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The increasingly complex molecular structures and high requirements of advanced industries are trigger-
ing a transformation in chemical production modes. Bio-manufacturing provides efficient strategies and
brings the advantages of high atomic economy, few side reactions, and strong adaptability to processes,
as well as environmental friendliness, which can contribute toward global efforts against greenhouse
effect and environmental pollution. The significance of bio-manufacturing can be specifically illustrated
by examining the bio-manufacturing process from the scientific discovery of a key compound to its tech-
nological integration and engineering innovation. The development of statins—important drugs for
hypercholesterolemia treatment—is a good example of the progress and application of bio-
manufacturing. The production of the first-generation statins from microorganisms, the second-
generation statins using bioconversion, and the third-generation statins through an evolution from total
chemical synthesis to chemoenzymatic synthesis demonstrates the technological and engineering revo-
lution of bio-manufacturing, which is of great importance for energy conservation, cost saving, and waste
emission reduction. With advances in cutting-edge biotechnologies, as well as the integration of multiple
disciplines, bio-manufacturing is expected to promote the advancement of more intelligent processes to
realize sustainable and green industrial development.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the high environmental and industrial standards of
advanced industries, issues with traditional manufacturing pro-
cesses for chemicals have become increasingly evident, particu-
larly regarding production cost, manufacturing steps, and waste
emissions [1]. In general, the molecular structures of many modern
medicines tend to be complex, with multiple chiral active centers
and functional groups, and their synthesis requires long reaction
steps with continuous protection/deprotection and resolution. In
addition, the optical purity of chiral chemicals for use must usually
be very high, requiring repeated enrichment steps, which results in
a low yield and the generation of serious byproducts and pollu-
tants. Therefore, manufacturing processes often fail to meet the
requirements of industrialization.

Bio-manufacturing is a manufacturing mode that utilizes
biological systems, including enzymes, tissues, and living cells, to
produce commercially important molecules with renewable
resources as rawmaterials [2]. Compared with traditional chemical
routes, bio-manufacturing has the advantages of high atomic econ-
omy; strict regional, stereo-, and chemical selectivity; few side
reactions; and strong adaptability to process requirements. The
application of bio-manufacturing has extended to the chemical,
pharmaceutical, agricultural, food, and environmental industries.
Thus, a driving and permeable system of bio-manufacturing is
being established, promoting sustainable development of the econ-
omy and society. In fact, bio-manufacturing has been listed as a
strategic focus of scientific and technological development by
numerous countries around the world [3].

The significance of bio-manufacturing can be specifically illus-
trated by examining the bio-manufacturing process from the sci-
entific discovery of a key compound to its technological
invention and engineering innovation. The emergence of cutting-
edge technologies, the integration of engineering processes, and
the needs of the market have promoted the development and
application of bio-manufacturing. For example, after penicillin
was coincidentally discovered, its antibacterial activity was
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identified, its purification process was established, and its culture
conditions were regulated with advances in microbiology technol-
ogy. Once these technologies were dynamically embedded into an
engineering system in an orderly way, large-scale production of
penicillin was achieved, and penicillin was developed into an
essential antibiotic used to treat diseases and save lives [4]. Simi-
larly, based on developments in manufacturing, important com-
pounds such as avermectins [5] and validamycin [6,7]
transitioned from newly discovered compounds to key pesticides
for dealing with parasitic disease or rice sheath blight [8]. In the
present article, the significance of bio-manufacturing is elaborated
using the development of statin drugs. From the discovery of valu-
able compounds to their mass production, bio-manufacturing has
realized the transformation of the bioindustry and promoted the
economic development of related fields.
2. The development of statins

With the changes of human lifestyle that have occurred in mod-
ern society, the morbidity and mortality of cardiovascular and
cerebrovascular diseases are increasing, and these diseases have
become leading causes of human disability and death. According
to related reports, the number of patients with cardiovascular
and cerebrovascular diseases in China has reached 330 million,
ranking first in the world, and the prevalence is still rising. Hyper-
lipidemia is a risk factor for cardiovascular and cerebrovascular
diseases. It is mainly manifested by a high level of low-density
lipoprotein (LDL)—a kind of cholesterol transporter, which accu-
mulates on blood vessel walls and causes arteriosclerosis, resulting
in various cardiovascular-related diseases. It has been clinically
proven that the risk of ischemic cardiovascular disease can be
effectively controlled by reducing the LDL level in bodies.

Statins are the most pharmaceutically important cholesterol-
lowering drugs for the treatment of hyperlipidemia-related dis-
eases, and these drugs hold a large market share. During choles-
terol synthesis in the human body, the enzyme
hydroxymethylglutaryl (HMG)-coenzyme A (CoA) reductase
(HMGCR) is a rate-limiting enzyme that catalyzes the reduction
of HMG-CoA into mevalonate, a crucial cholesterol intermediate
[9]. Statins have structures similar to that of HMG-CoA, but with
Fig. 1. The history of the d
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a higher affinity to HMGCR. They block the intracellular meval-
onate biosynthesis pathway to prevent the buildup of plaque
inside the arteries and reduce cholesterol synthesis by competi-
tively inhibiting endogenous HMG-CoA. Meanwhile, statins pro-
mote the activity of LDL receptors, accelerate the catabolism of
LDL, and play a role in eliminating serum cholesterol [9,10]. Since
the discovery of the first cholesterol synthesis inhibitor, mevas-
tatin, in the 1970s, statin families have been developed rapidly,
with the successive development of natural statins, semi-
synthetic statins, and fully synthetic statins, in what has become
a milestone in the history of drugs for the treatment of cardiovas-
cular and cerebrovascular diseases [10] (Fig. 1). From a thermody-
namics perspective, the first-generation statins were not
enthalpically optimized, and the third-generation statins exhibit
more favorable binding enthalpies, indicating that they show more
thermodynamic stability than the previous statin family [11,12].

