) used to be the most time-consuming and labor-intensive
work in the training of ML models. Although deep learning tech-
niques can allow an ML model to learn how to extract features
itself, they generally require a relatively large training dataset
and model parameter space; thus, they have a higher computa-
tional cost and finally create an ML model with poor interpretabil-
ity. In chemistry, the input features for different ML models may be
different [42–44], but the molecular/crystal structure representa-
tion is a general task of feature engineering. As excellent review
articles have already been published on this topic [45,46], we only
briefly introduce a few related to the applications mentioned in
Sections 4 and 5.

There are basically two categories of molecule descriptors—
namely, 2D and 3D features. 2D features focus on the bonding
pattern in molecules and neglect the spatial conformation. The
features are derived from molecule graphs (with atoms as nodes
and bonds as edges) or adjacency matrices (i.e., bond matrices).
For example, SMILES describes a saturated molecule using a
human-readable string (e.g., ‘‘CCO” for ethanol), and the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) International
Chemical Identifier (InChI) [47] represents a compound using a
strictly unique but less human-readable string. Apart from strings,
the topology of a molecule can also be abstracted as a vector of
float numbers. The extended-connectivity fingerprint (ECFP) [48],
which was developed using the Morgan algorithm, iteratively
searches substructures in the molecule and encodes them to a hash
value.

3D features are encoded from atomic coordinates, which can
hardly be a direct input for an ML model due to the lack of permu-
tation, translation, and rotation invariance [49]. Elegant methods
have been designed to preserve the permutation, translation, and
rotation invariance and sensitively distinguish among different
structures in 3D. These methods are generally based on the numer-
ical functions derived from interatomic distances and the angles
among atoms, such as the minimum percent buried volume [50],
atom-centered symmetry functions (ACSFs) [51], Steinhardt-type
order parameters [52], and power-type structure descriptors
(PTSDs) [53,54]. Other methods are based on atomic density alike
functions, including but not limited to average steric occupancy
(ASO) [55], smooth overlap of atomic positions (SOAP) [56], and
Gaussian-type orbital based density vectors [57].
4. ML models

After features encode data into machine-readable input, the ML
model transforms the input into output—that is, the predicted
properties. Instead of deriving physical laws from theory, ML mod-
els build a numerical connection between easily accessible vari-
ables relating to how a dataset is generated and the concerned
properties, which are often too complex to solve by theory. Broadly
speaking, ML algorithms—depending on how the dataset is
learned—can be divided into three main categories: supervised
learning to fit labeled data, unsupervised learning to classify unla-
beled data, and reinforcement learning, which utilizes a reward
mechanism to guide the data learning. Among these, supervised
learning is the most widely utilized in scientific research, due to
4

its better numerical predictability for specific targets. Although
there are many recipes and categories in ML, it is not difficult to
implement ML in practice, thanks to many openly available
software packages such as scikit-learn [58], PyTorch [59], and
TensorFlow [60]. In the following, we will introduce the frequently
used algorithms in supervised learning, especially those involving
(deep) neural networks (NNs) developed in the past decade. Read-
ers should refer to advanced ML books for mathematical details.

4.1. Decision trees

A decision tree can be visualized as a map of the possible con-
sequences of a series of related choices, as shown in Fig. 1(a), with
the consequences shown as terminal nodes (classes A, B, and C in
Fig. 1(a)) and the choices as the nodes in branches (the attribute;
e.g., x[2] in Fig. 1(a)). To train a decision tree, the dataset is recur-
sively split by a selected attribute to maximally classify subgroups
to have the same consequence [61]. This algorithm is popularly uti-
lized for classification and prediction due to its advantages, which
include being explainable, having few hyperparameters, having a
low computation cost, and being suitable for relatively small data-
sets (e.g., 200 samples). However, the prediction may vary signifi-
cantly with a tiny change in data.

To enhance the model robustness, the random forest (RF) [62]
has been developed, which trains multiple trees independently
and collects all results to make a final prediction by voting or aver-
aging. Each tree is trained on a different sub-dataset randomly
sampled from the source data, known as bootstrap aggregating
or bagging. Through an ensemble of decision trees, an RF model
achieves enhanced robustness and thus better predictability. Such
models are more suitable for predicting discrete target values;
thus, the typical application is to optimize experimental variables
[63] by correlating synthetic conditions with the selectivity of
the desired products [64,65].

