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a b s t r a c t

Science is entering a new era—the fifth paradigm—that is being heralded as the main character of knowl-
edge integrating into different fields to intelligence-driven work in the computational community based
on the omnipresence of machine learning systems. Here, we vividly illuminate the nature of the fifth
paradigm by a typical platform case specifically designed for catalytic materials constructed on the
Tianhe-1 supercomputer system, aiming to promote the cultivation of the fifth paradigm in other fields.
This fifth paradigm platform mainly encompasses automatic model construction (raw data extraction),
automatic fingerprint construction (neural network feature selection), and repeated iterations concate-
nated by the interdisciplinary knowledge (‘‘volcano plot”). Along with the dissection is the performance
evaluation of the architecture implemented in iterations. Through the discussion, the intelligence-driven
platform of the fifth paradigm can greatly simplify and improve the extremely cumbersome and chal-
lenging work in the research, and realize the mutual feedback between numerical calculations and
machine learning by compensating for the lack of samples in machine learning and replacing some
numerical calculations caused by insufficient computing resources to accelerate the exploration process.
It remains a challenging of the synergy of interdisciplinary experts and the dramatic rise in demand for
on-the-fly data in data-driven disciplines. We believe that a glimpse of the fifth paradigm platform can
pave the way for its application in other fields.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The earth-shaking changes in human society are inseparable
from the exploration of nature. Such transformative changes have
evolved from focusing on natural observations to gradually being
realized through various tools and cutting-edge methods [1,2]. In
this process, different normative development paradigms covering
the overall and interrelated assumptions of various disciplines
have been formed [3,4]. Each paradigm shift is caused by the result
of changes in the basic assumptions within the ruling theory in a
certain era to meet the subsequent requirements, thereby creating
a new paradigm [5]. The fifth paradigm has now been character-
ized as the intelligence-driven and knowledge-centric research
paradigm following the paradigm shift from the data-intensive
fourth paradigm and is coming on the heels of experimentation,
theory, and computer-simulation paradigm shifts from the first
to the third paradigms [6–10].

In the fifth paradigmworld view, the exploration of the physical
universe is not merely projected by the mathematical probable
realm of intensive data-driven by intelligence, but the entire
research process also involves the undifferentiated conscious pro-
cess of human expert knowledge. Based on these features, the
application of the fifth paradigm can be regarded as a cognitive
system or cognitive application [9,10]. Taking the development of
materials science as an example, the cognitive system of the fifth
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paradigm has evolved from the primitive early paradigm via classic
evolutionary spiral processes, in which materials such as metals
and ceramics were discovered and used in ancient times before
the emergence of Newton’s laws and the advent of the theory of
relativity. Then, the emergence of relativity and quantum mechan-
ics made it possible to simulate the electronic structure of mole-
cules [11–13]. In recent years, the meteoric rise of artificial
intelligence (AI) and machine learning has been transformational
to the research of data-driven materials design [14–18]. Therefore,
by processing relevant innovative technologies into ever-larger
datasets, the hidden properties of new materials, such as metals
and ceramics, can be revealed [19–22]. Since then, cognitive mate-
rials design has taken the relay baton and formed a new ecosystem
through the intellectual collaboration of interdisciplinary experts,
thus greatly accelerating the exploration process.

At present, the fifth paradigm is in its emergent period and still
has a long way to go. Unlike the mature fourth paradigm of data-
intensive science, which has exploded rapidly in multiple applica-
tion domains and has been used in industrial and scientific fields
such as self-driving cars, computer vision, and brain modeling
[23–27], the intelligence-driven, knowledge-centric fifth paradigm
is still in the stage of vigorous development because it needs to
break the boundaries of computational and data-intensive para-
digms to form a new ecosystem by merging and extending existing
technologies. Fortunately, scientists are now on the road to
researching and solving these problems. For example, a Spark–
message passing interface (MPI) integrated platform proposed by
Malitsky et al. [10] can be used to promote the transformation of
the fourth paradigm processing pipeline represented by data-
intensive applications to the fifth paradigm of knowledge-centric
applications. Cognitive computing, such as natural language pro-
cessing, knowledge representation, and automatic reasoning, is
exactly what Zubarev and Pitera [9] suggested that the fifth para-
digm should possess. Furthermore, common aspects among
diverse computing applications can be inferred in the fifth para-
digm by the integration of expert knowledge in different fields
and the intensive data from experimental observation and theoret-
ical simulations, steering the development of complementary solu-
tions to meet emerging and future challenges. Therefore, although
the task of developing the fifth paradigm is arduous, the prospects
of its application are broad.

The strategic transition from data-intensive science toward the
fifth paradigm of composite cognitive computing applications is a
long-term journey with many unknowns. This paper addresses
the fifth paradigm platform by dissecting a framework called gen-
eralized adsorption simulations in Python (GASpy) in catalytic
materialsy [28], aiming to bring together human wisdom, algorithms
in high-performance scientific computing, and deep-learning
approaches for tackling new frontiers of data-driven discovery appli-
cations. The remainder of the paper is organized as follows. Section 2
provides a brief overview and a discussion of the fifth paradigm plat-
form. Section 3 further elaborates on the performance evaluation of
the platform. Finally, Section 4 concludes with a summary.
Fig. 1. The paradigms in science. The evolution of the scientific paradigm has been
developed from the simple 1st paradigm to the complex 5th paradigm. The core of
the 5th paradigm is knowledge-centric and intelligence-driven including the
2. A platform of the fifth paradigm