Bio-manufacturing has played a key part in the synthesis of sta-
tins, from the first to the third generations. Core technologies of
bio-manufacturing, such as strain breeding, microbial fermenta-
tion, enzyme screening and modification, and biocatalytic conver-
sion, have provided strong technical support for the development
of statins (Fig. 2) [11,12].
3. Production of first-generation statins

3.1. First-generation statins

Microorganisms are a vast treasure trove of drug production.
Many drugs—including antibiotics such as penicillin and strepto-
mycin, antitumor drugs such as actinomycin D, and enzyme inhibi-
tors such as lovastatin and acarbose—have first been found in
microorganisms. In 1976, mevastatin was discovered for the first
time in the fermentation broth of Penicillium citrinum (P. citrinum)
[13], and it showed potential effect to control hypocholesterolemia
by inhibiting HMGCR activity and reducing cholesterol in vivo
[14,15]. The application of mevastatin to patients with heterozy-
gous familial hypercholesterolemia and combined hyperlipidemia
was found to significantly reduce serum cholesterol by about
30%, shedding light on this lethal disease [16]. Thus, mevastatin
is regarded as the first active compound of a statin drug to be
evelopment of statins.



Fig. 2. (a) Overview of production routes for the first-, second-, and third-generation statins. (b) Thermodynamic parameters of the DH and DS of statin molecules binding to
the immobilized artificial membrane at pH 7.0 and 25 �C. (c) Thermodynamic parameters of the DG,DH, and �TDS of statin molecules binding to HMGCR at pH 8.0 and 25 �C.
DH represents the enthalpy of binding; DG represents the Gibbs free energy; DS represents entropy change; DG=DH� TDS. 1 cal =4.19 J. Reproduced from Refs. [11,12] with
permission.
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identified and initially used clinically in the 1980s. However, pro-
longed experimental treatment with a high dose of mevastatin
on a dog was found to increase the proportion of malignant lym-
phomas, so it was withdrawn from the market in the early 1990s
[10]. Later, an active substance that strongly inhibits cholesterol
synthesis was found in the metabolites of Monascus and was
named monacolin K (MK). This substance is able to reduce choles-
terol and preferentially reduce low-density lipoprotein-cholesterol
(LDL-C) [17]. Another compound, mevinolin, which has a similar
structure to mevastatin, was discovered using Aspergillus terreus
(A. terreus) [18]. It was further named as lovastatin [10]. In 1987,
lovastatin was approved by the US Food and Drug Administration
(FDA) for marketing. With sales of more than 260 million dollars
in the first year, lovastatin ranked as the drug with the highest
annual sales [19]. The first-generation statin drugs of mevastatin
and lovastatin were identified from microorganisms, and their
140
development was promoted by key biological technologies such
as the screening and identification of microorganisms, efficient
breeding, metabolic engineering, and intelligent fermentation reg-
ulation, leading to a breakthrough in the history of treatment for
hyperlipidemia-related diseases.
3.2. Production of first-generation statins from microorganisms

The goal of bio-manufacturing has always been to discover new
biologically active secondary metabolites and increase their yields.
The first-generation statins were originally found in fungi, which
produce metabolites with complex chemical structures and are
used to produce many valuable products. The metabolites of A. ter-
reus, Monascus, Penicillium, Mortierella maculate, Streptomyces, Pae-
cilomyces, Trichoderma, and Pleurotus ostreatus contain the active
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ingredients of statins [20–26]. Among them, Monascus and A. ter-
reus are the major host strains.

3.2.1. Strains for production
The fermentation products of Monascus have been used as food

and health products in China for more than 1000 years, and their
use later expanded to other countries such as the United States,
Japan, Republic of Korea, Thailand, and Indonesia [26]. The sec-
ondary metabolites of Monascus contain a variety of active sub-
stances, endowing Monascus with multiple functions including
lowering blood lipids and blood pressure, regulating blood ammo-
nia, and antitumor activity. The important components of the
metabolites were found to be citrinin, monascus pigments, dihy-
dromonacolins, c-aminobutyric acid, and dimerumic acid [27–
29]. The composition of statins in Monascus is complex. In addition
to the well-known MK, there are cholesterol-lowering analogs of
lovastatin, including monacolin J (MJ), monacolin L, monacolin X,
dihydromonacolin K, and dihydromonacolin L [10]. Researchers
applied the strategy of exogenous induction to the production of
active products generated by Monascus and, using the screening
method of high-performance liquid chromatography and citrinin-
related gene analysis, were able to obtain a strain with a relatively
high yield of MK [30]. When this strain was cultivated with Dis-
corea, the yield of MK was slightly increased [31]. The fermentation
process was also optimized. However, the lovastatin production
level of Monascus remained low, restricting its industrialization.

In addition to Monascus, as described above, A. terreus has been
shown to produce active ingredients of statins with a higher yield
[32]. Originally discovered as a potent producer of lovastatin, the
production process of A. terreus has been continuously improved,
making it the best lovastatin-producing strain; it was commonly
used in the industrial production of the first-generation statins.
To improve the productivity of A. terreus, mutagenesis breeding,
metabolic engineering, and fermentation regulation were per-
formed, in order to meet the requirements of industrial production.

3.2.2. Strategies to improve the production of first-generation statins
(1) Mutagenesis breeding. Since the wild-type A. terreus that is

isolated from the natural environment has a low capacity for statin
production, random mutagenesis was carried out to enhance its
productive potential. Physical mutagenesis mainly involves ultra-
violet (UV) irradiation and high-radiation heavy ion beams, while
chemical mutagenesis commonly involves ethyl methyl sulfone
(EMS), N-methyl-N0-nitro-N-nitrosoguanidine, and nitrous acid
[32–35]. In a recent study, with several rounds of UV irradiation
mutagenesis breeding, the lovastatin yield of A. terreus was tripled,
and the tolerance of the strain to lovastatin was significantly
strengthened [34,35]. Mukhtar et al. [36] obtained a strain with a
high yield of lovastatin by means of co-application of UV radiation
and nitrous acid. Compared with that of the wild type, the strain’s
yield of lovastatin was 3.5 times higher. Vilches Ferrón et al. [33]
obtained a new strain after EMS mutagenesis, with a yield of lovas-
tatin four times higher than that of the wild type. In addition, there
are methods that combine physical mutagenesis with chemical
mutagenesis. Sreedevi et al. [37] used UV irradiation and EMS
mutagenesis to obtain mutant strains; their highest yielding
mutant strain had a yield of 663 mg∙L�1, which was 1.8 times that
of the original strain.