4.2. Feedforward neural network

A feedforward neural network (FFNN), also known as multi-
layer perception (MLP) [66], consists of multiple fully connected
layers of neurons (i.e., nodes) that perform both linear and nonlin-
ear operations. As plotted in Fig. 1(b), from the input x to the out-
put y, each fully connected layer performs a linear operation, as
written in Eq. (1), where the weight Wm�n and bias bm�1 are train-
able parameters, andm and n are the dimensions of the output and
input, respectively.

ym�1 ¼ Wm�nxn�1 þ bm�1 ð1Þ
A nonlinear transformation, the activation, can be performed on

the received data at each node. There are many possible activation
functions, such as hyperbolic tangent, sigmoid, and rectified linear
unit (ReLU). The training of an FFNN is achieved by minimizing the
error between the predicted value and the true value, known as the
cost function, as shown in Eq. (2).

W�;b� ¼ argmin
W;b

1
n

Xn

i¼1
kyi � FFNN W ; b; xið Þk2 ð2Þ

where yi and xi are the labels and features of the i-th sample in the
training set. A variety of gradient-based optimization methods,
such as stochastic gradient descent [67], Adam optimization [68],
and L-BFGS [69], can be utilized to find the optimum parameters
in an FFNN. With an increase in the number of intermediate layers
(hidden layers), there are more fitting parameters, and the model
could thus in principle have a higher fitting ability [1]. In an FFNN,
the number of hidden layers is typically up to three, due to the
gradient vanishing problem that manifests as a slow rate of
improvement in training. However, with the help of residual con-



Fig. 1. Six popular machine learning models. (a) Decision tree; (b) feedforward neural network (Trans: transformation; Activ Func: activation functions); (c) convolution
neural network (Conv: convolution; Pool: pooling); (d) recurrent neural network; (e) graph neural network; (f) transformer neural network.
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nection [70] (i.e., skip connection), this problem can be relieved,
although the fitting of a large network is computationally
demanding.
4.3. Convolution neural networks

Developed upon an FFNN, a convolutional neural network
(CNN) is a deep learning method that adds multiple convolution
layers and pooling layers to an FFNN, as plotted in Fig. 1(c). The
CNN was first introduced for image recognition with great success,
and thus is particularly powerful for learning grid-like data [2].
Taking a single-channel (grayscale) image as an example
(Fig. 1(c)), a convolution layer focuses on small windows of a pre-
defined size (e.g., 3 � 3 pixels) inside the image. By performing a
convolution (actually a cross-correlation) between a weight
matrix, called a filter, with the small-window input data (3 � 3
matrix), and by sliding the small window over the whole image,
the features of the image from the local windows are extracted
to a 2D map. In practice, multiple filters are applied in a CNN to
capture different features and generate multiple 2D maps. Follow-
ing the convolution layer, a pooling layer further scans over the 2D
map with a predefined pattern, such as a 3 � 3 window, and com-
putes the average or maximum value in the region, with the aim of
aggregating and coarsening features. In a CNN, the fitting parame-
ters include not only those used in an FFNN but also the weights of
filters in the convolution layers.
5

A CNN can be utilized for chemistry problems with 2D data,
such as gas leak detection with infrared cameras [71]; it is also
the basic unit in AlphaFold1 [4]. In practice, one-dimensional
(1D) data, such as signals from chemical sensors, can also be taken
as input, allowing the application of 1D CNNs for fault detection
and diagnosis in chemical engineering [72–75].

4.4. Recurrent neural networks

The recurrent neural network (RNN) is another class of artificial
NN that allows output from some nodes to re-feed to the same
nodes as additional inputs, as shown in Fig. 1(d). This makes the
RNN applicable to tasks with sequential events [76], such as speech
recognition [3]. For sequential data at time t, xt and yt are the input
and output, respectively. From xt to yt , a simple RNN model can be
expressed as follows:

ht ¼ / Wh�hht�1 þWh�nxxt þ bh�1ð Þ ð3Þ

yt ¼ / Wny�hht þ bh�1
� � ð4Þ

where ht is the hidden variable at time t; Wh�h, Wh�nx , and Wny�h

are trainable weight matrices; and h, nx, and ny are the dimensions
of the hidden variables, input, and output, respectively. Obviously,
Wh�hht�1 is the additional term from the previous time t � 1, which
will affect the output at time t. Without the additional term, an
RNN degenerates to a standard FFNN. RNNs are particularly suited
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for learning sequential-like data, such as a string of chemical
names. By using the SMILES name of the reactant as input, RNNs
have been utilized to predict the products of organic reactions
[77] (see Section 5.1).
4.5. Graph neural networks

