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The Ganga River, the longest river in India, is stressed by extreme anthropogenic activity and climate
change, particularly in the Varanasi region. Anticipated climate changes and an expanding populace
are expected to further impede the efficient use of water. In this study, hydrological modeling was
applied to Soil and Water Assessment Tool (SWAT) modeling in the Ganga catchment, over a region of
15 621.612 km2 in the southern part of Uttar Pradesh. The primary goals of this study are: ① To test
the execution and applicability of the SWAT model in anticipating runoff and sediment yield; and
② to compare and determine the best calibration algorithm among three popular algorithms—sequential
uncertainty fitting version 2 (SUFI-2), the generalized likelihood uncertainty estimation (GLUE), and par-
allel solution (ParaSol). The input data used in the SWAT were the Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM), Landsat-8 satellite imagery, soil data, and daily meteorological
data. The watershed of the study area was delineated into 46 sub-watersheds, and a land use/land cover
(LULC) map and soil map were used to create hydrological response units (HRUs). Models utilizing SUFI-
2, GLUE, and ParaSol methods were constructed, and these algorithms were compared based on five cat-
egories: their objective functions, the concepts used, their performances, the values of P-factors, and the
values of R-factors. As a result, it was observed that SUFI-2 is a better performer than the other two algo-
rithms for use in calibrating Indian watersheds, as this method requires fewer runs for a computational
model and yields the best results among the three algorithms. ParaSol is the worst performer among the
three algorithms. After calibrating using SUFI-2, five parameters including the effective channel hydraulic
conductivity (CH_K2), the universal soil-loss equation (USLE) support parameter (USLE_P), Manning’s n
value for the main channel (CH_N2), the surface runoff lag time (SURLAG), and the available water capac-
ity of the soil layer (SOL_AWC) were observed to be the most sensitive parameters for modeling the pre-
sent watershed. It was also found that the maximum runoff occurred in sub-watershed number 40
(SW#40), while the maximum sediment yield was 50 t�a�1 for SW#36, which comprised barren land.
The average evapotranspiration for the basin was 411.55 mm�a�1. The calibrated model can be utilized
in future to facilitate investigation of the impacts of LULC, climate change, and soil erosion.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In terms of the land and climate characteristics of the southern
Uttar Pradesh Basin, tendencies toward sudden floods and soil
erosion present some of the most extreme issues. Because of soil
erosion, the soil of thiswatershed is continuously degrading and los-
ing nutrients, thus affecting agriculture in the state. The severity of
the issue is intensified in arid and semi-arid lands, where short-
duration intense rainfall andunsustainable landuse have quickened
soil losses by erosion. Detailed and accurate information regarding
soil erosion and surface water discharge is helpful for watershed
managers to better manage and conserve natural resources such
as soil and water, and to promote sustainable development. At pre-
sent, various procedures are used for hydrological modeling, utiliz-
ing precipitation, land use, and soil characteristics information.
Among these are the Water Evaluation and Planning (WEAP) sys-
tem, Agricultural Non-Point Source Pollution (AGNPS) system, Areal
Nonpoint Source Watershed Environment Response Simulation
(ANSWERS), Soil and Water Assessment Tool (SWAT), and Water
Erosion Prediction Project (WEPP). Among these strategies, the
SWAT is a process-based hydrological model developed by the
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United States Department of Agriculture (USDA) Agricultural
Research Service (ARS) [1]. Additional algorithms have been devel-
oped tobest estimate theparametersused inhydrologicalmodeling.

The SWAT is widely used for hydrological and sediment yield
modeling. It is a time-consistent and spatially appropriate test
model that was developed to assist watershed managers in antici-
pating the effects of land use management activities on runoff, soil
erosion, and agricultural chemical yields [2]. Specialists have effec-
tively used the SWAT for runoff assessments [3,4], water quality
modeling [5,6], hydrological and river basin modeling [7–9], sedi-
ment yield modeling [10–13], and the management of erosion-
prone areas [1,14]. Psomas et al. [15] utilized the SWAT and WEAP
to develop water efficiency measures in Greece.

To modify the elements that influence SWAT yields, calibration
using observed values and evaluated estimations of runoff, evapo-
transpiration, and other SWAT outputs is necessary. Validation is
a way that compares SWAT results with the observed data, without
modifying the values of the influencing factors. Calibration of
various parameters is necessary for proper hydrological modeling.
There are 26 parameters distinguished for runoff, more than 30
for soil disintegration, and 41 for water quality, all of which can
be utilized for calibration. The calibration of such a circulated
parameterized watershed model entails some significant issues
that require careful attention on the part of investigators,
particularly in regard to uncertainty [9]. Qiu and Wang [5]
performed validation and calibration for the periods 1997–2002
and 2003–2008, respectively, for the hydrological andwater quality
evaluation of central New Jersey. Vigiak et al. [16] performed
calibration and validation for hillslope erosion modeling of the
Danube Basin.

Earlier researchers applied deterministic approaches such as
the trial and error method for uncertainty analysis, calibration,
and validation. When using such methods, it is necessary to con-
tinue to alter the parameters until a sensible match is achieved
between the simulation and observations. However, these
approaches are now outdated; scientists have developed many
stochastic algorithms for calibration, validation, and uncertainty
analysis. Some of the widely used algorithms for calibration are
sequential uncertainty fitting version 2 (SUFI-2), parallel solution
(ParaSol), particle swarm optimization (PSO), generalized likeli-
hood uncertainty estimation (GLUE), artificial neural network
(ANN), and Markov chain Monte Carlo (MCMC).