(2) Metabolic engineering. Based on an understanding of the
molecular mechanisms of the metabolic pathways of statin biosyn-
thesis, metabolic regulation has emerged as an effective strategy to
improve the productivity of the microorganisms [20]. Hasan et al.
[38,39] increased lovastatin production by more than 40% using a
promoter replacement method to maintain the expression levels
of the key enzymes in the most suitable state. Meanwhile, the
key enzyme acetyl-CoA carboxylase was overexpressed and com-
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petition pathways such as geodin biosynthesis were blocked to
reduce the dispersion of metabolic flow. As a result, the production
of lovastatin was further increased by 80%. Askenazi et al. [40] cor-
related global gene expression patterns with the production of
specific metabolites through a comprehensive assessment of gene
expression. With this method, high-yielding strains were success-
fully engineered, and the yield of lovastatin was increased by nine
times.

(3) Fermentation regulation. The fermentation process is an
extremely important link in the microbial production of target
products, as it is directly related to the production efficiency and
product quality. Highly efficient regulation of the fermentation
process is of great significance in improving the productivity of
microorganisms. Studies indicate that the productivity of lovas-
tatin by A. terreus is influenced by nutrients such as carbon and
nitrogen. Numerous other environmental factors also affect lovas-
tatin production, such as agitation, temperature, pH, and moisture
content. As such, to further improve the production of lovastatin,
fermentation regulation strategies have been established [41,42].
Researchers have considered the synergy between the growth
and metabolism of lovastatin-producing strains in order to regu-
late global fermentation [36,43,44]. Mukhtar et al. [36] optimized
various culture conditions for a high-yielding strain and expanded
it to a laboratory-scale fermenter, resulting in an eight-fold
increase in lovastatin yield. Ansari et al. [43] studied the effects
of hydrodynamic behaviors such as bubble size on fungal growth
and lovastatin production by A. terreus in a bubble column bioreac-
tor. The highest yield of lovastatin was obtained when the bubble
diameter was 0.18 cm, which resulted in a yield of 443 mg∙L�1. The
yield of lovastatin under these conditions was 1.7 and 3.5 times
higher than that of a bubble culture with a diameter of 0.36 and
0.09 cm, respectively. Raina et al. [44] were the first to present a
correlation between the increase in lovastatin production and
changes in the transcription levels of its biosynthetic genes lovB
and lovF through elicitation with butyrolactone. The addition of
butyrolactone can stimulate the metabolic production of A. terreus
and significantly increase the yield of lovastatin. In their work, the
exogenous addition of 100 nmol∙L�1 of butyrolactone I to sub-
merged cultures resulted in 2.5-fold increase in lovastatin produc-
tion, as compared with control cultures. All of the metabolic
regulation described above not only significantly improved the
productivity of microorganisms in producing the first-generation
statins, but also promoted the industrialization process of statins.
4. Production of second-generation statins

Second-generation statins, which are derivatives of first-
generation statins, include pravastatin and simvastatin. Pravas-
tatin is a hydroxylated derivative of mevastatin that was initially
separated from the urine of a dog fed with compactin ML-236B
(the closely related compound as mevastatin, which was first iso-
lated from P. citrinum), indicating that pravastatin can be produced
from mevastatin. Pravastatin selectively inhibits cholesterol syn-
thesis in the liver and small intestine, while cholesterol synthesis
in peripheral cells is largely unaffected [45]. Therefore, pravastatin
is suitable for the primary and secondary prevention of
hypercholesterolemia. Pravastatin was synthesized by the
Japanese company Daiichi Sankyo and underwent clinical trials.
In 1991, it was demonstrated that pravastatin significantly reduces
the incidence of heart disease, and the statin was soon approved
for marketing in Europe and the United States.

Simvastatin is a methylated derivative of lovastatin. The differ-
ence between the chemical structures of simvastatin and lovas-
tatin is that the a-carbon atom of the butyrate sidechain at the
C8 position of simvastatin has one more methyl group than that
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of lovastatin [46]. Compared with lovastatin, simvastatin exhibits
stronger activity in lowering LDL-C, with fewer side effects. The
results show that the clinical activity of two doses of lovastatin is
just comparable to that of one dose of simvastatin [47]. With the
application of biotechnologies and innovation in the production
process, the cost of simvastatin has been significantly reduced,
while its medicinal effect has increased. In 2006, simvastatin
became the second-best-selling statin in the world.

Since the second-generation statins show high structure simi-
larity to the first generation, researchers have focused on their effi-
cient production from mevastatin or lovastatin. Through a
combination of microbial fermentation with efficient bioconver-
sion, a transformation in the traditional production process of sta-
tins was realized, resulting in a decrease of production cost, as well
as significant energy conservation and emissions reduction.

4.1. Two-step fermentation process for pravastatin production

Pravastatin has a hydroxyl group (–OH) at the 6b position,
which is a structural modification of the mevastatin skeleton. Since
it is not easy to perform the hydroxylation reaction for pravastatin
using conventional synthetic methods, only a few chemical meth-
ods have been reported for pravastatin production [48]. Therefore,
microbial hydroxylation was adopted to produce pravastatin. This
was realized through a two-step process involving microbial fer-
mentation and bioconversion. First, with the development of fer-
mentation engineering technologies, the microbial strain
producing mevastatin was optimized to perform high-density fer-
mentation. The mevastatin could then be converted to pravastatin
through hydroxylation (Fig. 3).