A graph neural network (GNN) is a class of deep learning meth-
ods that can process graph data via pairwise message passing
between nodes in a graph; it is also commonly known as a message
passing neural network (MPNN) [78,79]. A GNN typically stacks
several message passing layers, as shown in Fig. 1(e); thus, one
node in the graph can communicate with other nodes that are sev-

eral neighbors away. In each MPNN layer, Lk, the node Nb
k (i.e., node

b in the k-th layer) representation is updated based on the infor-
mation from the previous layer Lk�1, including the node itself

(Nb
k�1), its first neighbor nodes (N

a
k�1, N

c
k�1, and Nd

k�1), and the edges

it connects to (Eab
k�1, E

bc
k�1, and Ebd

k�1). The edge representation can be
updated with similar method. The updating strategy in MPNN can
be designed quite freely, such as by using a sum of neighbor repre-
sentations followed by a nonlinear activation. After the message
passing layers, a readout function (e.g., an FFNN) is utilized to
obtain the output based on the last message passing layer.

GNNs are of particular interest to chemists, since molecules can
naturally be represented by graphs. As a class of cutting-edge but
slightly underdeveloped methods, GNNs have been successfully
applied to predict the properties of molecules [78] and crystals
[80]. Attempts have also been made to fit the PES of materials with
GNNs [38,81] (as detailed in Section 5.2).
4.6. Transformer neural networks

A transformer is a novel deep learning model that was initially
designed to process sequential data (e.g., natural language process-
ing) [82] and demonstrated great potential to replace RNN models.
The key feature of transformers is a multi-head self-attention
mechanism, which allows the processing of the whole input
sequence all at once. As plotted in Fig. 1(f), a transformer layer
can be expressed as Eq. (5).

Atten Q dk�dm ;Kdk�dm ;Vdk�dm

� �
¼ softmax

QKTffiffiffiffiffi
dk

p
 !

V ð5Þ
softmax zð Þi ¼
exp zið ÞPK
i¼1 exp zið Þ for i ¼ 1; � � � ;K ð6Þ

This equation calculates the inner product of the query vectors
Q and key vectors K , which is sent to the softmax function defined
in Eq. (6) to obtain a group of weights for the value V vector. Here,
dk and dm are the dimensions of the key vector and model, respec-
tively. The three matrices Q , K , and V are generated from the same
input by a linear transformation, where the linear transformation
weights WQ , WK , and WV are parameters to learn (thus, the
method is called self-attention). By using parallel multiple atten-
tion units with different sets of (WQ , WK , WV ), the so-called
multi-head attention, the model can jointly attend to the feature
information at different positions. The output of the multi-head
self-attention layer is further processed by an FFNN. Because a
transformer model can be deep, with many layers, the residual
connection [70] is utilized to avoid gradient vanishing; this adds
the input of a certain layer (e.g., FFNN) directly with its output,
and takes the sum as the input for the next layer. With its powerful
feature-extraction ability due to multi-head self-attention, the
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transformer model has been shown to be successful for both
sequential text data [83,84] and grid image data [85], thereby uni-
fying two important application fields of ML.

Benefiting from its powerful ML framework, the transformer
has had a few notable applications in recent years. For example,
AlphaFold2 utilizes a variant of the transformer, the so-called Evo-
former [5], to replace the residual-connected CNN in AlphaFold1
[4]. Graphormer [86], an improved transformer for graphs, showed
high accuracy in predicting the relaxed energy from the unrelaxed
structure in Open Catalyst Challenge 2021, outperforming classic
MPNNs. Schwaller et al. [87] used a transformer to learn the
atom-mapping relationship between the products and reactants
of organic reactions without supervision or human labeling, thus
identifying the reaction rules.
5. Applications

In the following section, we provide a few important applica-
tions of ML to illustrate how these ML techniques are used to solve
chemistry problems, including retrosynthesis in organic chemistry,
ML potential in computational chemistry, and heterogeneous
catalysis in physical chemistry. Some related literature is summa-
rized in Table 2 [38,56,57,63,88–106], which lists information on
ML tasks, input data, features, ML models, and the prediction
target.
5.1. Retrosynthesis

Synthesis planning, also known as retrosynthesis, is at the core
of chemistry, answering the question of how to synthesize desired
chemical compounds from available materials. Over its long his-
tory, this task has relied heavily on the knowledge of experienced
chemists; thus, computer-assisted synthesis planning (CASP)—pro-
posed by Corey et al. [107,108] as early as in the 1960s—always
ranks at the top of hot topics in chemistry. Since then, many suc-
cessful CASP programs have been developed, such as LHASA
[109], simulation and evaluation of chemical synthesis (SECS)
[110], Chematica [111], IBM RXN [112], 3N Monte-Carlo tree
search (MCTS) [88], and AiZynthFinder [113] (Table 2). Since
organic reactions are abundant and such databases are relatively
easy to access, retrosynthesis has been actively developed through
the years, particularly with the help of ML techniques in the past
decade [88,111–117].