In the process of materials research, processing the synergy
among experimental data, theoretical models, and machine learn-
ing requires experts in different fields to collaboratively analyze
and process data, that is, huge human wisdom is needed. There-
fore, the intelligence-driven function with knowledge-centric char-
acters that combine each link with versatility and operate in a
platform-like manner is particularly important. Here, we introduce
y https://github.com/ulissigroup/GASpy
successive paradigms from 1st, 2nd, 3rd to 4th marked by the experiments, theory,
simulation, and data-driven process, respectively.
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a platform of the fifth paradigm used in catalytic materials, as
shown in Fig. 1. The platform of the fifth paradigm couples the
third and fourth paradigms, and the latter two include the process
of the first and second paradigms. Among them, the original data
come from experimental observations in the first paradigm and
theoretical guidance in the second paradigm, as well as numerical
calculations in the third paradigm, which then can be intelligence-
driven by machine learning in the fourth paradigm. Combining the
knowledge of the work integration of experimental experts and
theoretical experts, the materials selected by machine learning
can be screened for the second time, and the screening results will
be fed back to the numerical simulation of the third paradigm
again. The results obtained in the third paradigm can still be driven
by the data in the fourth paradigm. The prediction results can then
be filtered again through the knowledge integration of experimen-
tal and theoretical experts and then fed back to the third paradigm
for numerical simulation. These approaches have produced the
fifth paradigm platform, which continuously provides samples
for machine learning by intelligently controlling the calculation
of high-throughput physical models to compensate for the lack
of machine-learning samples. Moreover, by using the knowledge
integrated into different fields, machine learning can be used to
replace part of numerical calculations to solve the problem of the
time-consuming massive model due to insufficient computing
resources.

The comprehensive work of the fifth paradigm platform stems
from the framework designed by Tran and Ulissi [28], for the
bimetallic catalysts research in materials science, which uses
machine learning to accelerate the numerical calculation based
on density functional theory (DFT) that is conducted by a Vienna
ab initio simulation package (VASP) [29], and can intelligently drive
the discovery of high-performance electrocatalysts. The platform
can classify the active sites of each stable low-index surface of
bimetallic crystals, resulting in hundreds and thousands of possible
active sites. At the same time, an alternative model based on arti-
ficial neural networks was used to predict the catalytic activity of
these sites [30]. The discovered sites with high activity can be fur-
ther used for future DFT calculations.
2.1. Automatic model construction and verification

The ability of raw data extraction to be driven by intelligence is
reflected in automatic model construction and verification in the
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fifth paradigm platform. The ever-larger structures with and with-
out the adsorbates can be automatically constructed and verified
by DFT calculations. Since the adsorption of surface species is an
indispensable process in heterogeneous catalysis, constructing
many structures in experiments and DFT calculations can be
time-intensive before determining the catalytic activity by evalu-
ating the adsorption energy. Therefore, automated model construc-
tion and verification are essential to solving the problem.

As shown in Fig. 2, the entire task calculation includes the
preparation process of raw data for standard simulation and then
Fig. 2. The framework of this fifth paradigm case. The intelligence-driven of raw data ext
generation, and calculation. (a) The function of the module is to automatically calculate
(b) This module is used to automatically create high-throughput tasks for the optimiza
modules represent the (c) slab generation and (d) gas generation and structural relaxat
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the numerical calculation. All the raw data used for the theoretical
simulation come from the Material Project website, which can be
realized by the module of gas/bulk generation through the Gener-
ate_Gas/Generate_Bulk function, and they can be processed into a
list form with the items of user information, task location, calcula-
tion status, and other attributes, as well as be stored in the data-
base by the update_atom_collection function with the collection
creation named ‘‘Firework,” ‘‘Atoms,” ‘‘Catalog,” and ‘‘Adsorption.”

The relaxation calculation of the task in Fig. 2(a) can then be
generated by the FireWorks workflow manager for submission in
raction in the framework of GASpy is realized through modules of atomic operation,
the adsorption energy from the gas and slab phase in the fifth paradigm platform.
tion of gas, bulk, and adslab with/without adsorbates through Firework. (c, d) The
ion described in part (a).
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Fig. 2(b). The attribute of the results in FireWorks contains ‘‘gas-
phase optimization” as the list format for gas relaxation, as well
as the ‘‘unit cell optimization” for bulk optimization (bulk_relax-
ation). The attribute ‘‘status” is the calculation status of ‘‘COM-
PLETED,” ‘‘RUNNING,” ‘‘READY,” and other statuses, such as
‘‘FIZZLED,” among others, and is judged by the Find_Bulk/Find_Gas
function to either store the completed calculation process in the
Atoms collection or generate a FireWorks task workflow waiting
for calculation that has not started yet.

If the status determined by Find_Bulk/Find_Gas is ‘‘COM-
PLETED,” on one hand, the calculated result will be stored in the
database. On the other hand, the irreducible crystal face index enu-
meration (realized by the EnumerateDistinctFacets function) can
be carried out by obtaining the optimized crystal structure from
the Atoms collection, followed by crystal slab cutting to generate
slabs (realized by the Generateslabs function) according to the
given Miller index, and then, all adsorption sites on the slab (real-
ized by the GenerateAdsorptionSites function) are found by the
extending primitive units (the function of Atom_operates),
enumerating crystal slabs, and adding adsorbents, as shown in
Figs. 2(c) and (d). For all the adsorption sites on all bulk materials,
the GenerateAllSitesFromBulks function, composed of the Enumer-
ateDistinctFacets function and GenerateAdsorptionSites function,
can enumerate the irreducible Miller index in each slab and gener-
ate all the adsorption sites. All such information is written into the
Catalog collection by the function update_catalog_collection.

Furthermore, for each slab in which the adsorption site has been
found, the adsorbates will be added to the adsorption sites by the
GenerateAdslabs function to generate a ‘‘slab + adsorbate opti-
mization” calculation model (adslab_relaxation); in addition, the
adsorbates can also be eliminated by the GenerateAdslabs function
to generate a ‘‘bare slab optimization” calculation model
(bare_slab_relaxation). These calculation models can then be sub-
mitted for calculation through the FireWorks workflow manager.

When completed, all the calculated results will be stored in the
database collections by the function update_atom_collection. The
Find_Adslab function will determine whether a relaxation task
should be started by finding if there is a corresponding calculated
result in the Atoms collection. For the adsorption energy Ead
Fig. 3. The intelligence-driven of neural network feature selection in the fifth paradigm p
GASpy. (a) The DFT calculation is schematically viewed as an example dataset (N is the n
by a predictive model through the fingerprinting and learning steps process; (c) the lea
results through the scaling relationship, and carrying out further DFT calculation screen

129
calculation, the CalculateAdsorptionEnergy function is used to
extract the gas energy Eadsorbates, adsorbate_slab energy
Eadsorbate_slab, and bare_slab energy Ebare_slab from the Atoms collec-
tion: Ead = Eadsorbate_slab � Ebare_slab � Eadsorbates. The Ead and the
associated initial and final structure information can then be added
to the Adsorption collection by the update_adsorption_collection
function, where the neural network feature selection that will be
discussed next can be extracted as the input of machine learning.
Thus, the process of intelligence-driven model construction and
verification is realized.