Vilaysane et al. [17] used the SUFI-2 technique to calibrate the
values for hydrological stream flow modeling of the Xedone River
Basin. Yesuf et al. [12] utilized SUFI-2 and SWAT-CUP for sediment
yield modeling in Ethiopia; they reported that SUFI-2 utilized a
computerized advancement system that was equipped to perform
affectability, alignment, approval, and vulnerability examinations
with enhanced model run time proficiency. Ercan et al. [18] used
cloud techniques for SWAT model calibration. Talebizadeh et al.
[19] used ANN and the SWAT for sediment load modeling and
uncertainty analysis. Calibration and validation have also been
done using genetic algorithms and Bayesian model averaging
[20]. Tuo et al. [21] applied the SUFI-2 algorithm for uncertainty
analysis when evaluating precipitation input for the SWAT model.
Noori and Kalin [4] coupled ANN with the SWAT and SWAT-CUP
for daily streamflow prediction. Similarly, runoff [3] and sediment
fluxes modeling [13] have been done using the SUFI-2 algorithm.
An approximation of the SWAT model can also be constructed
using ANN and a support vector machine (SVM) [22]. Out of all
these algorithms, it is difficult to determine the best algorithm
for the calibration of SWAT outputs. Therefore, in the present
study, we consider the three calibration-uncertainty analysis algo-
rithms of GLUE, SUFI-2, and ParaSol.

In the present study, SWAT 2012 was used for hydrological
modeling. For calibration, the three widely used algorithms of
GLUE, SUFI-2, and ParaSol were applied and compared in order
to determine the best calibration technique. In this investigation,
the ArcSWAT Interface was associated with the Ganga River Basin
for depicting and organizing sub-watersheds in order to gauge and
model runoff, sediment yield, and evapotranspiration. The model
required a digital elevation model (DEM), a land use/land cover
(LULC) map, and a soil map as inputs for watershed delineation
and hydrological response unit (HRU) analysis. Daily meteorologi-
cal data from the four stations of Balia, Varanasi, Babatpur, and
Gazipur were utilized from 1996 to 2015. The major target of this
examination was to delineate the watersheds, divide the study
area into sub-watersheds, determine the number of streams, and
estimate their order, and then to establish information regarding
the outlet points and reservoirs available in the watershed in order
to accurately divide it into HRUs having similar but unique land
types, soil types, and elevation properties. These units permit sim-
pler modeling. Finally, after providing the meteorological data, the
SWAT was run to estimate runoff, sediment yield, and evapotran-
spiration for each HRU and sub-watershed. The model was then
calibrated for the observed data from the years 2004–2009 at the
sub-watershed and watershed level using the SUFI-2, GLUE, and
ParaSol algorithms. By analyzing the results, assumptions, and lim-
itations of these calibration techniques, the best technique among
the three was determined based on five categories, as described in
Section 4.2. The model calibrated using the best technique was
then validated for the period of 2009–2015. Finally, the estimated
and corrected results of the hydrological parameters were calcu-
lated, and modeling was conducted.

2. Study area

The study area for which modeling was performed in the pre-
sent study is part of the Ganga River Basin that occupies the south-
ern of Uttar Pradesh State of India. The length of the river in this
watershed is about 50 km, and the total area of the watershed is
15 621.612 km2. The area lies between latitude 82�1052.43900 E to
83�55010.63 E and longitude 26�207.84200 N to 24�22053.03400 N.
The major stations covered by the study area are the Varanasi,
Balia, Babatpur, Gazipur, Mirzapur, and Chandauli Districts. The
mainstream flow of the study area lies in the Varanasi District.
The average rainfall in this area is 941.2 mm, with the maximum
rainfall occurring in July, August, and September and the minimum
rainfall occurring in June and October. From November to May, the
study area receives negligible rainfall. This part of the basin is bar-
ren, and urban lands cover more than 50% of the basin.

3. Data

Elevation data, LULC data, soil data, and daily meteorological
data were the prerequisites for the present modeling. The Shuttle
Radar Topology Mission (SRTM) DEM, with a resolution of
90 m � 90 m, was used for elevation data. For the LULC map, image
classification was performed using satellite imagery from Landsat
8. For meteorological input, data for the daily rainfall, temperature,
solar radiation, and pressure for 20 years were used. Detailed infor-
mation on the data used and on their locations, periods, and the
organizations from which they were procured is given in Table 1.

4. Methods and procedures

4.1. Soil and Water Assessment Tool (SWAT)

In this study, SWAT 2012 was utilized for hydrological model-
ing. ArcGIS 10 software was used along with its extension, ArcS-
WAT. The catchment was split into various sub-catchments,



Table 1
Details of the raw data used for modeling.

Data Location Period of record Organization Primary use

STRM DEM 82�1052.43900 E 26�207.84200 N to 83�55010.6300 E 24�22053.03400 N — USGS Watershed delineation
Satellite imagery

(Landsat 8)
82�1052.43900 E 26�207.84200 N to 83�55010.6300 E 24�22053.03400 N November 2014 USGS To create LULC map and model input

Soil data Uttar Pradesh — NBSSLUP To create soil map and model input
Climate data Varanasi, Balia, Babatpur, and Gazipur 1996–2015 IMD Pune Model input

IMD: Indian Meteorological Department; USGS: United States Geological Survey; NBSSLUP: the National Bureau of Soil Survey and Land Use Planning.
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which were then further categorized into HRUs. Each HRU
comprises a unique combination of soil characteristics, elevation,
and LULC. The water budget was the primary impetus behind all
forms, and the HRU was the unit used to estimate the hydrologic
parameters. These procedures were separated into two stages:
① A land stage, wherein the SWAT mimics the catchment
loadings of the stream, residue, and supplements from each HRU,
which are then locale-weighted to the sub-basin level; and ② an
in-stream stage, wherein the model tracks the course of the
catchment loadings from each sub-basin throughout the channel
organization.

A solitary plant-improvement model was utilized as a part of
the SWAT in order to reenact extraordinary land-cover types
including expansive information yield. This development model
was utilized to evaluate the expulsion of water and supplements
from the root zone, transpiration, and biomass generation.
Planting, reaping, culturing passes, and supplement and pesticide
applications could be recreated for each trimming framework
with particular dates [23]. Once the data for each HRU were
determined at the sub-basin level, the runoff, sediments, nutrients,
and pesticides were routed through channels, ponds, reservoirs,
and wetlands to the watershed outlet.