Reaction prediction and retrosynthesis are two key modules in
CASP. Reaction prediction is the basis of retrosynthesis, with a
focus on one-step reactions, aiming to establish a one-to-one cor-
respondence between reactants and products under certain reac-
tion conditions. Prediction must select the correct reaction rules
(i.e., the template), which depend on both the molecular structures
and the reaction conditions. Therefore, reaction prediction can be
divided into two categories: the template-based method and the
template-free method [89–92,118]. The former requires an a priori
template library that can either be codified by experts using chem-
ical informatics [108,109] or be extracted from reaction databases
by the recently popular atom-mapped algorithm [93]. The
template-free method generally focuses on the prediction of the
reaction center in a molecule and thus identifies the bonds most
suitable for (dis)connection.

In the template-based method, there are often too many likely
products from one reactant, yielding overloaded candidate reac-
tions. In 2016, Wei et al. [94] made attempts to use ML to predict
template applicability. Based on a fingerprint-based NN algorithm,
they predicted the most promising reaction type out of 16 basic
reactions of alkyl halides and alkenes, given only the reactants
and reagents as inputs. The final reactions were generated by



Table 2
A summary of the application of ML in retrosynthesis, ML potential, and heterogeneous catalysis.

Application Task Input data Feature Model Prediction target Refs.

Retrosynthesis Template-based
reaction prediction

Reactant molecule ECFP FFNN The most probable
reaction type

[93,94]

Template-free reaction
prediction

Product molecule,
reaction type

SMILES RNN SMILES of reactant [89]

Template-free reaction
prediction

Reactant molecule SMILES RNN SMILES of product [90]

Template-free reaction
prediction

Reactant molecule SMILES Transformer SMILES of product [91]

Template-free reaction
prediction

Reactant molecule Molecule graph GNN Reaction center and
product

[92]

Retrosynthesis Product molecule ECFP FFNN SCScore [95]
Retrosynthesis Product molecule ECFP MCTS Retrosynthetic route [88]

ML potential ML potential Atomic coordinates SOAP Gaussian process
regression

DFT energy [56]

ML potential Atomic coordinates ACSF/PTSD FFNN DFT energy [99]
ML potential Atomic coordinates Interatomic distance CNN DFT energy [96,97]
ML potential Atomic coordinates Interatomic distance GNN DFT energy [38,98]
ML potential Atomic coordinates Gaussian-type-orbital based atomic

density vector
FFNN DFT energy [57]

ML potential Atomic coordinates ACSF FFNN DFT energy by
atomic charge

[100]

Heterogeneous
catalysis

Optimizing catalysts Experimental data Experiment condition FFNN, RF Product yield,
selectivity

[101,102]

Optimizing catalysts Literature
experimental data

Experiment condition, the
characteristic results

RF Product yield,
selectivity

[63]

Optimizing catalysts Robot-produced
experimental data

Experiment condition Bayesian Catalyst activity [103]

Predicting reactivity Atomic coordination
environments

Coordination number, element type RF Adsorption energy [104]

Predicting reactivity Element information Elementally, the atomic radius, number
of valence electrons

RF d–p band center [105]

Research reaction
mechanism

Atomic coordinates PTSD FFNN DFT energy [106]

MCTS: Monte-Carlo tree search; SCScore: synthetic complexity score.
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applying the SMARTS transformations to the reactants. Their
model achieved an accuracy of 85% in their test reactions and
80% in selected textbook questions. Later, Segler and Waller [93]
applied the approach to a more complex experimental dataset
from Reaxys. As shown in Fig. 2(a) [93], each reactant fingerprint
yielded a probability distribution over a library of 8720 algorithmi-
cally extracted templates, and the accuracy reached 78%. It should
be mentioned that the template-based method is relatively mature
in CASP, with concerns mainly including the relevance of the pre-
diction and the scope of the template library. Rare templates gen-
erally have to be excluded in the training of the ML model.