2.2. Automated fingerprint construction

The intelligence-driven quality of a neural network feature
selection is reflected in the automatic fingerprint construction in
the fifth paradigm platform. In this framework, the automatically
constructed fingerprint is converted from all the atomic structures
of each material adsorption model into a graphical representation
of the numerical input of a convolutional neural network (CNN)
[31]. In the atomic structure information, three types of features
are considered, as shown in Fig. 3, namely atomic feature (FN1),
neighbor feature (FN2), and connection distance (FN3). The basic
atomic properties in atomic feature characteristics are atomic
number, electronegativity, coordination number/covalent radius,
group, period, the valence electron, first ionization energy, electron
affinity, block, and atomic volume. The basic neighborhood feature
properties are composed of the coordination number between
adjacent atoms near the adsorption site calculated by the Voronoi
polyhedron algorithm [32]. The connection distances are the dis-
tances from the adsorbate to all atoms. The target fingerprint is
the adsorption energy (EadN).

The process of automatic fingerprint construction includes the
process of extracting the final structures and adsorption energy
by DFT calculation, fingerprint generation, and the process of
machine learning, as well as the learning problem stating. The fin-
gerprint constructed in GASpy comes from the original model
without DFT calculation and the DFT calculation result. After DFT
calculation, the initial targets EadN are obtained, as shown in
Fig. 3(a), and then, these DFT relaxation structures are used to
latform. It is realized by the automatic fingerprint construction in the framework of
umber of training examples); (b) the automatic fingerprint construction is achieved
rning problem is stated, followed by abandoning some materials from the learning
ing.
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extract fingerprints {FN1, FN2, FN3} for learning and prediction, as
shown in Fig. 3(b). These features will be used as a cross-
validation dataset in machine learning, and then, the function fwill
be found by the learning process for the next prediction. In the pre-
diction process, the fingerprints are obtained from the initial struc-
ture without any DFT calculation and are used to predict the
adsorption energy of material X, as shown in Fig. 3(c), and then,
the DFT calculation candidates required for the next cycle are
screened through the learning problem. This learning problem is
determined by the famous scaling relationship [33,34], as shown
in Fig. 3. The scaling relationship is the adsorption energy–catalytic
activity (also known as the binding energy–catalytic activity)
curve, like a volcano, which rises first and then declines, also
known as the ‘‘volcano plot.”

The data on adsorption energy and catalytic activity in the
scaling relationship come from the work of many attempts by
theoretical and experimental scientists and are further used by
AI experts to screen the results of machine learning. Hence, the
knowledge-centric collaboration of these interdisciplinary experts
formed this fifth paradigm platform. With the help of the
knowledge-centric module, the predicted materials described in
Fig. 3(c) will be further exploited, which means that some mate-
rials with predicted adsorption energies that do not match the
‘‘volcano plot” will be discarded, and only those predicted mate-
rials that match the ‘‘volcano plot” can be further quantified by
DFT calculation. In the next cycle, the exploited candidates will
be calculated again by DFT, and the dataset will be increased
through exploration. As the types of materials calculated by DFT
increase, the number of datasets also increases. The automated
exploration and exploitation process enables the constantly
updated number of fingerprints.

2.3. The theoretical model for both DFT calculation and machine
learning

In the fifth paradigm platform, the Kohn–Sham theory and a
method that integrates the CNN and Gaussian process (GP)
[31,35–37] are the core theoretical models for both DFT and
machine learning processes. Thus, we briefly introduce the details
of these theoretical models.

2.3.1. The theoretical model for DFT calculation
In the process of numerical calculation, namely the DFT calcu-

lation, the adsorption energy calculation process mainly involves
the optimization process of each slab through the continuous
adjustment of the atomic and electronic structure to achieve
the most energy-stable structural state, which can be achieved
by approximately solving the many-body Schrödinger equation
based on quantum mechanics, and solving the Kohn–Sham equa-
tion DFT is one of the main methods for this approximate
solution.

The Kohn–Sham equation is

E n rð Þ½ � ¼ T n rð Þ½ �þ
Z
v rð Þn rð Þd3rþExc n rð Þ½ �þe2

2

Z Z
n rð Þn r0ð Þ
r� r0j j d3rd3r0

ð1Þ

n rð Þ ¼
XK
i¼1

wi rð Þj j2 ð2Þ

T n rð Þ½ � ¼
X

w�
i rð Þ � �h2

2m
r2

 !
wi rð Þd3r ð3Þ

Exc n rð Þ½ � ¼
Z

n rð Þexc n rð Þ½ �d3r ð4Þ
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Given a system that contains K ions, namely K occupied orbi-
tals in three-dimensional coordinate space r, wi rð Þ refers to the
wave function of ion i with its coordinate in r, while its conjugate
wave function is w�. n(r) is the local electron density, namely the
probability of finding an electron in r within the ion i. E n rð Þ½ � is
the energy of the total system. The �h is the Planck constant, m
is the particle’s mass. exc n rð Þ½ � is the exchange–correlation energy
of a homogeneous electron gas with the local electron density
n(r). Exc n rð Þ½ � refers to the exchange and correlation energies, for
example, the local electron density approximation, which is one
of the exchange–correlation functions, only takes the uniform
electron gas density as a variable, while the generalized gradient
approximation method considers the electron density and the
gradient of the density as the variables. v(r) is the potential
energy of ion i in the position of r. Hence the first item T[n(r)]
in Eq. (1) refers to the kinetic energy, the second itemR
v rð Þn rð Þd3r is the external potential. The last item in Eq. (1)

refers to the Hartree energy (electron–electron repulsion), where
r0 is the coordinate perturbation relative to r, and r represents the
vector of r. r is the vector differential operator, and r2 is the
Laplacian for coordinate derivation.