Thus far, various microorganisms—including Actinomadura,
Micropolyspora, Streptomyces, and Pseudonocardia [49–51]—have
been explored to determine their capability for hydroxylating mev-
astatin at the 6b position to form pravastatin. Based on an exten-
sive screening program, Mucor was found early on to be effective
for the hydroxylation of mevastatin, with a conversion ratio
between 30% and 90%. However, Mucor is very sensitive to mevas-
tatin, and cannot tolerate a substrate concentration of 0.05% of the
lactone form of mevastatin. In order to overcome this limitation,
high-yielding strains were bred. Researchers conducted multiple
rounds of UV mutagenesis on Streptomyces flavus and, using
high-throughput screening strategies, obtained the mevastatin-
resistant strain S33-1. In addition, online monitoring methods
were set up to maintain the concentration of mevastatin at the
optimal level. As a result, the biotransformation rate of mevastatin
to pravastatin reached 91% when the mevastatin concentration
was maintained at a constant level [52]. As an alternative solution,
an intermittent addition of compactin in the reaction mixture was
attempted with Actinomadura sp. as the biocatalyst in order to
increase pravastatin production. The results showed that the yield
reached 0.8mg∙L�1. By further regulating the fermentation process
of Actinomadura sp., both the cell biomass and conversion rate
increased [53].
Fig. 3. Two-step fermentation process for pravastatin production. Mevastatin is first prod
cytochrome P450.
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4.2. Key enzymes in pravastatin biosynthesis

Although various microorganisms exhibit activity in converting
mevastatin to pravastatin, the key enzymes responsible for the
conversion are different. Thus far, two major enzymes—namely,
cytochrome P450 (CYP450) monooxygenase and a new hydrolase
system presented in Actinomadura—have been demonstrated to
be effective for the production of pravastatin. CYP450 is an enzyme
containing heme that belongs to the class of monooxygenases
widely distributed in nature. CYP450 can catalyze various types
of reactions, such as hydroxylation, epoxidation, alcohol and alde-
hyde oxidation, O-dealkylation, N-dealkylation, oxidative dehalo-
genation, and oxidative C–C bond cleavage [54]. Therefore, it
participates in many important metabolic pathways in eukaryotes
and prokaryotes. A new CYP450 was identified and cloned from
Amycolatopsis orientalis. When it was used for the conversion of
mevastatin, in addition to hydroxylation at the correct C6 position
of the substrate, the stereoisomer 6-epi-pravastatin was obtained,
indicating the unsatisfactory stereoselectivity of the enzyme.
Therefore, molecular modification was performed on it. Based on
a structure–function relationship analysis, the electron density in
the enzyme’s active site and the conformational landscape were
determined to affect the stereochemistry during the enzyme-
catalyzed process. Using an error-prone polymerase chain reaction
strategy, the P450 mutant was screened, increasing the ratio of
pravastatin to 6-epi-pravastatin from 3:97 to 96:4. Furthermore,
researchers reprogrammed the antibiotic-producing fungus Peni-
cillium chrysogenum (P. chrysogenum) by the insertion of the P450
mutant, in order to construct a single-step fermentative route for
pravastatin production [55]. By deleting the penicillin biosynthetic
genes, strengthening the expression of the compactin gene cluster,
and reducing the esterase activity in P. chrysogenum, the yield of
the precursor statin compactin was significantly increased. Based
on this, with the P450 mutant fused to Rhf reductase and randomly
integrated into the engineered strain, the pravastatin yield reached
6 g∙L�1 in 10 L fed-batch fermentations [55,56].

Another hydroxylase for the conversion of compactin to pravas-
tatin, which was found in Actinomadura sp., requires nicotinamide
adenine dinucleotide (NADH) or reduced nicotinamide adenine
dinucleotide phosphate (NADPH) as a cofactor. Compared with
the normal CYP450 monooxygenase, this hydroxylase does not
depend on compactin induction and is not inactivated by carbon
monoxide (CO), and thus shows industrial potential for pravastatin
production.

4.3. Production of simvastatin from lovastatin

The traditional production of simvastatin mainly involves side-
chain synthesis and direct methylation. The lovastatin undergoes
multiple reaction steps including hydrolysis, lactonization, the
trimethylsilylation protection of hydroxyl groups at the C11 and
C13 positions, acylation of a-dimethylbutyryl chloride, and depro-
tection. Next, a methyl group is added to the a-carbon of the C8
uced via microbial fermentation and is then bioconverted into pravastatin. CYP450:



Fig. 4. Synthetic pathways of simvastatin, including the chemical route and the biosynthetic route. TBS: tert-butyldimethylsilane; Mel: iodomethane.
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butyrate sidechain to obtain simvastatin, as shown in Fig. 4 [57–
60]. This chemical synthesis has the disadvantages of low compre-
hensive yield (50%–80%); the requirement for excessive quantities
of toxic reagents such as toluene, lithium metal, dimethyl amide,
and methyl bromide; and the generation of a large amount of liq-
uid waste [61–64].

With the development of bio-manufacturing, biocatalytic con-
version has been introduced into the industry as a means of pro-
ducing simvastatin. Theoretically, lovastatin can be converted to
simvastatin via methyltransferase in one step since, in terms of
its chemical structure, simvastatin only has one more methyl
group at the C8 position of the butyrate sidechain compared with
lovastatin [61]. Methyltransferase was developed and has been
applied to catalyze erythromycin for clarithromycin with high cat-
alytic efficiency, providing important guidance for constructing a
new route for simvastatin biosynthesis. However, no methyltrans-
ferase with ideal catalytic activity toward lovastatin has been
found thus far, and the one-step biosynthesis of simvastatin
remains under exploration.

During the biosynthetic pathway of lovastatin in A. terreus, the
two- and three-carbon units of acetic acid and malonic acid are
condensed to MJ with the enzymes polyketide synthase encoded
by lovB/lovC and P450 oxygenase encoded by lovA. Meanwhile,
diketone synthase encoded by lovF catalyzes the condensation of
acetic acid and malonic acid into a methylbutyric acid sidechain,
which is transferred to the hydroxyl group at the C8 position of
MJ by acyltransferase encoded by lovD, thereby generating lovas-
tatin. On the other hand, MJ can be directly converted to simvas-
tatin by means of acyltransferase with a-dimethylbutyryl-N-
acetylcysteine thioester as the acyl donor (Fig. 4). As such, MJ is
the precursor of both lovastatin and simvastatin. Interruption of
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the lovastatin biosynthetic pathway or the hydrolysis of lovastatin
provides an important substrate for simvastatin production.

