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Fig. 1. Fully autonomous straddle carriers operating in the port of
Australia.
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This paper presents a brief overview of the progress that has
been made in autonomous robots during the past few years. It pre-
sents the fundamental problems that have been addressed to
enable the successful deployment of robotic automation in indus-
trial environments. It also describes some of the challenges facing
future autonomous applications in more complex scenarios, such
as urban vehicle automation.

Initial implementations of robotics manipulators began in the
late 1950s, with applications in automotive manufacturing.
Hydraulic systems were then replaced by electrical motors,
making the robots more agile and controllable. The robots were
initially used in very constrained and repetitive tasks, such as
welding. They were controlled based on internal kinematics, with
no sensing information about the current state of the environ-
ment. The first innovation in this area started in the early
1980s, with the introduction of visual feedback provided by
cameras. Several different sensor modalities were also added to
monitor and interact with the environment, such as lasers and
force sensors. Nevertheless, most of the work with manipulators
was performed within a fixed area of operation. In such cases,
there was almost no uncertainty regarding the location of the
robot, and the external environment was very well modeled
and understood.

A very different scenario occurs when a robot is required to
move around within its environment. Two new capabilities
become essential to address this problem: positioning and percep-
tion. A robot moving within a working area needs to localize—that
is, to know its position and orientation with respect to a navigation
frame. In addition, it needs to have a very good representation of
the area in proximity in order to move safely without colliding
with other objects.

The first successful demonstrations of mapping and localization
were implemented in indoor environments, and mostly used ultra-
sonic sensor information to obtain high-definition maps [1,2]. This
process consists of building a navigation map by moving a robot
within the environment under manual operation, and then using
this map to localize the robot when working autonomously. The
next breakthrough demonstrated that these two processes could
be done simultaneously, and thereby initiated a very active area
of research known as simultaneous localization and mapping
(SLAM) [3,4]. These new algorithms enabled the concurrent
building of a map and localization while exploring a new area,
and facilitated the deployment of large indoor autonomous
applications.
The first major impact of autonomous technology in outdoor
environments was in field robotics, which involves the automation
of large machines in areas such as stevedoring (Fig. 1), mining, and
defense [5].

The successful deployment of this technology in field robotics
required the assurance that a machine would always be under con-
trol, even if some of its components failed. This required the devel-
opment of new sensing technology based on a variety of sensor
modalities such as radar and laser. These concepts were essential
for the development of high-integrity navigation systems [6,7].
Such systems, as discussed in Ref. [5], include sensors that are
based on different physical principles in order to ensure that no
two sensor modalities can fail at the same time. Similar principles
were implemented in other areas, such as mining, utilizing the
concept of an ‘‘island of automation”—that is, an area where only
autonomous systems are allowed to operate. This fundamental
constraint was essential for the successful development and
deployment of autonomous systems in many industrial operations.

Machine learning techniques have started to play a significant
role in field robotic automation. During the last five years, we have
seen a significant number of very successful demonstrations using
a variety of supervised and unsupervised machine learning algo-
rithms. Some of the more impressive applications are in agriculture
(Fig. 2). It is common now to train a vision-based system to classify
and differentiate crops from weeds, monitor the health of a crop,
and monitor soil conditions in an automatic and remote manner.
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Fig. 2. Applications of intelligent robots in agriculture.
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The interaction of autonomous robots with people and other
manually operated machines is a much more complex problem.
One of the hottest areas in R&D is the operation of autonomous
vehicles (AVs) in urban environments (Fig. 3). An AV must be
able to interact with a dynamically changing world in a very
predictable and safe manner. Its perception system is responsible
for providing complete situational awareness around the
vehicle under all possible environmental conditions, including
the position of all fixed and mobile objects in proximity to the
vehicle. Furthermore, safe AV operation requires the estimation
of the intentions of other drivers and of pedestrians in order
to be able to negotiate future maneuvers and plan accordingly
[8,9].