The SWAT theoretical documentation version 2009 by Neitsch
et al. [24] can be used as a reference to learn more about SWAT
modeling.
4.2. Sequential uncertainty fitting version 2 (SUFI-2)

The SUFI-2 technique is a stochastic algorithmic approach that
is most frequently used by scientists to evaluate uncertainty. In
this algorithm, the extent to which all uncertainties are repre-
sented is assessed by a parameter referred to as the P-factor. This
parameter is the percentage of estimated information sectioned
by the 95% prediction uncertainty, which is also called the
95PPU. Another parameter evaluating the quality of the calibration
is the R-factor, which is the standard thickness of the 95PPU band
separated by the standard deviation of the predetermined informa-
tion. Hypothetically, the estimation of the P-factor ranges from 0 to
100%, while that of the R-factor ranges from 0 without limit. A P-
factor of 1 and an R-factor of 0 signify a recreation that precisely
compares with the predetermined information. In this study,
SWAT-CUP was the software used to consolidate the SWAT 2012
simulated values with the observed values. Using these values
and the SUFI-2 algorithm, the uncertainty analysis and calibration
were performed.

A short well-ordered depiction of the SUFI-2 algorithm is as
follows:

Step 1: The objective function (gi) is characterized. Next, the
minimum and maximum absolute ranges (hj) of the physically
important parameters being optimized are identified.

Step 2: A sensitivity analysis for each of the parameters is com-
pleted; afterward, the initial uncertainty ranges are relegated to
the parameters for the first round of Latin hypercube testing.

Step 3: Latin hypercube sampling is performed, and the corre-
sponding objective functions are assessed. The sensitivity matrix
Jij and the parameter covariance grid C are calculated by the
following:

Jij ¼
Dgi

Dhj
; i ¼ 1; 2; . . . ;Cm; j ¼ 1; 2; . . . ; p ð1Þ

where Cm is the number of rows in the sensitivity matrix, and p is
the number of parameters to be estimated.

C ¼ S2gðJTJÞ
�1 ð2Þ

where S2g is the variance of the objective function values resulting
from the m model runs.

Step 4: The 95PPU is then calculated, followed by the P-factor
and R-factor.

4.3. Generalized likelihood uncertainty estimation (GLUE)

The GLUE was applied in order to consider the non-uniqueness
of the parameter sets during the estimation of model parameters in
over-parameterized models. This method is simple; for vastly over-
parameterized models, GLUE accepts that there is no unusual
arrangement of parameters that optimizes the decency-of-fit crite-
ria. In GLUE, all sources of parameter uncertainties are considered
in the parameter uncertainty. The probability esteem, which is
related to a parameter set, mirrors all sources of error and the
impacts of covariation of parameter esteem on the model execu-
tion. A GLUE examination comprises the following three stages:

(1) After defining the ‘‘generalized likelihood measure,” Lð/Þ,
many parameter sets are randomly sampled from the earlier dis-
semination; each parameter set is assessed as either ‘‘behavioral”
or ‘‘non-behavioral” through a comparison of the ‘‘likelihood mea-
sure” with a selected threshold value.

(2) Each behavioral parameter set is given a ‘‘likelihood weight”,
Wi, according to the following:

Wi ¼ Lð/iÞ
�Xn

k¼1

Lð/kÞ ð3Þ

where n is the number of behavioral parameter sets.
(3) Finally, the prediction uncertainty is depicted as a forecast

quintile from the aggregate dissemination acknowledged from
the weighted behavioral parameter sets. The most frequently uti-
lized likelihood measure for GLUE is the Nash-Sutcliffe coefficient
of efficiency (NSE).

4.4. Parallel solution (ParaSol)

ParaSol depends on an adjustment to the worldwide optimiza-
tion calculation, SCE-UA. The motivation is to utilize the simulation
performed during optimization to derive prediction uncertainty.
The simulations accumulated by SCE-UA are extremely important,
as the calculation tests over the whole parameter space with an
emphasis on arrangements close to the ideal/optima.

The process of ParaSol is as follows:
(1) After streamlining the application of the changed SCE-UA

(the arbitrariness of the SCE-UA calculation is expanded to enhance



Fig. 1. LULC map of the study area.

Fig. 2. Soil map of the study area.
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the scope of the parameter space), the reproductions performed
are partitioned into ‘‘great” recreations and ‘‘not great” recreations
using a limit estimation of the target work, as in GLUE. This yields
‘‘great” parameter sets and ‘‘not great” parameter sets.

(2) A prediction of uncertainty is built by similarly weighing
every ‘‘great” recreation. The target work utilized as a part of
ParaSol is the sum of the squares of the residuals (SSQ):

SSQ ¼
Xn
i¼1

ðyi;Mð/Þ � yi;SÞ2 ð4Þ

where n is the number of measured variables, yi;Mð/Þ; and simulated
variables, yi,S.

Brief descriptions of the SWAT-CUP, SUFI-2, GLUE, and ParaSol
model components are found in the SWAT-CUP user manual by
Abbaspour [25] and in the SWAT model use, calibration, and vali-
dation document by Arnold et al. [26].

4.5. Data pre-processing

The input data required for SWAT modeling are DEM, a LULC
map, a soil map, and meteorological data. First, the raw data pro-
cured from the different organizations described in Table 1 were
pre-processed. The different DEMs downloaded from the United
StatesGeological Survey (USGS)weremosaickedusing themosaick-
ing tool in ArcGIS 10. In the mosaicking tool, multiple images are
joined into one unit. To obtain a LULC map, the satellite imagery
was processed. Image classificationwas performed using the ERDAS
Imagine tool. Any satellite image comprises multiple bands in the
electromagnetic spectrum. All the bands together form an image;
however, this provides only spectral information. Converting the
spectral information into LULC information classes or into any other
particular information class requires image classification. Informa-
tion classes are categorical classes, in which a pixel may represent
a water area, forested area, or urban area. Based on a spectral curve
or the spectrum of the pixel, classification is possible. There are two
types of automated image classification techniques: supervised and
unsupervised digital image classification. In supervised digital
image classification, the software is guided by researchers or image
interpreters with expertise in specifying the land cover classes of
interest as a signature dataset, which is then automatically used
by the software to create spectral classes. In unsupervised digital
image classification, an interpreter only specifies the number of
classes required to classify the image; the system then classifies
the image without researchers’ expertise. The LULC map of this
region (Fig. 1)was extracted by performing supervised classification
on the optical satellite imagery. A signature dataset was created for
six classes—water (WATR), forested areas (FRSD), urban areas
(URBN), range (RNGE), agriculture (AGRL), and barren land
(BARR)—using the visual interpretation keys; approximately 150
training datasetswere used for a single class. The classification algo-
rithm that was used was maximum likelihood. Most of the water-
shed comprises urban or barren land.