Blocking the activity of diketone synthase or acyltransferase has
been found to result in an accumulation of MJ. However, the fer-
mentation level of the existing strains is still low, making them
unable to meet the requirements of the industrial production of
simvastatin. In recent decades, simvastatin has mainly been
biosynthesized from lovastatin with chemical hydrolysis and enzy-
matic catalysis. After lovastatin is produced by microbial fermenta-
tion, its hydrolysis is carried out to form MJ, which is further
acylated to simvastatin under the action of an acyltransferase
[65–67]. Researchers have obtained the acyltransferase LovD from
A. terreus, which has a wide range of specificity for acyl substrates
and acyl receptors. Modification of the enzyme resulted in
improved catalytic properties. After expression of the enzyme in
Escherichia coli (E. coli), a whole-cell catalyzed biosynthesis system
of simvastatin from MJ was established [68]. Meanwhile, an acti-
vated and membrane-permeable substrate, a-dimethylbutyryl-S-
methyl-mercaptopropionate, was found to be an effective acyl
donor for acyltransferase. As a result, the substrate conversion
reached 99% without depending on chemical protection, and the
extraction yield of the final product reached 90% with a purity of
98% [64].

Taking the synthetic pathway of simvastatin described above as
inspiration, researchers are also focusing on the exploration of a
bio-step for lovastatin hydrolysis to generate MJ, so as to replace
the chemical hydrolysis process and thus realize higher atomic
economy and greater environmental friendliness [69]. In recent
years, a new esterase PcEST was identified from P. chrysogenum;
compared with previous reported hydrolases, it displayed a
232-fold higher catalytic efficiency for the in vitro hydrolysis of
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lovastatin to generate MJ. When PcEST is overexpressed in A. ter-
reus with the capability for the industrial production of lovastatin,
MJ is efficiently produced through the single-step fermentation
and conversion of lovastatin, with a yield of about 95%. With the
further co-use of acyltransferase, the synthetic steps used to pro-
duce simvastatin are all expected to be realized through biological
methods, solving the bottlenecks caused by the chemical steps
(Fig. 4).

4.4. Key enzymes involved in simvastatin production

4.4.1. Lovastatin hydrolase—PcEST
The discovery of lovastatin hydrolases with the potential for

industrial applications is very limited. As early as 1997, Merck
had isolated and purified a specific lovastatin esterase. In 2004,
Morgan et al. [70] reported another specific lovastatin esterase,
EcBla4. However, the high Km values (Km is the Michaelis constant)
of the reported enzymes toward lovastatin limit their application
for MJ production. When the lovastatin hydrolase PcEST from P.
chrysogenum was identified and characterized, its high activity
toward lovastatin inspired researchers to aim for the one-step
biosynthesis of MJ. Directed evolution was performed on PcEST
and compared with wild-type PcEST, the solubility of the beneficial
mutant Q140L increased by 2.2 times, the whole-cell activity
showed an 18-fold improvement, and the T50

10 value increased by
3 �C (T5010 is defined as the temperature where 50% of initial enzyme
activity is lost following 10 min heat treatment) [71]. The catalytic
mechanism and structure–function relationship of PcEST and its
mutant were revealed: The catalytic triplet, the hydrogen bonding
network around the active site, and the specific substrate binding
the channel together determine the catalytic efficiency of PcEST
for the hydrolysis of lovastatin. On this basis, PcEST was further
rationally designed, and the mutant D106A, which has improved
soluble expression and thermal stability, was obtained [72]. With
A. terreus harboring the PcEST mutant as a host strain, the gener-
ated lovastatin was completely converted to MJ, realizing the
single-step bioproduction of MJ in a more effective way.

4.4.2. Acyltransferase—LovD
The acyltransferase is responsible for the key step of converting

MJ to lovastatin or simvastatin, so its development and application
is of great significance in constructing a biosynthesis route for the
second-generation statins. In 2006, researchers cloned the lovD
gene encoding an acyltransferase from Aspergillus and overex-
pressed it in E. coli. In this way, they were able to characterize this
acyltransferase, which selectively transfers a-methylbutyryl to the
C8 hydroxyl group of MJ, thereby producing lovastatin. It was then
discovered that LovD can catalyze the direct acylation of MJ via
acyl-CoA thioesters, which was a promising biocatalyst to synthe-
size simvastatin with a-dimethylbutyryl-S-methyl thioglycolate as
the substrate. Researchers replaced the two cysteine residues in
LovD with alanine residues and improved the catalytic perfor-
mance of the enzyme. The mutants were subjected to high cell
density fermentation to convert 45 mmol∙L�1 of MJ sodium salt
into simvastatin sodium salt within 18 h [61,68,73]. In addition,
the natural enzyme LovD was modified so that the enzyme can
accept the free unnatural acyl donor a-dimethylbutyryl-S-
methylmercaptopropionate, and the acyl carrier protein is no
longer needed. The resulting mutant is 1000 times more efficient
than the wild-type LovD in the synthesis of simvastatin [74].
Finally, a whole-cell biocatalysis platform for the synthesis of sim-
vastatin was established. In bio-manufacturing, the use of LovD for
the catalytic production of simvastatin has many advantages, such
as reducing the use of toxic and hazardous substances including
tert-butyldimethylsilane chloride, methyl iodide, and n-butyl
lithium. Since the reaction is carried out at ambient temperature
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and near atmospheric pressure, the energy efficiency is improved.
The only byproduct 3-mercapto methyl propionate can be recov-
ered, and the main waste stream produced is biodegraded in a bio-
logical treatment facility.
5. Production of third-generation statins by introducing key
biocatalysis steps in a chemoenzymatic system