A self-consistent iterative procedure is described as follows.
Given an initial electron density n(r) obtained from all occupied

orbitals by an arbitrary wave function w0(r):

n rð Þ ¼
Xocc:
i¼1

w�
0 rð Þw0 rð Þ ð5Þ

where occ. refers to the number of occupied orbitals, then

H n0 rð Þ½ �w1 rð Þ ¼ ew1 rð Þ ð6Þ
where H refers to the Hamiltonian for the wave function w with its
energy represented by e, then a new electron density can be
obtained by

n1 rð Þ ¼
Xocc:
i¼1

w�
1 rð Þw1 rð Þ ð7Þ

Then

H n1 rð Þ½ �w2 rð Þ ¼ ew2 rð Þ ð8Þ
. . .

H nn rð Þ½ �wnþ1 rð Þ ¼ ewnþ1 rð Þ ð9Þ
The iterative procedure will exit prematurely when wn+1(r) �

wn(r) reached the minimum convergence standard required,
and the Ead can be calculated by the energy gap between the
Eadsorbate_slab and Ebare_slab + Eadsorbates.

2.3.2. The theoretical model for machine learning
The convolution-fed Gaussian process (CFGP) [37] is a method

that the pooled outputs of the convolutional layers of the net-
work are used to supply features to a GP regressor [38], which
then makes training to produce both mean and predictions on
the adsorption energies. The CNN is applied by Chen et al. [39]
and Xie and Grossman [40] on top of a graph representation of
bulk crystals to predict various properties, and further modified
by Back et al. [31], to collect neighbor information using Voronoi
polyhedral [32] for the application in predicting binding energies
(for example, the adsorption energy) on heterogeneous catalyst
surfaces. In the CFGP method, a complete CNN is first trained to
create the final fixed network’s weights. Then all the pooled out-
puts of the convolutional layers are used as features in a new GP.
The GP would then be trained to use these features to produce
both mean and uncertainty predictions on the adsorption
energies.
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In the CFGP method, the crystal structure is represented by a
crystal graph G, where the atoms and edges representing connec-
tions between atoms in a crystal are encoded by the nodes with
the information of atomic features and neighbor features, and then
a CNN is constructed on the top of the undirected multigraph [40].
Due to the characteristics of periodicity for the crystal graphs, mul-
tiple edges are allowed between the same pair of end nodes, the
number of each node is marked by i, and each node i can be repre-
sented by a feature vector vi. Similarly, each edge (i, j)k can be rep-
resented by the feature vector u i;jð Þk , which corresponds to the kth
bond connecting atom i and atom j. Considering the differences
of interaction between each atom feature and the neighbors, the
first convolutional layers iteratively update the atom feature by

z i;jð Þk ¼ v i � v j � u i;jð Þk i; jð Þk 2 G ð10Þ
where z i;jð Þk is the updated atom feature of atom i and atom j con-
nected by kth bond in crystal graph G. � denotes the concatenation
of atom and bond feature. Then a nonlinear graph convolution func-
tion is defined as follows:

v t
i ¼ v t�1

i þ
X
j;k

r zt�1
i;jð ÞkW

t�1
f þ bt�1

f

� �
� g zt�1

i;jð ÞkW
t�1
s þ bt�1

s

� �
ð11Þ

where � denotes an element-wise multiplication, r is a sigmoid
function, and g is a nonlinear activation function (for example, the
‘‘Leaky ReLu” or ‘‘Softplus”); W and b denote weights and biases
of the neural networks, respectively. The r(�) function is a learned
weight matrix to different interactions between neighbors; f and s
represent the abbreviation of first and self, respectively. After R con-
volutional layers, resulting vectors are then fully connected via K
hidden layers, followed by a linear transformation to scalar values.
Then, the distance filters collected by the connection distances are
applied to exclude contributions of atoms that are too far from
the adsorbates. A mean pooling layer is then used for producing
an overall feature vector vc, which can be represented by a pooling
function,

vc ¼ Pool v ð0Þ
0 ;v ð0Þ

1 ; :::;v ð0Þ
N ; :::;v ðRÞ

N

� �
ð12Þ

The training is performed by the cost function J Ead; Êad

� �
, then

the whole process produces the function f parametrized by weights

W that maps a crystal C to the target property Êad. Using backprop-
agation and stochastic gradient descent (SGD), the following opti-
mization problem can be solved by iteratively updating the
weights with DFT calculated data:

min
W

J Ead; f C;Wð Þð Þ ð13Þ

Here, the penultimate layer of the pooling outputs and the cor-
responding learning weights W rather than the target property Ead
is further extracted out as features in the GP. Hence the descriptor
for nodes is V ¼ v0

0;v0
1; :::;vR

N

� �
and is trained with their corre-

sponding energies (Ead). The prediction function is

f vð Þ � GP P vð Þ; k v ;v 0ð Þ½ � ð14Þ
where P(v) is the constant mean of prior function and k(v, v0) is the
Matern kernel with the length scale trained by the maximum like-
lihood estimation method, v and v0 refer to different feature vector,
respectively. All training and predictions were done with Tesla
P100-PCIE GPU acceleration as implemented in GPyTorch [41].

2.4. Iteration between machine learning and numerical calculations

The intelligence-driven, knowledge-centric nature of the fifth
paradigm platform can be well depicted by the iterations between
machine learning and numerical calculation concatenated by the
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interdisciplinary knowledge of ‘‘volcano plot.” This breaks through
the new material bottleneck of artificial screening research
between machine learning and numerical calculation and realizes
the mutual promotion of scientific experiments and AI, as shown
in Fig. 4(a). The experiments involve the process of fetching the
primitive crystals (or primitive cells) from the Material Project
website to be stored in the database, as well as the information
about ‘‘volcano plot.” Then, the model is automatically recon-
structed to create a bulk of adsorption energy calculation models.
Through numerical calculation (i.e., ab initio DFT calculation), the
optimized model and adsorption energy data are stored in the
database, and fingerprints are extracted from it to train a suitable
machine-learning model. Then, the trained model can use the fin-
gerprint extracted from the bulk materials that have not been the-
oretically calculated to predict their adsorption energy and can be
stored in the database again. Adsorption energy prediction results
are intelligently analyzed through ‘‘volcano plot” to screen models
that require further DFT calculations. Then the entire loop is
①②③④⑤⑥⑦⑧⑨⑩, ④⑤⑥⑦⑧⑨⑩, . . ., ④⑤⑥⑦⑧⑨⑩.