To construct the soilmap shown in Fig. 2, soil datawere collected
using National Bureau of Soil Survey and Land Utilisation Planning
(NBSS & LUP) data and laboratory test results. The soil was divided
into five layers. A user soil database describing each soil class was
constructed for use in HRU analysis, as shown in Table 2. A climate
database was created using Indian Meteorological Department
(IMD) data; the latitude and longitude were given along with the
rainfall, temperature, and solar radiation data in separate text files.

4.6. SWAT modeling

The watershed is defined to include both the catchment and the
drainage channel within a single morphometric divide. It is a nat-
urally occurring hydrologic unit that is covered by natural bound-
aries and characterized by similar conditions such as physical
characteristics, the topology of the land surface, and climatic con-
ditions. Watershed delineation implies the drawing of lines on a
map to indicate a watershed’s limits; these are commonly drawn
on maps utilizing data from DEM or contour maps.

Watershed delineation is the first step of SWAT modeling. DEM
is used as the input in this step. Along with the slope of the water-
shed, the streams and outlet points are generated. According to the
outlet points selected by the researcher, the watershed is delin-
eated. The user can also provide data related to the reservoir and
predefined streams as input. In this project, the watershed was
delineated by dividing the watershed into 46 sub-watersheds.
Fig. 3 shows the delineated watershed, streams, and monitoring
points of the study area. The next step is the HRU analysis. In
HRU analysis, the watershed is divided into units having similar
but unique land types, soil types, and elevation properties. In this
step, using the soil map, user soil table, LULC map, and slope
map (Fig. 4) of the study area, the watershed was divided into
160 HRUs. In the next step, the climate database was provided to
the model. Finally, the SWAT model was run to yield the runoff,
evapotranspiration, and sediment yields of each sub-watershed
and HRU for 20 years.
4.7. Calibration and validation

As noted earlier, calibration is the modification of the elements
influencing the SWAT yields, and is assisted by observed values
and evaluated estimations of runoff, evapotranspiration, and other



Table 2
Details of user soil table.

SNAM (Soil properties) Soil classes

Rc1-2a-194 Re59-2b-244 Vc7-3a-279 Xh14-1a-300 Xh14-ab-303

General S5ID IND194 IND244 IND279 IND300 IND303
HYDGRP (hydrological soil group)a D C D C C
TEXTUREb L L CL SCL SL

Layer 1 SOL_Z1 (depth of soil in mm) 300 300 300 300 300
SOL_BD1 (bulk density in gm�mL�1) 1.5079 1.5583 1.5043 1.5847 1.5952
SOL_AWC1 (available water capacity in mm H2O per mm soil) 0.1441 0.1192 0.1327 0.0984 0.0893
SOL_K1 (hydraulic conductivity in mm�h�1) 4.1604 9.7772 4.0563 12.9805 30.1535
SOL_CBN1 (carbon content in percentage of soil weight) 0.6% 0.8% 0.8% 0.7% 0.6%
CLAY1 (percentage of clay) 28% 22% 30% 21% 13%
SILT1 (percentage of silt) 43% 31% 34% 21% 23%
SAND1 (percentage of sand) 30% 47% 36% 58% 64%
SOL_ALB1 (soil albedo)c 0.3971 0.346 0.346 0.3707 0.3971
USLE_K1 (USLE erodibility factor) 0.1719 0.163 0.1589 0.1569 0.1687

Layer 2 SOL_BD2 (bulk density in gm�mL�1) 1.535 1.5561 1.4814 1.5972 1.6026
SOL_AWC2 (available water capacity n mm H2O per mm soil) 0.1202 0.1158 0.1387 0.0957 0.0914
SOL_K2 (hydraulic conductivity in mm�h�1) 3.6147 10.3717 2.4191 12.8314 21.7927
SOL_CBN2 (carbon content in percentage of soil weight) 0.5% 0.9% 0.4% 0.5% 0.5%
CLAY2 (percentage of clay) 31% 22% 34% 21% 16%
SILT2 (percentage of silt) 26% 28% 36% 20% 22%
SAND2 (percentage of sand) 43% 49% 29% 59% 62%
SOL_ALB2 (soil albedo) 0.4254 0.323 0.4557 0.4254 0.4254
USLE_K2 (USLE erodibility factor) 0.1561 0.158 0.1647 0.1583 0.1658

a Hydrological soil groups are of four types: Type A, having an infiltration rate of 7.6–11.4 mm�h�1; Type B, having an infiltration rate of 3.8–7.6 mm�h�1; Type C, having an
infiltration rate of 1.3–3.8 mm�h�1; and Type D, having infiltration rate of 0–1.3 mm�h�1.

b Texture L: loamy; CL: clay loamy; SCL: silty clay loamy; SL: silty loamy.
c Soil ALB is the soil albedo: ratio of amount of solar radiation reflected by a body to the amount incident upon it.

Fig. 3. Watershed delineation of the study area.

Fig. 4. Slope map of the study area.

Table 3
Parameters used for calibration, with their absolute ranges.