Most vehicle manufacturers and research institutions are cur-
rently investing significant resources into introducing this technol-
ogy within the next few years. This has accelerated progress in all
areas related to autonomy, including the development of new algo-
rithms and the design of low-cost sensing capabilities and compu-
tational power.

Significant progress has been made in perception by utilizing a
variety of sensors such as lasers, radar, cameras, and ultrasonic
devices. Each sensor modality has advantages and disadvantages,
and any robust deployment must use a combination of sensor
types in order to achieve integrity.

All sensor modalities will have failure modes, which may be due
to various circumstances such as weather or other environmental
conditions. It is well known that although cameras can obtain very
good texture information for classification purposes, they do not
always show a satisfactory performance under heavy rain, snow,
Fig. 3. Autonomous connected electrical vehicles
or heavy dust. Lasers can provide very good range information
and are more robust to rain. Nevertheless, they can have catas-
trophic faults under steam, heavy dust, or smoke. Radar is well
known to be robust to all weather-related environmental condi-
tions; however, it lacks the resolution and discrimination capabil-
ities of other perception modalities. Fundamental and applied
research efforts are currently directed at fusing different sensor
modalities in order to guarantee integrity under all possible work-
ing conditions.

Another area that has seen enormous progress is deep learning.
The availability of large computational and memory resources has
enabled the training of high-dimensional models with a large
amount of data. The fundamental advantage of deep learning is
that there is no need to engineer features to train the models.
One very impressive application of this technology is automatic
labeling in vision sensing, which is usually referred to as semantic
labeling (Fig. 4). These methods use a large amount of data to train
a convolutional neural network to automatically classify every
pixel in an image to correspond to a class within a possible set.
One of the advantages of these networks is that they can be
retrained for use in other scenarios with relatively low computa-
tional effort. This is usually known as ‘‘transfer of learning”
[10,11]. These techniques are now part of the most sophisticated
advanced driver-assistance systems (ADASs) and autonomous road
vehicle implementations.

Fundamental challenges still exist in vehicle automation, such
as positioning, perception integrity, interaction with manually
driven vehicles and with pedestrians, and safe validation of AV
technology.
operating on a university of Sydney campus.



Fig. 4. Original Images (left), semantic labeling of objects (top right), and the vehicle-inferred path (bottom right).
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(1) Positioning: AVs require a level of positioning accuracy that
can only be achieved by using pre-made high-definition maps. The
process of building and maintaining these maps is very challeng-
ing, since maps must be robust and must be able to scale for
availability all around the country or the world.

(2) High-integrity perception: Current implementation can
only operate under reasonably good weather and environmental
conditions. Typical sensors used for perception, such as vision
and laser sensors, could have catastrophic faults when operating
under dense fog, snow, or dust.

(3) Learning how to drive: Driving is a multi-agent game in
which all participants interact and collaborate in order to achieve
their individual goals. This capability is still very difficult for robot,
since it requires inferring the intentions of all interacting partici-
pants and possessing the necessary negotiation skills in order to
make decisions in a safe and efficient manner.

(4) Validation of AVs: The current state of AV technology has
demonstrated that it is possible to deploy AVs for operation in
urban road environments. It is much more difficult to demonstrate
that AVs can operate safely under all possible traffic scenarios. A
comprehensive work in this area is presented in Ref. [12], where
the authors acknowledge that there will always be accidents
involving AVs; however, those authors propose the identification
of a set of normal vehicle behaviors to ensure that an AV will never
be the cause of an accident.

This work presented a brief overview of the evolution of robotics
automation. The last few years have seen the advent of very large
computational and memory resources, new sensing capabilities,
and significant progress in machine learning. It is very clear that
these technologies are enabling a whole new set of autonomous
applications that will be part of our lives in the very near future.

The current issue of this journal presents robotic automation
applications in road vehicles and future bio-syncretic robots.
It also includes papers addressing actuators and intelligent
manufacturing.
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