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It is essential to utilize deep-learning algorithms based on big data for the implementation of the new
generation of artificial intelligence. Effective utilization of deep learning relies considerably on the num-
ber of labeled samples, which restricts the application of deep learning in an environment with a small
sample size. In this paper, we propose an approach based on a generative adversarial network (GAN)
combined with a deep neural network (DNN). First, the original samples were divided into a training
set and a test set. The GAN was trained with the training set to generate synthetic sample data, which
enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the
classifier was tested with the test set, and the effectiveness of the approach for multi-classification with
a small sample size was validated by the indicators. As an empirical case, the approach was then applied
to identify the stages of cancers with a small labeled sample size. The experimental results verified that
the proposed approach achieved a greater accuracy than traditional methods. This research was an
attempt to transform the classical statistical machine-learning classification method based on original
samples into a deep-learning classification method based on data augmentation. The use of this approach
will contribute to an expansion of application scenarios for the new generation of artificial intelligence
based on deep learning, and to an increase in application effectiveness. This research is also expected
to contribute to the comprehensive promotion of new-generation artificial intelligence.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and background

The concept of artificial intelligence was first proposed in 1956
[1]; since then, profound changes have taken place in the develop-
ment of artificial intelligence based on information technology and
an increased data scale [2]. These changes are particularly out-
standing in certain fields, such as the mobile Internet, big data,
supercomputing, sensor networks, and brain science. The Develop-
ment Plan for a Next-Generation Artificial Intelligence [3], which
was issued by the State Council of China in July 2017, describes
artificial intelligence as moving into a new stage. The plan
outlines how the new generation of artificial intelligence will be
characterized by deep learning, cross-border fusion, human–
machine collaboration, crowd intelligence, and autonomous intel-
ligence. The foundation of these technologies is big-data-driven
methodology [4]. Pan [2] has also described big data intelligence
as the basic method and important development direction of the
new generation of artificial intelligence.

Deep learning, which was developed by Hinton and Salakhutdi-
nov [5], has become the key technology of big data intelligence [6]
and has led to major breakthroughs, such as intelligent driving [7],
smart cities [8], voice recognition [9], and information retrieval
[10]. Compared with classical statistical machine-learning
methodologies, deep learning, as the core of the big data intelli-
gence method, has a relatively complex model structure. The size
and quality of a dataset can significantly affect a deep-learning
classifier. Large-scale annotated sample data are required in order
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to fully optimize the model parameters and obtain superior perfor-
mance [11]. In other words, under the existing framework, the per-
formance of a deep-learning model is determined by the scale and
quality of the annotated data; this situation also influences the
development of the new generation of artificial intelligence. Never-
theless, it is both difficult and expensive to obtain labeled sample
data in many real-world applications. For example, a series of
long-term and expensive experiments [12] is required to generate
a training sample in biology, which can then be used to train the
classifiers with high accuracy. In the field of computerized numer-
ical control (CNC) machine tools, it takes decades to accumulate
annotation datasets of a sufficient size, while data on certain speci-
fic cases of CNC are rare [13]. Meanwhile, the implementation of
big data methods in CNC can be even more difficult in China, where
CNC is still in the developmental stage. In strategic intelligence
analysis, the labeling of samples requires close and seamless coop-
eration among outstanding experts from multiple fields [14–20];
thus, it is extremely expensive to obtain sufficiently sized datasets.
In addition to the high cost, the data features are complicated and
high dimensionality exists. In this situation, the dimensionality of
the original feature space is approximately equal to or greater than
the number of samples, which is known as ‘‘the small sample size
problem” [21]. With a small sample size, deep learning is restricted
to good generalization performance. Furthermore, the develop-
ment of a new generation of artificial intelligence is limited
because there are considerably more fields with a small sample
size than fields with a big data environment [22–26].