Parameters Description Minimum Maximum

GW_DELAY Groundwater delay (d) 0 500
OV_N Manning’s n value for overland flow 0.01 30
SOL_K Saturated hydraulic conductivity 0 2000
ALPHA_BF Base flow alpha factor 0 1
CH_N2 Manning’s n value for the main

channel
�0.01 0.3

CH_K2 Effective hydraulic conductivity in
main channel alluvium

�0.01 500

CN2 SCS runoff curve number f 35 98
USLE_P USLE equation support parameter 0 1
SOL_AWC Available water capacity of the soil

layer
0 1

SURLAG Surface runoff lag time 0.05 24
USLE_K USLE equation soil erodibility (K)

factor
0 0.65

SCS: soil conservation service; USLE: universal soil loss equation.
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SWAT outputs. Validation compares the SWAT results with the
observed data without modifying the values of the influencing fac-
tors. Calibration is necessary for proper hydrological modeling.
There are 34 parameters distinguished for runoff and soil erosion
that can be utilized for calibration. Table 3 describes the
parameters used in the present study for calibration, along with
their minimum and maximum absolute SWAT values. In this step,
SWAT-CUP was used as an interface between the SWAT and cali-
bration algorithms to perform the uncertainty analysis, calibration,
and validation of the hydrological modeling outputs. The TxtInOut
folder of the SWAT model was imported into the SWAT-CUP soft-
ware for input. The observed values of surface water discharge of
the Varanasi sub-watershed were calculated using the acoustic
Doppler current profiler (ACDP) for the years 1996–2015. These
values were used for comparison and calibration. The input files
of the SWAT-CUP model were updated as necessary. Fig. 5 shows
the detailed procedure as a flowchart.
4.8. Methodology and criteria for comparison

Different challenges appear when comparing calibration
techniques used for soil and water modeling. The most important



Fig. 5. Calibration flowchart.
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concerns that we addressed while comparing these techniques are
as follows:

(1) Most algorithms are diverse in their theories. Subjective
decisions must be made in their formulation concerning prior
parameter distributions and objective functions. In this study, we
addressed this issue by choosing objective functions for each algo-
rithm as they would be utilized in hydrological applications. Fun-
damentally, this leads to various objective functions for various
algorithms. In discussing the outcomes, we indicate whether an
issue is caused by the theoretical definition of a specific algorithm
or by the choice of the function.

(2) Every algorithm has its own fundamental concept and
objective functions, which impairs comparison. To solve this prob-
lem, the value of each function behind every algorithm was calcu-
lated to permit fair comparison. Similarly, we utilized the
measures of computational proficiency and an appraisal of the con-
ceptual basis criteria for better comparison.

(3) It is fairly obvious that each algorithm yields different
results. To address this problem, we considered the results of all
the algorithms for all possible criteria; we then outlined them all
so that the reader can draw his or her own particular conclusions.

(4) The outcomes of the comparison innately depend upon the
applications. To solve this issue, the specific results of each appli-
cation of the algorithm are separated from the generic ones.

The followingfive categorieswere used for the comparison of the
three (SUFI-2, GLUE, and ParaSol) calibration algorithms: The cali-
bration techniques use several parameters for calibration. For each
technique, the best estimate and uncertainty range of these param-
eters differ, so the first comparison is based on the best estimate, the
minimum andmaximum uncertainty ranges of each algorithm, and
the parameter correlation. The various algorithms use various
objective functions, so the second comparison is based on the values
of NSE, R 2, and other objective functions. The third comparison was
based on the values of the R-factor, which is the averagewidth of the
band divided by the standard deviation of the corresponding mea-
sured variable, and on the P-factor, which is the percentage of data
bracketed by the 95PPU band of each algorithm. The fourth compar-
ison was based on theoretical concepts, testability, and the fulfill-
ment of statistical assumptions. The final comparison was based
on the difficulty of implementation.
5. Results

5.1. SWAT output

In the present study, the SWAT model was run for a watershed
located in the northern part of India in the state of Uttar Pradesh.
The SWAT divided the watershed into 46 sub-watersheds and
760 HRUs for easy and accurate modeling. It was estimated that
the average annual precipitation of the basin is 941.24 mm, snow-
fall is 0 mm, snowmelt is 0 m, surface runoff (SUR Q) is 358.56 mm,
lateral discharge is 1.39 mm, and groundwater discharge for shal-
low and deep aquifers is 138.69 and 8.53 mm, respectively. The
average value for total aquifer recharge is 180.65 mm, the total
water yield of the basin is 507.17 mm, and evapotranspiration is
411.7 mm. A pictorial representation of the SWAT output regarding
runoff and evapotranspiration is shown in Fig. 6. The results indi-
cated that, on average, more than 45% of the total precipitated
water is lost in runoff and evapotranspiration. The average
monthly values of all the parameters of the basin—that is, rainfall,
snowfall, surface runoff, lateral runoff, water yield, and evapotran-
spiration—are given in Table 4. It was also estimated that there are
an average of 52.11 annual water-stress days and 10.54
temperature-stress days.

During watershed image classification, the watershed was clas-
sified into six classes according to the land use. It was found that
most of the watershed is urban or barren land. Table 5 gives the



Fig. 6. Pictorial representation of the SWAT output.

Table 4
Average monthly values of the parameters for the watershed.

Month Rainfall (mm) Snowfall (mm) SUR Q (mm) Lateral Q (mm) Water yield (mm) ET (mm) SED (t�hm�2) PET (mm)

Jan 16.30 0 3.11 0.03 4.29 13.75 0.08 84.90
Feb 15.60 0 2.07 0.03 2.77 16.56 0.05 94.98
Mar 4.09 0 0.40 0.02 0.91 42.98 0.01 186.43
Apr 5.14 0 0.38 0.02 0.67 27.98 0.01 211.08
May 13.41 0 0.97 0.02 1.17 16.06 0.01 214.76
Jun 107.36 0 22.41 0.05 19.80 34.62 0.29 190.49
Jul 255.36 0 103.17 0.21 103.50 68.92 1.18 134.00
Aug 274.62 0 115.85 0.32 136.90 72.31 2.11 122.88
Sep 201.68 0 94.99 0.34 145.24 59.26 2.14 123.88
Oct 28.68 0 9.61 0.20 56.11 32.92 0.19 151.62
Nov 8.89 0 2.33 0.10 25.71 15.84 0.07 121.75
Dec 10.00 0 3.26 0.06 10.09 10.35 0.06 90.63

Q: discharge or runoff; ET: evapotranspiration; PET: potential evapotranspiration; SED: sediment yield.

Table 5
Average annual values of the parameters for each land type.