The cycle stops only when all the materials delivered in the
framework are calculated in the machine learning or DFT pro-
cesses. The characteristics of the fifth paradigm platform are well
reflected in these steps. The step ⑤ indicates that the dataset
obtained by numerical calculation supplements the problem of
no dataset and fewer datasets in the machine-learning process.
The step ⑩ indicates that the bulk of numerical calculations can
be abandoned with the help of machine-learning prediction and
the ‘‘volcano plot” to accelerate the entire DFT calculation. More-
over, the results of machine learning can be intelligently analyzed
through the ‘‘volcano plot” that integrates the knowledge of exper-
imental and theoretical scientists (the synergy of interdisciplinary
experts), forming a knowledge-centric fifth paradigm driven by
intelligence.
2.5. Information science tools

The framework of the fifth paradigm is built by using various
Python packages, for example, Python Materials Genomics (pymat-
gen), the automic simulation environment (ASE), FireWorks, Luigi,
and MongoDB [42–45]. Pymatgen is one of the powerful program
packages supported by Python for high-throughput material calcu-
lations. It standardizes the initialization settings required before
running high-throughput calculations and provides process analy-
sis of the data generated by the calculations. The ASE aims to set
up, steer, and analyze atomistic simulations. The function of Fire-
Works is to perform job management in high-throughput comput-
ing workflows running on high-performance computing clusters.
Luigi can be used to build complex batch job pipelines, handle
dependency resolution, and conduct workflow management.
MongoDB is written in the C++ language and is used for real-
time data storage and can jointly meet the JavaScript Object Nota-
tion data-exchange format.

As shown in Fig. 4(b), the data-intensive DFT calculations can
be done on the Tianhe-1 supercomputer using Lustre as the file-
storage system [46]. High-throughput computing jobs can be
realized by running the security-monitoring system deployed
on the cluster. Luigi is used to building the various physical
models through dependency resolution (function dependencies,
running, and output target), which are then configured and cal-
culated by the task management through FireWorks and batched
processing performance through the resource management
Slurm in the supercomputer [47]. These two task-management
systems can automatically correct errors, re-run a single job,
and simultaneously visualize the data through the installed visu-
alization tools.



Fig. 4. The architecture of this fifth paradigm case. (a) The repeated iterations framework includes machine learning and numerical computing in the fifth paradigm platform.
Steps① and② and steps⑦ and⑧ are pulling the experimental results and machine learning results into and out of the database, respectively. Step③ shows the constructed
model prepared for ab initio calculation. Step ④ refers to the storage process of the calculation results, and steps ⑤ and ⑥ are the fingerprints extracted from calculated
results and experimental results, respectively. Step ⑨ refers to an online analysis of machine learning results through ‘‘volcano plot.” Step ⑩ shows the remaining models
after online analysis (screening) which require further numerical calculations. (b) The realization of services and functions are based on the fifth paradigm platform of the
Tianhe-1 supercomputer. Typic components dedicated to services in GASpy contain Storage server, Firework server, and Luigi server. The basic environment in the
supercomputing system is at the software level.
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3. Performance evaluation

To illustrate the performance of the fifth paradigm platform in
catalytic materials screening, we conducted a comparison test to
explain how the machine-learning process accelerates numerical
calculations and how the process of numerical calculations pro-
vides trainable samples for machine-learning iterations. In this
article, we do not use the updated dataset containing the online
DFT calculation process in the learning cycle of each model, but
instead, we use the DFT calculated dataset to extract the corre-
sponding fingerprints for research. Because target prediction is
not directly related to the structure of DFT calculation, it is related
to the fingerprint extracted from the initial structure without any
simulation process. We believe that it will not affect the evaluation
of the platform.

The dataset we prepare to test the cross-validation process
comes from Githuby. Five adsorbates of H, CO, OH, O, and N are con-
sisted, of which themain dataset comes from the first two adsorbates
y https://github.com/ulissigroup/uncertainty_benchmarking
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(21269 and 18437). The method of CFGP is used to create a model to
compare the impact of different machine learning models and the
total number of the dataset on the accuracy of the catalyst screening
through the performance metrics of the correlation coefficient (R2),
and the mean absolute error (MAE), as well as the root-mean-
square error (RMSE). Hyperparameters for the dataset have been
tuned by Back et al. [31] and Tran et al. [37], while the research in this
paper focuses on the performance of different models under the same
method, thus these hyperparameters are still applicable. In our work,
the statement of the learning problem is determined by the famous
‘‘volcano plot” to evaluate the size and activity level of its adsorption
energy. Taking theH adsorbate as an example, the hydrogen evolution
reaction (HER) is a method that uses adsorption energies to
predict catalytic performance. The optimal adsorption energy DEH is
�0.27 eV [48], and the near-optimal range of the ‘‘volcano plot” is
defined as [�0.37 eV, �0.17 eV]. Therefore, if the result of each cycle
reaches a range close to the optimal range (it can also be defined as a
hit in the near-optimal range), then it is selected as a candidate to con-
tinue the DFT calculation before the start of the next cycle.