In previous studies, several oversampling methods have been
proposed in order to address the insufficiency of the data scale.
The main advantage of these methods is that they are self-
sufficient. In the early stage, the training set can be enlarged by
duplicating the training examples of the minority class if the exam-
ples of different classes are imbalanced, or by creating a new data-
set by adding artificial noises to the existing ones [27]. In 2002,
Chawla et al. [28] proposed a classic oversampling method, called
the synthetic minority oversampling technique (SMOTE), which
involves the creation of a synthetic minority class dataset. On the
basis of the SMOTE method, Han et al. [29] proposed two novel
minority oversampling techniques, which consider neighboring
instances and only the minority instances near the borderline,
respectively. In 2008, He et al. [30] proposed the adaptive synthetic
sampling approach, which utilizes a weighted distribution for
minority class instances according to the level of difficulty in learn-
ing. The majority weighted minority oversampling technique was
then proposed in 2014 by Barua et al. [31]. This method aims to
generate useful synthetic minority class instances by identifying
hard-to-learn minority class samples and assigning weights based
on their Euclidian distance from the nearest majority class instance.
It then generates synthetic instances using a clustering method.
Many more methods have been developed to meet dataset
demands. In 2015, Xie et al. [32] suggested aminority oversampling
technique based on local densities in a low-dimensional space in
order to address the problem of dimensionality that affected earlier
methods; this technique involved mapping the trained sample into
a low-dimensional space and assigning weights. In 2017, Douzas
and Bacao [33] proposed a self-organizing map oversampling
method, in which artificial data are used for certain classifiers. Most
of the abovementioned methods focus on imbalance learning, in
which better performance can be achieved by adding oversampling
instances to the minority class dataset. However, datasets in many
realms remain insufficient, rather than imbalanced, in every class.

In order to address the small sample size problem, a few tradi-
tional approaches other than SMOTE have also been raised. In
1995, Bishop [34] proposed that training with noise could lead to
a good result; this concept is equivalent to Tikhonov regulation.
In 2004, the neural-ensemble-based C4.5, a decision tree method,
was introduced by Zhou and Jiang [35]; this method first trains a
neural network, and then employs it to generate a new training
set. A virtual sample generation method based on an internalized
kernel density estimate was introduced by Li and Lin [36] in
2006; this method involves determining the probability density
function of the samples, which is then used to generate training
samples. In 2009, Li and Fang [37] again proposed a non-linear vir-
tual sample generation technique using group discovery and para-
metric equations of the hypersphere. Nevertheless, these methods
are unable to make use of the inherent features of the samples,
resulting in a limitation of the training models.

In recent years, with the rapid development of the new genera-
tion of artificial intelligence and big data, the use of a generative
adversarial network (GAN) based on a deep neural network
(DNN) has provided opportunities to create new approaches to
solve the data problem. It has also made the application of deep
learning possible in the case of a small sample size. A GAN is a pow-
erful type of generative model [38] that was introduced in 2014 by
Goodfellow et al. [39]; it can be utilized to generate synthetic sam-
ples with the same distribution as the real data in order to solve the
insufficiency problem of annotated data [40]. A GAN consists of two
deep architecture functions for the generator and the discriminator,
which can simultaneously learn from the trained data in an adver-
sarial fashion [41]. In the learning process, the generator captures
the potential distribution of the real data and generates synthetic
samples, while the discriminator discriminates between the real
samples and the synthetic samples as accurately as possible.

Recent work has shown that a GAN can successfully be applied
to image generation, language processing, and supervised learning
with insufficient training data. From the perspective of image gen-
eration, Santana and Hotz [42] proposed an approach to generate
images with the same distribution as real driving scenarios. Gou
et al. [43] utilized a GAN to learn from both real and synthetic
images in order to improve the accuracy of eye detection. From
the perspective of language processing, Li et al. [44] utilized a
GAN to capture the relevance of dialog and to generate correspond-
ing synthetic text, while Pascual et al. [45] proposed a speech-
enhancement framework based on a GAN. These studies demon-
strate that the synthetic samples generated by a GAN conform to
the distribution of the original samples. Moreover, the success of
GANs in various fields indicates that this generative model is inde-
pendent of precise domain knowledge, which is propitious for the
application of this approach in other fields. From the perspective of
supervised learning with insufficient training data, most of the
existing studies deal with the problem of class imbalance, and a
GAN is often used as an oversampling method. Fiore et al. [46] uti-
lized a GAN to generate synthetic illicit transaction records, and
merged these synthetic records into an augmented training set to
improve the effectiveness of credit card fraud detection. Douzas
and Bacao [47] utilized a GAN to generate synthetic samples for
the minority class of various imbalanced datasets; the results
showed that the GAN performs better than the other oversampling
methods. These studies demonstrate that data augmentation with
a GAN is more effective than traditional oversampling methods in
improving the quality of data. Furthermore, most standard aug-
mentation methods have been integrated into Augmentor, a
well-accepted data augmentation tool with a high-level applica-
tion programming interface (API) [48]. Despite the remarkable
success of GANs in balancing datasets, their application in
multi-classification with a small sample size has, surprisingly,
not yet been studied, to the best of our knowledge. Enlargement
of the data scale by means of data augmentation makes it possible
to improve the performance of supervised machine-learning based
on DNNs in various fields. To sum up, a GAN provides an opportu-
nity to solve the problem posed by a small sample size and thus
improve multi-classification.
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To solve the multi-classification problems posed by a small
sample size, we propose an approach that combines a GAN with
a DNN. In this research, the original samples were first divided into
a training set and a test set. The GAN method was utilized as data
augmentation in order to generate synthetic sample data to
enlarge the training set scale of cancer staging in biology, and to
satisfy the conditions of DNN model training. Next, the DNN
method was trained with the synthetic samples and tested using
the test set. Finally, the effectiveness of the approach for multi-
classification with a small sample size was validated by comparing
several indicators with a combination of the classical supervised
machine-learning approaches—DNN, SMOTE, and GAN. The
approach proposed in this paper is an attempt to transform the
classical statistical machine-learning classification method based
on original samples into a deep-learning classification method
based on data augmentation. Furthermore, this research is con-
ducive to exploring the potential of the application range and reli-
ability of the new generation of artificial intelligence, as
represented by deep learning. This is the first attempt to utilize
an approach combining GAN with DNN to improve the effective-
ness of multi-classification for cancer staging.