LULC type Area (km2) CN AWC (mm) USLE_LS Precipitation (mm) SUR Q (mm) GW Q (mm) ET (mm) SED (t�hm�2)

WATR 414.83 92.00 104.91 0.67 938.86 0 0 1374.49 0
URBN 5683.33 83.21 102.13 0.18 917.93 422.43 84.19 370.26 3.45
RNGE 5233.71 80.43 103.27 0.26 936.31 294.35 200.57 393.79 4.71
AGRL 1071.01 84.28 105.53 0.48 959.55 360.58 164.57 388.93 11.92
BARR 1268.02 92.10 106.89 0.31 947.23 556.68 33.29 327.52 29.27
FRSD 1948.26 80.64 118.56 0.98 1008.96 291.12 226.44 442.55 1.38

AWC: available water content capacity; CN: curve number; GW Q: groundwater discharge; USLE_LS: universal soil loss equation slope length factor.
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annual average values of the parameters according to each land use
type. It was also concluded from the results that for urban land,
surface runoff may be excessive, and less than 22% of the water
yield is base flow. For range and agricultural land, surface runoff
may be excessive. For barren land, the sediment yield may be
overly high, more than half of the precipitation is lost to runoff,
the surface runoff is the highest, and less than 22% of the water
yield is base flow.
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Sediment loss from the landscape is dependent upon many fac-
tors. Sediment overestimation in SWAT usually arises from inade-
quate biomass production; this often occurs with specific land
uses. SWAT also modifies sediments to consider in-stream deposi-
tion and the erosion of stream banks and channels. Often, little or
no measured data are available to differentiate between upland
sediment and in-stream sediment changes. Streams may be either
net sources or sinks for sediment. In-stream sediment modification
is impacted by the physical channel characteristics (i.e., slope,
width, depth, channel cover, and substrate characteristics) and
the quantity of sediment and flow from upstream. As a result, it
was estimated that the maximum sediment yield is higher than
50 t�hm�2 in at least one HRU. The highest value is from HRU
#473, sub-basin #36, which is barren land with Vc7-3a-2 soil. It
was also estimated that the total sediment load of the basin is
6.198 t�hm�2.

A pictorial representation of the SWAT output regarding sedi-
ment yield is shown in Fig. 7. It was concluded from the results
that the average upland sediment yield is 6.2 Mg�hm�2 and the
maximum upland sediment yield is 827.43 Mg�hm�2.
5.2. Comparison output

Table 6 summarizes the comparison of the calibration algo-
rithms. The comparison was performed over the five categories
described earlier, with the following results:

Category 1: According to this category, GLUE is better than
SUFI-2 and ParaSol, as GLUE has the widest range of uncertainties.
Thus, most of the intervals considered by SUFI-2 and ParaSol are
covered by GLUE. In this category, SUFI-2 is the second best.

Category 2: According to this category, ParaSol is the best for its
objective function, that is, NSE, as it is based on a global optimiza-
tion algorithm. As shown by the table values, it can be concluded
that SUFI-2 and GLUE have similar values, so they hold the same
position.
Fig. 7. SWAT output fo
Category 3: According to this category, ParaSol is worse than
the other two algorithms because of its narrow prediction uncer-
tainty bands. From the other values, it can be concluded that
SUFI-2 works better than GLUE.

Category 4: According to this category, all sources of uncertain-
ties are considered by SUFI-2 and GLUE, whereas ParaSol only con-
siders parameter uncertainty and ignores all other uncertainties.
On a conceptual basis, SUFI-2 is better than GLUE and ParaSol
because it gives the most efficient results.

Category 5: According to this category, GLUE is the best, as it is
the easiest of the three algorithms.

From the comparison and description given in Section 5.2, we
can conclude that the performances of SUFI-2 and GLUE are very
similar. However, by looking at the 95PPU plot (Figs. 8 and 9),
we concluded that SUFI-2 performs better than GLUE, as the results
are more efficient and the algorithm considers uncertainties better.
SUFI-2 can be run with the smallest number of parameters. GLUE
works with a large number of simulations, but cannot provide bet-
ter results than SUFI-2. The main drawback of GLUE is the length of
the computational techniques because of its random sampling
strategy. Thus, SUFI-2 is considered to be the best for this study,
and further analysis of sediment yield calibration and validation
was done using only the SUFI-2 algorithm.

5.3. SUFI-2 output

In the present analysis, the model was calibrated using the sen-
sitive parameters given in Table 3. As indicated by the execution
evaluation criteria of the model, which is suggested for a month-
to-month time cycle, five parameters were determined to be the
most sensitive parameters for modeling the present watershed.
These parameters are the effective channel hydraulic conductivity
(CH_K2), universal soil-loss equation (USLE), support parameter
(USLE_P), Manning’s n value for the main channel (CH_N2), surface
runoff lag time (SURLAG), and available water capacity of the soil
layer (SOL_AWC). The behavioral threshold for calibration was
r sediment yield.



Table 6
Comparison of calibration algorithms, according to the criteria given in Section 4.8.

Category Criteria GLUE Parasol SUFI-2

1a GW_DELAY 160.08 (9.52, 279.29) 108.70 (92.23, 114.20) 191.07 (100.04, 300.00)
SOL_K 0.16 (0.36, 0.78) 0.37 (0.41, 0.34) 0.10 (0.58, 0.34)
ALPHA_BF 0.12 (0.06, 0.97) 0.12 (0.08, 0.13) 0.51 (0.23, 0.74)
OV_N 0.05 (0.00, 0.20) 0.11 (0.07, 0.10) 0.06 (0.00, 0.11)
CH_N2 0.30 (�0.01, 0.30) 0.20 (0, 0.30) 0.20 (0, 0.30)
CH_K2 78.19 (6.01, 144.82) 35.70 (27.72, 37.67) 83.95 (69.42, 150.00)
CN2 17.68 (28.85, 8.90) 21.17 (20.93, 20.08) 27.00 (29.00, 7.23)
USLE_P 0.40 (0, 1) 0.50 (0, 1) 0.30 (0, 1)
SOL_AWC 0.11 (0.01, 0.15) 0.07 (0.08, 0.08) 0.07 (0.05, 0.15)
SURLAG 2.00 (0.05, 24) 3.20 (2.00, 20) 2.00 (0.05, 23)
USLE_K 0.17 (0.01, 0.64) 0.19 (0.07, 0.60) 0.17 (0.01, 0.63)
Parameter correlations Yes Yes No