The third-generation statins include rosuvastatin, atorvastatin,
fluvastatin, and pitavastatin. Compared with the first- and
second-generation statins, the third-generation statins exhibit a
better lipid-lowing effect with longer half-lives and reduced liver
and kidney toxicity, making them the first-selected drugs for the
prevention and treatment of hyperlipidemia at present and grant-
ing them an important position in the international market, with
fast-growing annual sales. Atorvastatin calcium was first launched
by Pfizer Pharmaceuticals Ltd. in the United States and was
approved by the US FDA under the trade name Lipitor. It has been
the sales champion of the world’s pharmaceutical market for nine
consecutive years and was the only single compound to exceed 100
billion USD in the sale history of human medicine. Rosuvastatin
and pitavastatin have better liver selectivity and muscle safety,
and their small-dose use can effectively reduce LDL-C. In addition,
they are less metabolized by the liver, resulting in lower liver
toxicity.

The third-generation statins all contain a universal sidechain
with a chiral diol structure as their main pharmacophore [75],
and the synthesis of this sidechain is of great importance for the
production of these statins. However, since the chiral diol side-
chains contain two chiral hydroxyl groups, generating four epimers,
independent stereoselective construction of the chiral centers is
extremely difficult, and the synthesis cost accounts for half of the
total cost of statin materials. For a long time, the synthesis of
third-generation statins was extremely challenging. In the last dec-
ades, however, scientists have successively developed a variety of
chemicalmethods for the synthesis of chiral diol sidechains, includ-
ing monocarbonyl reduction methods, dicarbonyl reduction meth-
ods, aldehyde–ketone reduction coupling formation methods, and
epoxide asymmetric ring-opening methods [76–78]. Nevertheless,
these methods generally present the problems of low enantiomeric
and diastereomeric excess values, high cost of precious metal cata-
lysts, and harsh reaction conditions. For example, during the pro-
cess of atorvastatin synthesis, the cheap and readily available
ethyl 4-chloroacetoacetate (A3) is used as a starting material. It is
catalyzed for the synthesis of (S)-4-chloro-3-hydroxybutyric acid
ethyl ester (A4) and further catalyzed to produce (R)-4-cyano-3-
hydroxybutyric acid ethyl ester (A5), which is the first R-
configuration chiral center at the 50-position. The chemical dehalo-
genation and cyanation of A3 to A5 requires three steps:
trimethylsilyl protection, sodium cyanide cyanidation, and depro-
tection. The product yield is only 56.7% [76]. In the process from
A5 to A7 (in the construction of the second chiral center at the 30-
position), the reagent borane is used under cryogenic conditions.
The destruction of enantiomers (de) value of the target product,
which represents the percentage of one enantiomer that is con-
verted to its opposite, is always lower than 98% and, in order to
increase the optical purity, multiple purification steps are required,
resulting in low productivity [77,78].

With the development of enzyme engineering, the key steps for
atorvastatin synthesis have been redesigned to meet industrial
requirement, and enzymes—including carbonyl reductase (CR)
and halohydrin dehalogenase (HHDH)—have been applied to
construct an entire chemoenzymatic system for third-generation
statins. CR is an important enzyme in the construction of the chiral
hydroxyl groups of the chiral diol sidechain, as it catalyzes the
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asymmetric transfer of hydrogen on the nicotinamide ring to an
oxidized substrate [79]. HHDH can selectively catalyze the conver-
sion from epoxides to O-haloalcohols through an intramolecular
nucleophilic substitution mechanism [80]. With the co-
application of CR and HHDH, the two chiral centers of the chiral
diol sidechain are successfully built via simple reaction steps,
under mild reaction conditions, and with high biosynthesis
efficiency.

During atorvastatin synthesis, CR is applied for the bioreduction
of A3 to A4 [81], which then further undergoes biological dehalo-
genation by HHDH to produce A5, generating the first chiral center
of the chiral diol unit [82]. Next, A5 is converted into 6-cyano-(5R)-
hydroxy-3-carbonylhexanoic acid tert-butyl ester (A6) through a
Claisen ester condensation reaction and is then reduced to 6-
cyano-(3R,5R)-tert-butyl dihydroxyhexanoate (A7) (Fig. 5)
[83,84], which is reacted with 2,2-dimethoxypropane (DMP) to
obtain (4R,6R)-6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-tert-
butylacetate (A8). At this point, all chiral centers have already been
constructed by the three-step biocatalytic synthesis described
above. Compared with the traditional chemical steps, the biocat-
alytic route for A8 eliminates the use of borane, potassium borohy-
dride, methanol, tetrahydrofuran, and liquid nitrogen. Through the
additional steps of hydrogenation, condensation with the parent
nucleus, hydrolysis, and recrystallization, the chiral diol sidechain
is successfully applied for the synthesis of atorvastatin calcium. In
this way, an industrial production line for atorvastatin calcium has
been established [83].

Recently, another statin synthesis route with an enzymatic
aldol reaction involving 2-deoxyribose 5-phosphate aldolase
(DERA) has been proposed [85,86] (Fig. 6). Combined with the
application of HHDH, optically pure super statins such as rosuvas-
tatin and atorvastatin are expected to be obtained. A few DERAs
have been reported and characterized from different microorgan-
isms, including Paenibacillus sp., Hyperthermus butylicus, Yersinia
sp., Pyrobaculum aerophilum, Thermus thermophiles, and Streptococ-
cus mutans [87–91]. However, most wild-type enzymes have low
affinity toward acetaldehyde, limiting their application [92].
Fig. 5. Synthetic route for atorvastatin calcium. The carbonyl reductase (CR)- and halohy
the A5 and A7 chiral centers. AKR: aldehyde-ketone reductase; DMP: 2,2-dimethoxypro
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Therefore, further research is needed to realize the practical appli-
cation of the pathway.