2. Methodology

2.1. Workflow of the study

To solve the supervised learning problem posed by a small sam-
ple size and extend the scope of application of deep learning, this
paper proposes an approach combining a GAN with a DNN classi-
fier for multi-classification. This approach can be outlined as fol-
lows (Fig. 1):

(1) Divide the original samples into a training set and a test set.
Use the training set to train the GAN and tune its hyperparameters.

(2) Use the trained generator of the GAN to generate synthetic
samples, and use the discriminator to filter these samples.

(3) Use the synthetic samples to train the DNN classifier, and
use the test set to test the DNN classifier.

2.2. Generative adversarial network

The Wasserstein generative adversarial network (WGAN) [49]
was used to generate the synthetic samples in this study, as the
Fig. 1. Workflow of the small sample
training process of the original GAN was a minimax game, and
the optimization goal was to reach the Nash equilibrium [40],
which posed the vanishing gradient problem [50]. Compared with
the original GAN, WGAN uses the Wasserstein distance instead of
the Jensen–Shannon (JS) divergence to evaluate the distribution
distance between the real samples and the generated samples
[51]. Using theWasserstein distance, the training process of WGAN
was more stable and faster than that of the original GAN [52].

In the proposed approach, the process of generating synthetic
samples using WGAN consisted of two stages. First, the generator
began to generate the original synthetic samples when the loss
functions of the generator and the discriminator converged after
being trained tens of thousands of times. Second, according to
the GAN’s concept of the adversary [53], the generator attempted
to generate synthetic samples that could fool the discriminator,
while the discriminator attempted to discriminate between the
real samples and the synthetic samples. In other words, when a
synthetic sample was identified as real by the discriminator, that
synthetic sample fooled the discriminator. The original synthetic
samples that fooled the discriminator were taken as the final
synthetic samples.

2.3. Deep neural network

This study used a DNN, which is a deep architecture classifier
based on deep learning, as a classifier. A DNN classifier can utilize
severalmodels of computation to learn representations of datawith
multiple layers of abstraction; themodels are composed ofmultiple
processing layers. The DNN classifier was trained with a large num-
ber of synthetic samples generated by WGAN in order to avoid
overfitting. In the proposed approach, the DNN classifier was tested
with the test set, which could inspect the generalization perfor-
manceof the classifier. To test the performance of theDNNclassifier,
we used three multi-classification metrics based on a confusion
matrix (Fig. 2): accuracy, the F-measure, and the G-mean. Accuracy
denoted the proportion of predictions that were correct, the
F-measure represented the harmonic mean of precision and recall
[54], and the G-mean indicated the geometric mean of recall [55].
Accuracy, F-measure, and G-mean are defined in Eqs. (1–3).

Accuracy ¼
PL

i¼1niiPL
i¼1;j¼1nij

ð1Þ
size multi-classification approach.