2b NSE 0.76 0.77 0.76
R2 0.77 0.66 0.78
bR2 0.63 0.62 0.62

3 P-factor
R-factor

0.76
0.65

0.18
0.08

0.79
1.51

4c Source of parameter uncertainty All sources Parameter only All sources
Conceptual basis of parameter
uncertainty

i. Normalization of generalized
likelihood measure
ii. Primitive random sampling strategy

i. Least squares (probability
theory)
ii. SCE-UA based sampling
strategy

i Generalized objective function
ii. Latin hypercube sampling; restriction of
sampling intervals

Testability of statistical
assumption

No Yes Yes

5 Difficulty of implementation Very easy Easy Easy

a Best estimate values of parameters and their minimum and maximum range.
b Values of objective functions.
c Uncertainty described by parameter uncertainty.

Fig. 8. Plot of estimated and observed values after calibration using GLUE.

Fig. 9. Plot of estimated and observed values after calibration using SUFI-2.

Fig. 10. Plot of estimated and observed values of sediment yield (mm).
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set to 0.500000. The period from 2000 to 2004 was considered to
be a warm-up period. Data from the period 2004–2009 were used
for calibration, and the data period 2009–2015 was used for valida-
tion. The results of the calibration and validation performed by the
SUFI-2 algorithm are shown in Figs. 9 and 10. Fig. 9 shows a plot of
the estimated and observed values of discharge and Fig. 10 shows a
plot of the estimated and observed values of sediment data after
calibration. Estimated outputs were compared at the same outlet
point in sub-basin #27.

Table 7 lists the evaluation coefficients of the simulated
monthly sediment yield of different objective functions for the
study watershed. The assessment coefficients of the simulated
month-to-month sediment yield of various target functions for
the study area are recorded in Table 6. The P-factor, or the percent-
age of observations bracketed by the 95PPU, was 0.69. The R-factor
was 0.763. The outcomes demonstrated that SUFI-2 sectioned a
lower percentage of the observed sediment yield. Similarly,
R2 = 0.78, NSE = 0.76, percent bias (PBIAS) = 2.4 � 102, and the
observation standard deviation ratio (RSR) = 0.49 are not strong
indicators of the goodness of fit; however, they are within ade-
quate evaluation ratings. The outcomes demonstrate that the
SWAT can simulate the hydrological attributes of the Indian water-
shed extremely well. Hence, this model can be used for further
hydrological studies in the basin.



Table 7
Objective function values.

Method P-factor R-factor R2 NSE bR2 PBIAS KGE RSR

SUFI-2 0.69 0.763 0.78 0.76 0.621 2.4 � 102 0.82 0.49

KGE: Kling-Gupta efficiency.
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6. Conclusion

In this study, the hydrological modeling of the Ganga water-
shed was performed successfully using the SWAT. A significant
outcome was obtained using 20 years of daily meteorological data
from 1996 to 2015. The period from 2000 to 2004 was used as a
warm-up period, and the results of the period from 2004 to 2015
were divided into two halves. The first half, from 2004 to 2009,
was used for calibration, and the second half, from 2009 to
2015, was used for validation. The calibration was done using
the three algorithms of GLUE, SUFI-2, and ParaSol; the results
were used to compare these algorithms. The comparison showed
that of the three calibration algorithms, SUFI-2 performed the
best, as it accounted better for uncertainties and required the
smallest number of computational parameters for calibration.
The main limitations of SUFI-2 are as follows: ① Without good
knowledge of the parameters’ effects on the stream flow and soil
erosion, running SUFI-2 may become difficult for the user; and
② SUFI-2 does not consider parameter correlations, which
decreases its ability.

The results obtained after calibration and validation using SUFI-
2 were the monthly outcome values of R2 = 0.78 and NSE = 0.76 for
the calibration period. We obtained the values of R2 = 0.71 and
NSE = 0.756 for the validation time frame. The affectability exami-
nation of the SWAT on the sub-watershed delineation and HRU
definition thresholds demonstrated that the stream was more sen-
sitive to the HRU definition thresholds than to the sub-watershed
discretization. The outcomes in this watershed were 760 HRUs
throughout the basin. The 95PPU sections corresponded very well
with the observed information in the calibration and validation
time frames. The P-factor and R-factor calculated with SUFI-2
yielded excellent outcomes, by bracketing value higher than 75%
of the observed data. SUFI-2 calculation was therefore considered
to be a viable strategy, although it requires extra emphasis and
an additional requirement for changing parameter ranges. Despite
information uncertainty, the SWAT model creates excellent repro-
duction consequences for monthly time steps, which are helpful
for water resource management in this watershed.
Acknowledgements

We would like to thank the Indian Meteorological Department
(IMD) in Pune India for providing the daily meteorological data,
and the National Bureau of Soil Survey and Land Utilization
Planning in Nagpur India for providing the soil data.
Compliance with ethics guidelines

Nikita Shivhare, Prabhat Kumar Singh Dikshit, and Shyam Bihari
Dwivedi declare that they have no conflict of interest or financial
conflicts to disclose.
References

[1] Kumar S, Mishra A, Raghuwanshi NS. Identification of critical erosion
watersheds for control management in data scarce condition using the
SWAT model. J Hydrol Eng 2015;20(6):C4014008.

[2] Khalid K, Ali MF, Rahman NFA, Mispan MR, Haron SH, Othman Z, et al.
Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia Eng
2016;162:441–7.

[3] Salimi ET, Nohegar A, Malekian A, Hosseini M, Holisaz A. Runoff simulation
using SWAT model and SUFI-2 algorithm (case study: Shafaroud watershed,
Guilan Province, Iran). Caspian J Environ Sci 2016;14:69–80.

[4] Noori N, Kalin L. Coupling SWAT and ANN models for enhanced daily
streamflow prediction. J Hydrol 2016;533:141–51.