One realization of the mutual feedback between machine learn-
ing and numerical calculation is that the trainable sample provided



Fig. 5. Performance metrics evaluation of the learning model in the fifth paradigm
platform. (a) The R2 correlation coefficient of the validation and testing process in
the ten models; (b) the linear fit of g for all the models.
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by DFT calculations can supplement machine-learning iterations.
In this platform, once an iteration occurs, the dataset containing
the target features is determined, which means the machine learn-
ing model for the corresponding iteration is determined. In addi-
tion, as a typical case of the fifth paradigm platform, the
performance comparison of each iterative process is derived from
the model comparison under the same data generation conditions.
As shown in Table 1, the entire dataset is first randomly shuffled
and split into ten models, and 10% of the total dataset is taken as
the first model dataset, and then added in increments until 100%
of the total dataset is taken as the tenth model to form the datasets
corresponding to ten models. The dataset of the previous model is
encompassed in the dataset of the next model. For the cross-
validation process, the train/validate/test ratio of each model is
64/16/20, and all the monometallic slabs are added to the training
set, as described by Tran et al. [37]. The cross-validation and its
results are listed in Table 1 and Fig. 5. The violin in Fig. 5(a) refers
to the R2 of the training and testing samples. The greater the differ-
ence between the two values, the slenderer it becomes. Otherwise,
it turns out to be stubby. If the two are the same, it can be a line.
Therefore, the slender violins of models 1, 2, 5, 6, and 9 are indica-
tors of overfitting or underfitting, followed by models 3, 4, 7, and
10, and model 8 performs best. As the dataset increases, the MAE
and RMSE in Table 1 gradually decrease, while the R2 trend of
the validation and testing process in Fig. 5(a) gradually increases,
which indicates that the training model is more accurate than
the previous models. In addition, the hit numbers of H adsorbates
verified by the DFT calculation (NDFT) and machine learning predic-
tion (NML) are also listed, and their trend also increases with the
expansion of the dataset, as shown in Fig. S1 (in Appendix A).
The dataset of model 1 to be hit is set as the baseline. To find the
performance of increasing trainable samples provided by the
numerical calculation of machine-learning iteration, a formula is
defined as follows:

g ¼ Dn � D1

Mn �M1
n 2 N; 1 < n 	 10 ð15Þ

where g represents the increment of NDFT compared with the NML.

Dn and Mn refer to NDFT and NML of model n in the near-optimal
range (namely the hit number). With the expansion of the dataset,
the trend of g becomes larger and approaches 1, indicating that the
hit number NML is slowly approaching the hit number NDFT, which
shows that the larger the training sample of numerical calculation,
the higher the accuracy of the machine-learning model. Further-
more, g fits well in Fig. 5(b), even if some points are not in the linear
range. For example, g of model 4 is very small compared to other
points, which we attribute to the compensation of larger values in
models 5 and 6.
Table 1
Ten models constructed from the entire dataset to evaluate the performance of the fifth p

Model Dataset MAE (eV) RMSE (eV)

1 4728 0.30 0.52
2 9456 0.26 0.49
3 14184 0.24 0.43
4 18912 0.22 0.40
5 23640 0.23 0.44
6 28368 0.22 0.41
7 33096 0.21 0.37
8 37824 0.21 0.38
9 42552 0.22 0.41
10 47290 0.19 0.36

The datasets with multiple adsorbates including H adsorbate are used for train/validati
learning model. The number of surfaces for which low-coverage H adsorption energies in
machine learning prediction, represented by NDFT and NML, respectively. g is used to eva
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The datasets with multiple adsorbates including H adsorbate
are used for train/validation/test, and MAE and RMSE are used to
evaluate the performance of the machine learning model. The
number of surfaces for which low-coverage H adsorption energies
in near-optimal activity in the ‘‘volcano plot” are verified by the
DFT calculation and machine learning prediction, represented by
NDFT and NML, respectively. g is used to evaluate the trend of model
performance changes.

To illustrate the realization of mutual feedback between
machine learning and numerical calculation (e.g., machine learning
solves the time-consuming problem of massive models caused by
insufficient computing resources in numerical calculations, and
the numerical calculation process provides machine learning
aradigm platform.

H-dataset Near-optimal activity g

NDFT NML

2 090 72 60 —
4155 141 144 0.82
6293 208 222 0.84
8384 275 321 0.78
10530 351 375 0.89
12678 417 438 0.91
14756 512 557 0.89
16926 598 622 0.94
19086 658 684 0.94
21269 709 735 0.94

on/test, and MAE and RMSE are used to evaluate the performance of the machine
near-optimal activity in the ‘‘volcano plot” are verified by the DFT calculation and
luate the trend of model performance changes.
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training samples), we prepared three types of prediction cases to
understand the performance of the model trained and validated
as described above. The dataset that we used in the prediction pro-
cess is from the work of Tran and Ulissi [28], which encompassed
22675 H adsorbates DFT results. To be honest, it has covered most
of the 21269 H-dataset mentioned above. However, we believe
that it doesn’t matter of the repeated dataset, because our goal is
to compare the performance of machine learning models gener-
ated on samples of different sizes and find out the acceleration
behavior of machine learning under prediction samples of different
sizes. Moreover, the material structure corresponding to the data-
set to be predicted does not depend on whether simulation calcu-
lations have been performed. Therefore, the decision that this
machine learning prediction dataset is taken from the DFT calcula-
tion dataset will not affect the overall evaluation of the intelligent
driving process.

In terms of the characteristics of the platform, the DFT calcula-
tions performed in each cycle (except the first cycle) are obtained
from the machine-learning results. Three types of methods are
designed for prediction in Table 2: Hit_no_split, No_hit_with_split,
and No_hit_no_split. The No_hit_with_split method refers to the
incremental dataset from 10% to 100% of the total prediction data-
set corresponding to the machine learning model from model 1 to
model 10 formed above. In addition, the entire prediction dataset
can also be kept the same in each cycle, as defined by the
No_hit_no_split method. As for the Hit_no_split method, it means
that the model predicted by machine learning in the optimal range
is discarded in the next model prediction. The process is as follows:
Starting frommodel 1, 4960 models predicted by machine learning
are found to be hits in the entire 22675 models predicted. When
using model 2 to make predictions, 4960 models predicted by
machine learning will be removed from 22675 models predicted,
leaving only 17715 (22675–4960=17715) models. Then, model
2 finds that 860 models predicted by machine learning were hits,
and provides another simplified sample 16855 (17715–860=
16855) for model 3 prediction. The hit and drop will not end until
the predictions of the ten models are completed. Note that NHits

should be equal to NML, but certain materials in the samples must
be excluded from the near-optimal activity process.