The template-free method that has emerged in recent years
holds the potential to break the limitations of the template-based
method due to quality and completeness. The seq2seq model based
on an RNN is the most representative template-free ML model
[89–91,118]. In the seq2seq model, reaction prediction is solved
as a machine translation problem between SMILES strings [29] of
reactants and products and the output SMILES code of the precur-
sors/products followed by a graphic transformation module to
regenerate real chemical structures, as shown in Fig. 2(b) [89]. It
is worth mentioning that the seq2seq model only outputs the
SMILES sequence, so the SMILES sequence outputs sometimes can-
not be converted into a reasonable structural formula, due to a
misunderstanding of the grammar of the SMILES representation.
In 2017, Liu et al. [89] trained a seq2seq model on 50 000 experi-
mental reaction examples from the USPTO and were able to
achieve 37.4% top-1 accuracy and 70.7% top-50 accuracy on the
test dataset. More recently, Schwaller et al. [91] replaced the
RNN in the seq2seq model with a transformer and achieved a
top-1 accuracy of 90.4% (93.7% top-2 accuracy) on a common
benchmark dataset. Similarly, a GNN can be used for template-
free prediction [92,119]. A study by Jin et al. [92] using the
7

Weisfeiler–Lehman network (WLN), a kind of MPNN, achieved
76% top-1 accuracy on the USPTO-15 K dataset and 79% top-1
accuracy on the USPTO dataset.

Retrosynthesis is more complex, as its aim is to provide a global
optimum synthetic pathway, which is not as simple as connecting
the best one-step reactions or picking the shortest route. Tradition-
ally, CASP programs (e.g., LHASA and SECS) suggest a few candi-
dates, and the final choice is made by experienced chemists
[107,109]. One step further, Coley et al. [95] proposed the synthetic
complexity score (SCScore) as a metric for ranking molecules in
retrosynthesis. As shown in Fig. 2(c) [95], an FFNN model was con-
structed to compute the SCScore from an ECFP [48] and was
trained on over 12 million reactions from the Reaxys database.
Based on the premise that, on average, the products of published
chemical reactions should be more synthetically complex than
their corresponding reactants, a hinge loss function was utilized
in the training to encourage a separation of the SCScore between
the reactant and the product. Under this scheme, a high-valued
synthetic route should exhibit a monotonic increase in SCScore.

Instead of using the SCScore to evaluate the synthetic route,
Segler et al. [88] developed an MCTS-based method (Fig. 2(d)
[120]) to grow asymmetrically promising sub-synthetic trees,
where an in-scope filter network is utilized to predict whether or
not a reaction is actually feasible. The filter network takes the pro-
duct and the reaction fingerprints as inputs and works as a classi-
fier to filter out nonsensical reactions in the expansion stage of the
MCTS. By combining with two other NN models (i.e., policy mod-
els) for predicting reaction patterns, the researchers showed that,
in a double-blinded A/B test of nine routes to different molecules,
the computer-generated reaction routes were as good as the
reported literature routes on average (57% preference of MCTS
and 43% of the literature, as judged by 45 organic chemists).



Fig. 2. (a) Overview of the neural-symbolic approach for template-based reaction prediction, which predicts possible reaction rules through reactant’s ECFP4 descriptors. (b)
Seq2seq model architecture for template-free reaction prediction, which translates the SMILES name of the reactant into the product. (c) Scheme of an SCScore model to guide
retrosynthesis. (d) Illustration of the MCTS algorithm, which is composed of four steps: selection, expansion, rollout, and reward. (a) Reproduced from Ref. [93] with
permission; (b) reproduced from Ref. [89] with permission; (c) reproduced from Ref. [95] with permission; (d) reproduced from Ref. [120] with permission.
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Despite these successes, the synthesis of natural products remains
a challenge. Aside from the sparsity of the training data on complex
molecules, the quantitative yield of enantiomers is generally miss-
ing in most models but is important for properly evaluating a syn-
thetic route.

5.2. ML potentials

Another important application of ML in chemistry is related to
the atomic simulation of complex systems, where ML potentials
[121] replace computationally demanding QM calculations for
evaluating PES. Because ML potentials are trained on a dataset
from QM calculations, ML potential calculations can achieve an
accuracy that is comparable to that of QM, but with a speed that
is several orders of magnitude faster. The ML potential method
thus significantly expands the territory of atomic simulation to
multi-element systems with thousands of atoms, which may only
be possible to simulate traditionally by means of an empirical force
field, although the availability of a force field is highly limited to
systems with a relatively simple PES. Since the advent of the first
ML potential in 1995 [122], many different types of ML models
have been proposed, and two classes of ML architecture (Table 2)—
namely, NN potentials [81,123,124] and kernel-based potentials
[125–127]—are the most popular. Although kernel-based poten-
tials, such as the Gaussian approximation potential (GAP)
[128,129] and updated versions with the smooth overlap of atomic
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positions kernel (SOAP-GAP) [56], have much fewer hyperparame-
ters than NN potentials, their calculation speed is restricted by the
size of the training samples. Hence it is intrinsically difficult to use
kernel-based potentials to go beyond big training sets, and they are
more suitable for single-element systems, such as carbon and sili-
con [128–133]. In the following, we focus on the NN potential,
which is becoming the mainstream in ML potential calculations.