5.1. Key enzymes involved in third-generation statins production

5.1.1. Engineering HHDH for third-generation statins production
To introduce key biocatalysis steps into the chemoenzymatic

system of third-generation statins, researchers have focused on
identifying and screening novel HHDHs with catalytic potential.
A high-throughput screening technique for HHDH activity based
on the color reaction between azide ion and Fe3+ was established,
and the HHDH from Parvibaculum lavamentivorans DS-1 was
screened and mutated [93,94]. After quickly screening from 2500
colonies, two mutants were obtained, F176M and A187R, which
respectively possessed 2.1- and 1.8-fold higher relative activities
than the wild type. With the synergistic mutation of two amino
acid residues, the double mutant F176M/A187R exhibited a 2.8-
fold improvement in catalytic activity [93]. Bioinformatics tech-
nologies were used to analyze the amino acid composition and
the structure–function relationship of HHDH. The catalytic pocket
and ion channels for the product were determined to play a key
role in determining the enantioselectivity of the enzyme. The hot
spots determining both the enzyme activity and the stability were
identified. This coupling modification greatly improved the indus-
trial application properties of HHDH [95]. For HHDH from Agrobac-
terium radiobacter (HheC), site mutagenesis was performed on the
key amino acid residues. Based on the protein modeling and
molecular docking results, six residues were selected for coopera-
tive mutagenesis; after screening, the activity of the obtained vari-
ants increased by 15 times [96].

5.1.2. Engineering of CR for third-generation statins production
The gene-mining strategy shows good practical application pro-

spects for the discovery of new enzymes based on protein data-
bases. A series of CRs were screened for the effective production
of third-generation statin intermediates [97]. Since the reagent
2,4-dinitrophenylhydrazine and A6 involved in the synthesis route
drin dehalogenase (HHDH)-catalyzed steps were introduced for the construction of
pane.



Fig. 6. Synthesis route of atorvastatin and rosuvastatin with an enzymatic aldol reaction.
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of atorvastatin form a red-brown hydrazone derivative whose
color is positively correlated with the concentration of A6, a
high-throughput screening method with a color reaction between
2,4-dinitrophenylhydrazine and A6 was created to improve the
activity of CR in the reaction step from A6 to A7 [98]. Rational
design was performed on key amino acid residues near the coen-
zyme binding region and the substrate catalytic pocket. With
enzyme engineering, a new CR was created with high affinity to
the coenzyme, as well as excellent catalytic activity and stereose-
lectivity, resulting in good industrial performance in constructing
the chiral center of atorvastatin calcium [98].

In addition, aldehyde-ketone reductase (AKR) can perform the
same function as CR in the reduction of A6 to A7 [99]. Luo et al.
[100] rationally designed the wild-type aldehyde-ketone reductase
from Kluyveromyces lactis (KlAKR) based on homology modeling
and molecular docking. The highest catalytic efficiency of the
mutant KlAKR-Y295W-W296L (M1) reached 12.37 s�1∙(mmol∙L)�1,
which was 11.25 times higher than that of the wild-type KlAKR. To
further improve its catalytic performance, semi-rational engineer-
ing of M1 was performed, and the mutant KlAKR-Y295W-W296L-
I125V-S30P-Q212R-I63W (M8) was developed. The catalytic effi-
ciency value of M8 was 36.31 s�1∙(mmol∙L)�1, which was 1.9-fold
higher than that of the parent M1 [101]. In order to achieve the
regeneration of in situ cofactors, the researchers constructed a
strong co-expression system for M8 and glucose dehydrogenase
(GDH) from Exiguobacterium sibiricum (EsGDH), developed a bio-
catalytic method with an increased substrate load, and reduced cell
culture burden [83]. Under these optimized conditions, a load of up
to 80 g∙L�1 of A6 was completely converted in 1.5 h by M8 along
with EsGDH for cofactor regeneration, producing A7 with space–
time yield of 660 g∙L�1∙d�1 [101].
Fig. 7. The ‘‘one-pot” synthesis of A5 via a combination of the A3 biological
reduction, A4 biological dehalogenation, and cyanidation.
5.2. Regulation of the production process

Through a fed-batch fermentation mode with constant dis-
solved oxygen feedback regulation, the high-density fermentation
of recombinant strains harboring CR and HHDH was established
[102]. With Zn2+ supplemented in a 50 L batch bioreactor, the cell
biomass was increased, and the maximum HHDH activity was
increased by 9.80% [103]. Liu et al. [104] carried out the fermenta-
tion of recombinant E. coli harboring CR in 500 and 5000 L fer-
menters, and the biomass and specific activity reached about 9.7
g dry cell weight (DCW) per liter and 15750 U∙g�1 DCW, and
11.0 g DCW per liter and 19210 U∙g�1 DCW, respectively. The
obtained cells were successfully applied for the efficient produc-
tion of A7. Scale-up synthesis of A7 was performed in a 5000 L
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bioreactor with 400 g∙L�1 substrate at 30 �C, resulting in a
space–time yield of 13.7 mmol∙L�1∙h�1∙g�1 DCW.

Zhang et al. [105] used recombinant E. coli cells containing CR
and GDH to efficiently produce A7. After 12 h of reaction, the sub-
strate conversion rate reached 98.8%, the yield was 95.6%, and an
enantiomeric excess (ee) value >99.0% at substrate concentration
of 350 g∙L�1. Furthermore, a fed-batch strategy was adopted to
increase the substrate concentration to 400 g∙L�1. After 12 h of
reaction, the product yield was increased to 98.5% and the
space–time yield was 1182.3 g∙L�1∙d�1, which was the highest
value for the CR–GDH coupling system in the literature.

In addition, Xue et al. [106] and Wan et al. [107] studied the
thermodynamics of the unit reactions including biological reduc-
tion of A3, biological dehalogenation of A4 and cyanidation
(Fig. 7). Through the coupling of above three-enzymatic catalyzed
steps, the conversion from A3 to A5 was significantly improved.
When the input amount of A3 was 280 kg∙m�3, the substrate con-
version reached 100%, with an ee value for A5 of >99%. Compared
with the most advanced Pfizer–Codexis technology reported in the
previous literature, the substrate dosage and space–time yield of
the multi-enzyme ‘‘one-pot” catalytic process were doubled
[108–110].