Table 2 lists the results of the three methods in the near-
optimal range. In the Hit_no_split method, because the NML pre-
dicted by the previous model is deducted from the prediction sam-
ples of the next model (except for model 1), NDFT, NML, and NHits

from model 1 to model 10 are also reduced accordingly. In the
No_hit_with_split method, as the prediction samples increase, NDFT

and NML expand gradually. In the No_hit_no_split method, NML

fluctuates between 4177 and 4556, while NDFT remains unchanged.
We infer that this is caused by the different accuracies of the
machine-learning model. Meanwhile, the more datasets there are
Table 2
Three types of prediction methods in the near-optimal range and their performance of all

Model Hit_no_split No_hi

Dataset NDFT NML NHits Datas

1 22675 4027 4446 4960 226
2 17715 1707 775 860 453
3 16855 1484 485 539 680
4 16316 1336 374 419 907
5 15897 1264 309 324 1134
6 15573 1194 161 174 1360
7 15399 1157 127 141 1587
8 15258 1118 193 210 1814
9 15048 1058 328 352 2041
10 14696 968 365 383 2267

The dataset refers to the total number of data sets for each model. The NHits is the num
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in the model, the more NML hits there are. From an acceleration
point of view, the Hit_no_split method can ensure that the pre-
dicted reasonable samples will not be predicted again (of course,
provided that it is reasonable), while the other two methods
involve repeated predictions of the predicted samples. Therefore,
ideally, the Hit_no_split method should be able to optimize the
use of all samples that must be predicted to accelerate predictions
and provide a faster machine-learning process for accelerating
numerical calculations.

To evaluate the difference of these methods in accelerating DFT
calculations, we compared the number of NDFT replaced by NML, as
well as the value of NML/NDFT in Fig. 6. The replacement of machine
learning to replace DFT calculations is defined as follows:

RE ¼ Tn �Mn n ¼ 1
Tn �Mn �Mn�1 n 2 N; 1 < n 	 10

�
ð16Þ

where RE and Tn are the number of DFT calculations replaced by
machine learning and all prediction datasets in each model. As
shown in Fig. 6(a), the replacement amount of all models of
Hit_no_split is more than 15000, and the replacement amount from
model 1 to model 10 is slightly reduced, but compared with other
methods, it has the largest NDFT replacement. For the
No_hit_with_split method, the number of replacements increases
linearly from 1800 to the same as other methods in model 10. For
the No_hit_no_split method, except for model 1, the number of
replacements for all the models is approximately 14000, and there
is a slight downward trend. For a large number of replacements of
model 1 in the No_hit_no_split method and the subsequent sudden
decrease, we believe that it is caused by underfitting because model
1 uses a small amount of the dataset to train the model to predict an
ever-larger dataset. In these methods, the Hit_no_split can replace
the maximum NDFT, as we expected.

The reason that we compared the value NML/NDFT in Fig. 6 is that
it can reflect the performance of each model in another view. The
ideal NML/NDFT values should all be equal to 1. In the
No_hit_with_split and No_hit_no_split methods, the NML/NDFT is
slightly increased to close to 1, which indicates that the prediction
behavior of the two methods is similar and is suitable for acceler-
ating DFT calculation. In the Hit_no_split method, except for model
1 set as the baseline, the NML/NDFT value is gradually reduced from
model 2 to model 7 and then gradually increased in the remaining
models, all below 0.5. On one hand, we infer that these smaller val-
ues are caused by changes in the accuracy of the machine-learning
model since smaller datasets lead to underfitting. On the other
hand, as the number of hits of the prediction samples decreases,
the number NML that can hit in the next model gradually decreases.
In addition, for the No_hit_with_split and No_hit_no_split meth-
ods, the number of hits in the previous model will be removed in
models constructed in the fifth paradigm platform.

t_with_split No_hits_no_split

et NDFT NML Dataset NDFT NML

8 389 392 22675 4027 4282
6 774 853 22675 4027 4331
4 1178 1299 22675 4027 4380
2 1573 1722 22675 4027 4293
0 1970 2133 22675 4027 4177
8 2417 2578 22675 4027 4249
6 2846 3058 22675 4027 4413
4 3231 3448 22675 4027 4215
2 3650 3799 22675 4027 4273
5 4027 4556 22675 4027 4556

ber of machine learning predictions that do not exclude certain materials.



Fig. 6. The predictive performance of all models constructed in the fifth paradigm
platform. (a) The number of DFT calculations (NDFT) replaced by the number of
machine learning predictions (NML); (b) the change of NML/NDFT in the near-optimal
range for different models within the prediction process. In the Hit_no_split
method, model 1 is abandoned because of its baseline function to the other models.
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each model, and the NML that can be hit in the next model will
gradually decrease. Since these methods does not involve hit mate-
Fig. 7. The accuracy of the fifth paradigm. The mutual verification process of scientific ex
the unknown world represents the accuracy of the fifth paradigm. The accuracy loss (L) of
calculation of all models is constructed in the fifth paradigm platform.
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rial to be hit again in other iterations, the advantage in terms of
speed then are more obvious.

In addition, since the machine-learning model itself exhibits the
characteristics of gradual reduction of poor fitting during the
expansion process from small cross-validation samples, there will
be a certain degree of accuracy loss in the prediction process from
model 2 to model 10. For example, the predicted machine-learning
dataset should have been hit but not hit, or the dataset should not
be hit but hit, leading to hit data missing or non-hit data increasing
in the dataset of the next model. Moreover, it is also possible that
the sample size is not large enough, resulting in the underfitting or
overfitting of the machine-learning model. Therefore, the
Hit_no_split method has the advantage of replacing more DFT cal-
culations, although the evaluation of its accuracy is not suitable for
the indicators of NML/NDFT. However, this by no means indicates
that the Hit_no_split method is not applicable to the fifth paradigm
platform. We infer that when the prediction model is good enough
and the dataset is large enough, it can reduce the repeated predic-
tion process of data while maintaining the reliability of the results
to accelerate the advantages of machine learning to, in turn, accel-
erate numerical calculations.