Despite numerous early applications in molecular systems, the
NN potential for complex systems started from the
high-dimensional NN (HDNN) framework proposed by Behler
and Parrinello [123] in 2007. By assuming the total energy of the
structure as a sum of individual atomic energies, HDNNs establish
an FFNN to correlate the local chemical environment of an atom
with the atomic energy. Behler and Parrinello further invented a
set of ACSFs that are invariant to the translation, rotation, and per-
mutation of structure, as the structural descriptors for the input
layer of the NN. A major virtue of the HDNN framework is its sat-
isfaction of the extensity of the total energy, allowing different
structural configurations in the dataset with variable atom num-
bers and chemical compositions to be treated on an equal footing.

The HDNN architecture has since been actively researched and
improved, particularly regarding the structure descriptor. For
example, the local atomic environment can be extracted using a
CNN architecture, as implemented in Deep Potential [96,97], where
the atom-centered pairwise distances are utilized as the grid data.
Similarly, the MPNN [78] of a GNN can also be utilized to extract
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descriptors from pairwise atomic distances, which have been
implemented in deep tensor NN (DTNN) [38] for molecules and
in SchNet [98] for periodic solids. The embedded atom NN poten-
tial proposed by Zhang et al. [57] utilizes a Gaussian-type
orbital-based density vector as the input for the NN, which has
been demonstrated to yield as good accuracy as other ML models.

The global NN (G-NN) potential method (plotted in Fig. 3) pro-
posed by the Liu’s group [39,134] realizes an automatic data gen-
eration procedure for predicting reaction systems and improves
the structure descriptor and network architecture. The G-NN
potential is iteratively trained upon the global PES dataset col-
lected from SSW global PES exploration [135,136]. To better fit
the global PES data, a new set of structure descriptors—namely,
PTSDs [53,54]—have been developed that better describe the local
chemical environment of the atom. A multi-net architecture is also
implemented for the fast generation of multi-element G-NN poten-
tials by reusing the dataset and the pre-trained NN potential in
subsystems. The SSW-NN method (Fig. 3(a)) [134] is now imple-
mented in the LASP software [39,99] and has been applied to solve
many complex PES problems, such as catalyst structure determina-
tion and reaction network predictions [137–141].

To provide an example of a G-NN potential, we refer to the first
Ti–O–H G-NN potential, which is constructed to describe the PES of
amorphous TiO2 structures treated under H2 [142]. The G-NN
potential adopts a large set of PTSDs that contains 201 descriptors
for every element, including 77 two-body, 108 three-body, and 16
four-body descriptors, and the network involves two hidden layers
(201–50-50–1 net), equivalent to approximately 38 000 network
parameters in total. The final energy and force criteria of the root
mean square errors (RMSEs) are around 9.8 meV per atom and
0.22 eV�Å�1, respectively, for a large TiOxHy global dataset of
140 000 structures. Using this Ti–O–H G-NN potential, Ma et al.
[142] resolved the formation mechanism of amorphous TiO2 dur-
ing hydrogenation and found a TiH hydride-mediated pathway
for hydrogen production.

The local chemical environment descriptors utilized in the
above ML models are generally deficient in capturing long-range
interactions, such as the charge transfer in molecules. A possible
solution was proposed by Ghasemi et al. [100], who used the
charge equilibration neural network technique (CENT) method to
learn explicit atomic charges using the same HDNN architecture.
Fig. 3. (a) Scheme of the SSW-NN self-learning procedure of a G-NN potential. The G-
training. (b) Scheme of the double-network framework implemented in LASP. With pot
potential II, whose dataset contains the elements A, B, and C. X: Cartesian coordinates of
from Ref. [134] with permission; (b) reproduced from Ref. [39] with permission.
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These were then utilized to compute the long-range electrostatic
interactions. Ko et al. [143] recently proposed the fourth genera-
tion HDNN potential (4G-HDNNP) method for studying conjugated
long-chain organic molecules and non-neutral metal and ionic
clusters [143]. This method can include non-local electrostatic
interactions via a special charge equilibration scheme.