Immobilization is always used as an important technology to
improve the stability and reusability of enzymes or recombinant
cells. Wang et al. [111] were the first to develop Celite–polyethyle-
neimine–glutaraldehyde (GA) immobilized cells expressing CR to
catalyze the synthesis of chiral A7. In their work, the stability of
the immobilized cells was improved. In particular, in regard to
thermostability, the half-life of the immobilized cells was pro-
longed to 120 min at 50 �C—a two-fold improvement over that of
free cells. Application of the immobilized recombinant cells real-
ized the production of A8 with an annual output of 200 t. We cal-
culated that the unit consumption of raw materials in the process
was reduced by 88.6%, the energy consumption was reduced by
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more than 70%, and the total production costs were reduced by
approximately 54% compared with the total chemical synthesis
[77,78,83,111]. To increase the stability and recyclability of the
biocatalyst, Qiu et al. [112] and Liu et al. [113] exploited a combi-
natorial immobilization technique of activated carbon adsorption,
metal–organic framework zeolitic imidazolate framework (ZIF)-8
coating, and GA cross-linking. They applied this immobilization
method to the previously constructed GDH and CR co-expressing
strain of E. coli BL21 (DE3)/pcDFDUET-gdh-cr. Under the optimized
conditions, the active recovery of the immobilized cells reached
82.6%. The immobilized biocatalyst could be used for nine batches,
with an overall yield of 23.75 g product per gram of immobilized
cells in a diastereomeric excess of > 99.5%. Moreover, a self-
sufficient biocatalyst based on CR and a NADP+ immobilization
strategy was developed, and the cost of the catalyst continued to
decrease [114,115].
5.3. Crystallization technology and quality control

Preliminarily prepared third-generation statins always contain
numerous impurities, so the statins must undergo a series of
separation and purification processes. Crystallization is an
important step in product refining. However, the common occur-
rence of the phenomenon of homogeneous polycrystals makes it
difficult to prepare a single crystal of the product. To address the
problem of the product purity, researchers have established a
synthesis process for the atorvastatin calcium precursor, which
is generated from the condensation of (4R,6R)-6-aminoethyl-2,
2-dimethyl-1,3-dioxane-4-tert-butylacetate (A9) and the parent
nucleus. After optimizing the hydrolysis and salting process of
the atorvastatin calcium precursor—which involves defluorina-
tion, epoxidation, methoxidation, and the degradation of
impurities—the preparation of a high-purity atorvastatin calcium
crystal was achieved [116–118], providing technical support for
the establishment of an atorvastatin calcium quality-assurance
system.

In third-generation statins production, it can be seen that the
enzyme-catalyzed reaction plays a primary role in the bio-
manufacturing process [119]. This reaction meets the requirement
of green chemistry, since the reaction is carried out under mild
reaction conditions and uses water as reaction medium under
ambient temperature. In this way, it avoids steps such as func-
tional activation, protection, and deprotection, which are com-
monly required in traditional organic synthesis [120]. Based on
the core technologies of enzyme design and modification, a high
degree of chemical–enzymatic coupling, and good matching of
the reactions and separations, chemoenzymatic synthesis pro-
cesses for the efficient production of target products can be estab-
lished, thereby enabling successful industrialization by employing
modern bio-manufacturing technologies.
6. Conclusion and outlook

The integration of bio-manufacturing throughout the develop-
ment of statins can clearly be seen, in the development of micro-
bial fermentation to produce the first-generation statins,
biotransformation to produce the second-generation statins, and
the chemoenzymatic synthesis to produce third-generation statins.
With the increasing complexity of drug molecules and high indus-
trial standards, traditional synthetic processes fail to meet the
requirements of industrialization. In addition, economic and social
development is facing severe challenges such as declining
resources and increasing environmental pollution. As such, it is
urgent for green transformation to occur in the supply of raw
materials, processing modes, and product upgradation, in order
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to achieve coordinated and sustainable development. Bio-
manufacturing is the core integration of technologies and engi-
neering in the bioindustries. Its application scope covers the value
chain from resources and technologies to industries, including
modern biotechnologies in the fields of medicine, agriculture,
energy, materials, and environmental protection.

Thorough bio-manufacturing, green production has been
achieved for numerous batches of chemicals thus far, including sta-
tins, providing good examples of the process of modern industrial-
ization. Looking to the future, with advances in the cutting-edge
biotechnologies of bioinformatics, synthetic biology, and protein
engineering, as well as the integration of multiple disciplines
including system engineering, process engineering, information
technology, and management science, bio-manufacturing is
expected to move toward more intelligent processes, in order to
realize in-depth machine learning design, multi-parameter online
monitoring, and intelligent regulation of industrial processes. For
example, the development of genetic editing technologies such as
clustered regularly interspaced short palindromic repeats (CRISPR)
interference screening provides a powerful tool to map complex
prokaryotic genetic networks in a precise and high-throughput
manner [121,122]. Its application greatly promotes the engineer-
ing and regulation of microbial cell factories for efficient chemical
production. With the emergence of technologies such as the
microbial microdroplet culture system and gel microdroplet-
based high-throughput screening, integrated platforms for
microbial screening, cultivation, and adaptive evolution can be
constructed, promoting the screening and cultivation efficiency
of high-yielding microorganisms [123,124]. Advances in multi-
omics analysis enable the redesigning of more powerful methods
to decipher the code of life, which will directly eliminate the
screening step and provide greater convenience for bio-
manufacturing [125]. Similarly, with the development of
bioinformatics, enzymes can be easily redesigned with excellent
catalytic performance, in order to broaden their application in
biological manufacturing [126]. Furthermore, the intelligent
control of biological processes and the development and applica-
tion of new bioreactors will be an inevitable trend, which will
together promote the high-quality development and upgrading of
the bio-manufacturing industries.
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