Based on the results of the three types of methods, the accuracy
loss of machine learning prediction relative to DFT calculation is
used to evaluate the performance in the fifth paradigm platform.
The accuracy loss can be defined as follows:

L ¼ Mn � Dn

Tn
n 2 N; 1 	 n 	 10 ð17Þ

where L is the accuracy loss. Given that the No_hit_with_split and
No_hit_no_split methods have relatively suitable predictive perfor-
mance, we only consider the accuracy loss of these two methods. As
shown in Fig. 7, for No_hit_with_split, although model 1 has the
lowest accuracy loss, the dataset is small, and we exclude it
and consider that model 9 has the lowest accuracy loss. For the
No_hit_no_split method, model 5 has the lowest accuracy loss.
Therefore, we believe that, as the dataset expands, machine learn-
ing will continue to replace DFT calculations, and there will be vary-
ing degrees of accuracy loss. The smallest accuracy-loss point is
most conducive to this type of machine learning to accelerate the
DFT calculation process.
periment, theoretical calculation, and machine learning in the process of exploring
No_hit_no_split and No_hit_with_split methods between machine learning and DFT
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We believe that the accuracy loss of this fifth paradigm case is
related to the size of the sample involving machine learning, theo-
retical calculations, and experiments fed back from the ‘‘volcano
plot,” which is exactly the knowledge-centric characteristic for
the fifth paradigm in terms of precision. As shown in Fig. 7, the
accurate fifth paradigm should make machine learning, theoretical
calculation, and scientific experiment unique to the result of the
unknown world exploration. Although this standard is very
demanding, it is always the ultimate goal for exploring the
unknown world.
4. Discussion of the fifth paradigm platform

Automated model construction, automated fingerprint extrac-
tion, as well as intelligent coupling of intensive data with DFT cal-
culation and machine learning by the ‘‘volcano plot” compose the
architecture of the fifth paradigm platform. In the intelligence-
driven framework, the workload of traditional modeling construc-
tion and calculation is reduced effectively by making full use of the
current development of various information tools and methods,
greatly simplifying and improving the extremely cumbersome
and challenging work in materials research.

One of the challenges this framework faces is the limited appli-
cation areas implemented in the fifth paradigm. This is because the
most typical feature of the fifth paradigm is intelligence-driven,
which entails the synergy of interdisciplinary experts to carry
out in-depth research. For example, in the materials science intro-
duced in this work, it is necessary to intelligently drive the efficient
synergy of experimental experts and theoretical experts, which can
be achieved by filtering the machine-learning results through the
‘‘volcano plot.” For some high-throughput interdisciplinary work,
before designing a similar fifth paradigm framework, it is best to
first consider appropriate methods of quantifying the collaborative
work between these experts in different application fields.

In addition, due to the lack of an ever-larger dataset, there must
be an insufficient number of samples during the expansion process
of the dataset, resulting in poor generalization ability of the train-
ing model. Therefore, more datasets must be accumulated to
achieve a high-precision machine-learning process. Fortunately,
for this fifth paradigm platform, the Open Catalyst project, jointly
researched and developed by Facebook AI Research and the
Department of Chemical Engineering of Carnegie Mellon Univer-
sity, has realized the Open Catalyst 2020 [49] dataset containing
a dramatic rise in DFT calculation results, and it is still constantly
updated online. Finally, the accuracy of the fifth paradigm utilized
to realize the exploration of the unknown world is affected by
machine learning, theoretical calculation, and scientific experi-
ment. The high-precision fifth paradigm tends to explore the same
objective thing from the unknown world through the three kinds
of cooperation within the scope of its reasonable discovery, deriva-
tion, and judgment. We believe that the dissection of this fifth
paradigm case can greatly promote the development of the fifth
paradigm of materials science in the future.
5. Conclusions

In this work, we discuss the scientific explanation of the newest
paradigm emerging due to the prosperity engendered by AI. Then,
a detailed discussion is carried out using a fifth paradigm platform
as a typical case, which conforms to a specific and well-defined
framework capable of promoting the development of materials
science. The interdisciplinary knowledge and intelligence-driven
characteristics are the keys to the fifth paradigm, which can be
addressed in the work encompassing automatic model construc-
tion and verification, automated fingerprint construction, as well
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as the theoretical model and repeated iteration between machine
learning and theoretical calculations. These informatics tools
needed for architecting the framework are also discussed in detail.
Finally, tests and comparisons are conducted to show how the
interaction between AI and numerical calculation in the frame-
work of this fifth paradigm case meaningfully promotes each other
to reduce numerical calculation and create more trainable samples
in the mutual feedback process. The curation of the numerical cal-
culation and machine-learning models, as well as the techniques,
makes the fifth paradigm platform more interpretable.

With the expansion of the dataset, on one hand, the more
machine learning replaces the DFT calculation, the faster the
screening of materials will be. On the other hand, the more consis-
tent the number of candidate materials predicted by the final
machine learning is with the number of candidate materials calcu-
lated by DFT, the more accurate the prediction by machine learning
is. Under the conditions of satisfying these two judgments,
machine learning will continue to replace DFT calculation with dif-
ferent degrees of accuracy loss, and the smallest accuracy loss
model is most conducive to machine learning to accelerate the
DFT calculation process. This minimum accuracy loss discrimina-
tion represents the precise exploration premise of materials
research under the scientific fifth paradigm, which requires consis-
tent results when machine learning, theoretical calculation, and
scientific experiment are jointly exploring the unknown world.

Although this article provides a scientific explanation for the
fifth paradigm platform represented in the fields of catalytic mate-
rials, it also acknowledges that much more needs to be discussed.
The overall development of the fifth paradigm across various fields
still faces challenges in terms of the synergy between interdisci-
plinary experts and the dramatic rise in demand for data in data-
driven disciplines. Despite these challenges, an ongoing endeavor
in tandemwith all the relevant parties can be envisioned to deepen
the combination of AI technology and traditional disciplines, so
that each simulation and calculation link has higher intelligence
and automation characteristics, and finally runs as a platform to
improve the efficiency of traditional scientific computing and pro-
mote the development of materials research in a more intelligent
and high-precision direction. We believe that a glimpse of the fifth
paradigm platform can pave the way for the application of the fifth
paradigm in other fields.
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