5.3. ML for heterogeneous catalysis

Due to the complexity of catalyst structures and the great sig-
nificance of catalysts in industry, heterogeneous catalysis has
always been a major testing ground for new techniques. Early
ML applications dating back to the 1990s [144,145] were generally
at the phenomenological level, learning experimental data using
simple ML models to optimize the catalyst synthetic and reaction
conditions [101,102]. These ML applications seem to have been
restricted by the availability of experimental datasets and, due to
a lack of fundamental understanding, may well have overlooked
key variables hidden in the experiment, leading to the failure of
ML models. With the advent of deep learning and ML methods,
many more exciting application scenarios have emerged, such as
ML-assisted literature analysis [65,146–148] and AI robots [103]
(Table 2).

ML-assisted literature analysis exploits the data mining ability
of natural language processing models to abstract experimental
data from the literature. Further data analysis will help to reveal
the key recipes among different experiments. For example, Suvarna
et al. [63] collected 1425 experimental datapoints from the litera-
ture related to CO2 hydrogenation to methanol on Cu-, Pd-, In2O3-,
and ZnO/ZrO2-based catalysts. As shown in Fig. 4 [63], an RF model
(R2 > 0.85) was then established to correlate the methanol space–
time yield with 12 descriptors relating to the experimental opera-
tion conditions, from which the top-ranking factors (e.g., the space
velocity, pressure, and metal content) were identified. Experimen-
tal validation was then performed and showed a small RMSE of
0.11 gMeOH�h�1�gcat�1 and a high R2 value of 0.81, demonstrating the
validity of the ML model.

Chemist robots are believed to be the future of chemistry, as
they will automatically perform experiments with high efficiency,
while maintaining maximal data consistency between experi-
ments [103,149,150]. For example, Burger et al. [103] developed
NN is iteratively improved through cycles of SSW sampling, DFT refining, and NN
ential I trained for elements A and B, it is reused as a starting point of a subnet in
each atom; Eatom: atomic energy of each atom; D: PTSD used in NN. (a) Reproduced



Fig. 4. Feature importance analysis for CO2 hydrogenation to methanol. SHAP:
Shapley additive explanations; GHSV: gas-hourly space velocity; P: pressure; M:
metal content; T: temperature; PR1: promoter 1 content; SBET: catalyst surface area;
S: support content; CT: calcination temperature; CD: calcination time. Reproduced
from Ref. [63] with permission.
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a mobile robot to search for improved photocatalysts for hydrogen
production by splitting water. In eight days, the robot performed
688 experiments within a ten-variable experimental space, guided
by a batched Bayesian search algorithm (preferentially selecting
beneficial components according to previous experiments). It suc-
cessfully identified a catalyst synthesized from a new recipe con-
taining P10 (5 mg), NaOH (6 mg), L-cysteine (200 mg), and
Na2Si2O5 (7.5 mg) in water (5 mL) that is six times more active
than those using the initial formula.

From a theoretical point of view, an ML model can also be uti-
lized to learn low-cost computable quantities, such as the adsorp-
tion energy of molecules and the electronic band structures, which
are known to be important for catalysis [151,152]. Tran and Ulissi
Fig. 5. (a) Contour plot for 14 958 reaction pairs obtained via MMLPS on Cu(211). The co
structures are projected onto the plot with two collective variables (CV1 and CV2). Key int
and (c) CO hydrogenation Gibbs energy profiles on a Cu(211) and Zn-alloyed Cu(211
permission.
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[104] used an RF-based pipeline to correlate structural fingerprints
with CO and H adsorption energies on alloys based on a database
containing alloys with 31 different elements. Finally, 131 candidate
surfaces from 54 bulk alloys for CO2 reduction and 258 surfaces
from 102 bulk alloys for H2 evolution were identified. From that,
a CuAl alloy with near-optimal CO binding was further experimen-
tally demonstrated to be a good catalyst for selective CO2 reduction
[153]. Sun et al. [105] recently found that the oxygen evolution
reaction (OER) activity on spinel oxides is intrinsically determined
by the covalency competition between tetrahedral and octahedral
sites, which can be quantified using the distance between the cen-
ters of the metal d and oxygen p bands, denoted as DM. They thus
developed an RF model to predict the DM, and a predicted
[Mn]T[Al0.5Mn1.5]OO4 mixed oxide was experimentally confirmed
to have high OER activity, with a 240 mV (vs RHE) overpotential
at 25 lA�cmox