[5] Qiu Z, Wang L. Hydrological and water quality assessment in a suburban
watershed with mixed land uses using the SWAT model. J Hydrol Eng 2014;19
(4):816–27.

[6] Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA. Hydrological and
water quality modeling in a medium-sized basin using the Soil and Water
Assessment Tool (SWAT). Desalination 2010;250(1):274–86.

[7] Omani N, Tajrishy M, Abrishamchi A. Modeling of a river basin using SWAT
model and SUFI-2. Proceedings of the 4th International SWAT Conference,
2007.

[8] Fukunaga DC, Cecílio RA, Zanetti SS, Oliveira LT, Caiado MAC. Application of the
SWAT hydrologic model to a tropical watershed at Brazil. Catena
2015;125:206–13.

[9] Shi P, Hou Y, Xie Y, Chen C, Chen X, Li Q, et al. Application of a SWAT model for
hydrological modeling in the Xixian Watershed, China. J Hydrol Eng 2013;18
(11):1522–9.

[10] Briak H, Moussadek R, Aboumaria K, Mrabet R. Assessing sediment yield in
Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. Int
Soil Water Conserv Res 2016;4(3):177–85.

[11] Jeong J, Kannan N, Arnold JG, Glick R, Gosselink L, Srinivasan R, et al. Modeling
sedimentation-filtration basins for urban watersheds using soil and water
assessment tool. J Environ Eng 2013;139(6):838–48.

[12] Yesuf HM, Assen M, Alamirew T, Melesse AM. Modeling of sediment yield in
Maybar gauged watershed using SWAT, northeast Ethiopia. Catena
2015;127:191–205.

[13] Vigiak O, Malagó A, Bouraoui F, Vanmaercke M, Obreja F, Poesen J, et al.
Modelling sediment fluxes in the Danube River Basin with SWAT. Sci Total
Environ 2017;599–600:992–1012.

[14] Sardar B, Singh AK, Raghuwanshi NS, Chatterjee C. Hydrological modeling to
identify and manage critical erosion-prone areas for improving reservoir life:
case study of Barakar Basin. J Hydrol Eng 2014;19(1):196–204.

[15] Psomas A, Panagopoulos Y, Konsta D, Mimikou M. Designing water efficiency
measures in a catchment in Greece using WEAP and SWAT models. Procedia
Eng 2016;162:269–76.

[16] Vigiak O, Malagó A, Bouraoui F, Vanmaercke M, Poesen J. Adapting SWAT
hillslope erosion model to predict sediment concentrations and yields in large
basins. Sci Total Environ 2015;538:855–75.

[17] Vilaysane B, Takara K, Luo P, Akkharath I, Duan W. Hydrological stream flow
modelling for calibration and uncertainty analysis using SWAT model in the
Xedone River Basin, Lao PDR. Procedia Environ Sci 2015;28:380–90.

[18] Ercan MB, Goodall JL, Castronova AM, Humphrey M, Beekwilder N. Calibration
of SWAT models using the cloud. Environ Model Softw 2014;62:188–96.

[19] Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M. Uncertainty
analysis in sediment load modeling using ANN and SWAT Model. Water
Resour Manage 2010;24(9):1747–61.

[20] Zhang X, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the
SWAT model using Genetic Algorithms and Bayesian Model Averaging. J
Hydrol 2009;374(3–4):307–17.

[21] Tuo Y, Duan Z, Disse M, Chiogna G. Evaluation of precipitation input for SWAT
modeling in Alpine catchment: a case study in the Adige River Basin (Italy). Sci
Total Environ 2016;573:66–82.

[22] Zhang X, Srinivasan R, Van LiewM. Approximating SWATmodel using artificial
neural network and support vector machine 1. J Am Water Resour Assoc
2009;45(2):460–74.

[23] Romagnoli M, Portapila M, Rigalli A, Maydana G, Burgués M, García CM.
Assessment of the SWATmodel to simulate a watershed with limited available
data in the Pampas region. Argentina. Sci Total Environ 2017;596–
597:437–50.

[24] Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil and water assessment tool.
Theoretical documentation version 2009. Report. College Station: Texas Water
Resources Institute, Texas A&M University System; 2011. Report No.:406.

[25] Abbaspour KC. Calibration and uncertainty programs—a user manual.
Proceedings of the SWAT-CUP Workshop. Dübendorf: Swiss Federal Institute
of Aquatic Science and Technology (Eawag); 2014.

[26] Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R,
et al. SWAT: model use, calibration, and validation. Trans ASABE
2012;55:1491–508.

http://refhub.elsevier.com/S2095-8099(17)30658-6/h0005
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0005
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0005
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0010
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0010
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0010
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0015
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0015
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0015
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0020
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0020
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0025
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0025
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0025
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0030
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0030
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0030
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0035
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0035
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0035
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0040
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0040
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0040
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0045
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0045
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0045
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0050
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0050
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0050
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0055
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0055
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0055
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0060
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0060
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0060
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0065
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0065
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0065
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0070
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0070
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0070
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0075
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0075
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0075
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0080
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0080
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0080
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0085
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0085
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0085
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0090
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0090
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0095
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0095
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0095
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0100
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0100
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0100
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0105
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0105
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0105
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0110
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0110
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0110
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0115
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0115
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0115
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0115
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0120
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0120
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0120
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0125
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0125
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0125
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0130
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0130
http://refhub.elsevier.com/S2095-8099(17)30658-6/h0130

	A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed
	1 Introduction
	2 Study area
	3 Data
	4 Methods and procedures
	4.1 Soil and Water Assessment Tool (SWAT)
	4.2 Sequential uncertainty fitting version 2 (SUFI-2)
	4.3 Generalized likelihood uncertainty estimation (GLUE)
	4.4 Parallel solution (ParaSol)
	4.5 Data pre-processing
	4.6 SWAT modeling
	4.7 Calibration and validation
	4.8 Methodology and criteria for comparison

	5 Results
	5.1 SWAT output
	5.2 Comparison output
	5.3 SUFI-2 output

	6 Conclusion
	ack19
	Acknowledgements
	Compliance with ethics guidelines
	References