–2.
On the other hand, ML atomic simulations can provide atomic-

level knowledge about the catalyst structure and reaction mecha-
nism, which benefits the rational design of catalysts. For example,
Shi et al. [106] proposed amicrokinetics-guidedML pathway search
method (MMLPS),which canautomatically explore the reactionnet-
work and determine the low-energy pathways with the help of a G-
NN potential. Each branch of MMLPS independently samples differ-
ent parts of the reaction PES, starting from different molecules and
surface coverages. A reaction pair dataset is thus established by
merging reactions from all branches, from which the lowest-
barrier reaction pathway can be identified. As illustrated in Fig. 5
(a) [106], a complete 2D reactionmap of CO and CO2 hydrogenation
on a Cu and Zn-alloyed Cu surface is plotted usingMMLPS to sample
14958 reaction pairs. On all surfaces, CO2 hydrogenates via the for-
mate pathway (CO2�HCOO*�HCOOH*�H2COOH*�HCHO*�CH3-
O*�CH3OH*�CH3OH) and CO hydrogenates via the formyl
pathway (CO�CO*�CHO*�HCHO*�CH3O*�CH3OH*�CH3OH), as
shownby the free energy profile in Figs. 5(b) and (c) [106]. The over-
all barrier of CO2hydrogenation is only1.40 eVonCu(211),while the
lor indicates the occurrence frequency of the state in the reaction pair collection. All
ermediates along the lowest-energy pathway are highlighted by brown lines. (b) CO2

) surface. The ‘‘ML” here stands for monolayer. Reproduced from Ref. [106] with
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barrier is 1.45 eV for CO, indicating that CO2 is the main carbon
source in themethanol product. A subsequentmicrokinetics simula-
tion shows that Zn alloying has no significant effect on the reaction
rate or even deactivates the reaction.
6. Perspective

This review summarized the key ingredients in recent ML appli-
cations for chemistry, from popular databases to common features,
modern MLmodels, and standard application scenarios. Along with
the success of recent ML applications, it must be recognized that
the use of ML in chemistry presents many challenges. For example,
a major obstacle is the lack of high-quality data, especially data
involving experiments. Even with high-throughput experimental
technology and experiment robots, there are still many fields in
chemistry in which humans must produce the experimental data.
In addition, chemists are often unfamiliar with state-of-the-art
ML methods and related computer science techniques, which leads
to difficulty in designing appropriate features for target applica-
tions. How to automatically extract features for different chemical
problems remains challenging. Finally, most ML research based on
FFNNs is poorly interpretable and is thus difficult to transfer to
new chemistry problems.

With the fast updating of computing facilities and the develop-
ment of new ML algorithms, it can be expected that more exciting
ML applications are coming, and the future of chemical research
will surely be reshaped in the ML era. While the future is difficult
to predict, especially in such a fast-evolving field, there is no doubt
that the development of ML models will lead to better accessibility,
more generality, better accuracy, more intelligence, and thus
higher productivity. The integration of ML models with the Inter-
net is a good way to share ML predictions across the world. An
interesting contribution was made by Yoshikawa et al. [154],
who established a retrosynthetic analysis bot on Twitter that can
automatically reply to retrosynthesis results if a SMILES of the tar-
get molecule is given as input. The bot utilizes the AiZynthFinder
[113] package for retrosynthesis analysis.

Because of the many element types and great material com-
plexity, the transferability of ML models in chemistry is a common
problem. A prediction usually has to be restricted to the applied
database, which is simply a local dataset in the vast chemistry
space. The accuracy of prediction drops rapidly beyond the dataset.
This issue may be solved with the advent of new techniques that
can perform more efficient data collection, as shown by the G-
NN potential that can learn SSW global PES data, or with better
ML models that can learn more complex systems with a significant
number of fitting parameters. In fact, a variety of ML competitions
are held by data scientists, such as Kaggle [98], leading to the birth
of many outstanding algorithms. In this regard, open ML contests
on chemistry problems are still limited [40], and more efforts are
needed to promote the growth of young talents in the field.

Toward more intelligent ML applications, end-to-end learning is
a promising direction, as it generates the final output from raw
input rather than from manually designed descriptors. AlphaFold2
[5] is a typical end-to-end learning framework that processes the
1D structure of the protein as input and finally outputs the 3D
structure of the protein. This framework has provided great conve-
nience for experimental biologists in using ML models. Similarly, in
heterogeneous catalysis, an end-to-end AI model for resolving
reaction pathways was recently shown by Kang et al. [120],
demonstrating a bright future of solving complex problems in a
single attempt by combining multiple ML models. These advanced
ML models should also help in the construction of more intelligent
experiment robots for performing high-throughput experiments
[103,149,150].
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