Fig. 2. Diagram of the multi-classification confusion matrix.
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F-measure ¼ 2
L

PL
i¼1Ri

PL
i¼1PiPL

i¼1Ri þ
PL

i¼1Pi

ð2Þ

G-mean ¼
YL
i¼1

Ri

 !1=L

ð3Þ

In these equations, L represents the class number; nii and nij
denote the number of class Ci samples that are correctly predicted
as class Ci and incorrectly predicted as class Cj, respectively; and Ri

and Pi indicate the recall and the precision of class Ci, respectively,
which are defined as follows:

Ri ¼ niiPL
j¼1nij

ð4Þ

Pi ¼ niiPL
j¼1nji

ð5Þ
3. Empirical analysis and discussion

Due to the need to protect patient privacy, pathological data are
expensive to acquire and the corresponding data annotation is dif-
ficult. As a result, pathological studies often encounter the problem
of a small sample size. Therefore, the application of data augmen-
tation in the field of pathology is typical. Hepatocellular carcinoma
(HCC) is a common malignancy with five-year relative survival
Fig. 3. N-glycan spectra of the HCC samp
rates of less than 15% [56,57]. The five-year relative survival rates
of HCC can be improved effectively by early treatment. Neverthe-
less, research on the identification of early-stage HCC is limited
by the lack of samples with staging information. Glycosylation is
one of the most widespread post-translational modifications, and
plays crucial roles in various biological processes [58–60]. Numer-
ous cancer-related processes, including oncogenic transformation
[59,61], tumor progression [62], and antitumor immunity [63],
are associated with the aberrant glycosylation of proteins. Further-
more, various tumor markers are glycoproteins with alterations in
serum glycomics [64–67]. Therefore, glycosylation data are an
effective means for the prediction of cancer staging. In this section,
we discuss the use of WGAN combined with a DNN to identify the
stage of HCC, which is significant for the diagnosis and treatment
of HCC.

3.1. Data collection

In this study, serum samples donated by Tongji Hospital (Tongji
Medical College, Huazhong University of Science and Technology)
were used as the experimental data. N-glycans, which are features
of data augmentation, were first released from the human serum
samples by means of PNGase F prior to a solid-phase permethyla-
tion protocol [68]. Next, the mass spectrometry (MS) peak distribu-
tion and its relative intensities of permethylated N-glycans (Fig. 3)
were detected using 4800 Plus MALDI (AB SCIEX, Concord, Canada).
The obtained MS data were processed further using Data Explorer
4.5, and .txt files listing the m/z values and MS intensities were
generated (from ASCII Spectrum). The stages of cancer were
divided according to the tumor node metastasis (TNM). Through
the abovementioned biological processes, 60 HCC cases (TNM stage
I, 21 cases; TNM stage II, 24 cases; and TNM stage III, 15 cases)
were obtained, each containing 42 features, and 18 healthy sam-
ples served as the control group. Each sample was represented as
a 42 dimensional feature vector, according to its peak distribution
order and relative intensity, as shown in Fig. 3. The HCC cases were
divided into a training set (60%) and a test set (40%), as shown in
Table 1.

3.2. Result analysis

According to the proposed approach, we first used TNM stage I,
TNM stage II, TNM stage III, and the control group’s training set to
le using MALDI mass spectrometry.



Table 1
Overview of the dataset used in this paper.

HCC original samples Total

Training set Test set

Healthy 11 7 18
TNM stage I 13 8 21
TNM stage II 14 10 24
TNM stage III 9 6 15
Total 47 31 78

Fig. 4. DNN classifier performance with increase in synthetic training sample size.

Table 2
Confusion matrix of HCC stage identification.

Predicted Total

Healthy TNM
stage I

TNM
stage II

TNM
stage III

Real healthy 7 0 0 0 7
Real TNM

stage I
0 5 2 1 8

Real TNM
stage II

2 0 7 1 10

Real TNM
stage III

0 3 0 3 6

Total 9 8 9 5 31
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train WGAN, and then used the trained WGAN to generate the
corresponding synthetic samples. The hyperparameters for the
GAN were determined through a series of experiments. The gener-
ator had one hidden layer containing 32 rectified linear units
(ReLUs), and 42 sigmoid units were used as the output layer. The
dimension of the noise vector z was set to 15. The discriminator
also had one hidden layer, which contained 64 ReLUs; one unit
without the activation function was used as the output layer. The
hyperparameters of WGAN for each class’ training sample were
the same. The WGAN’s development environment was
TensorFlow1.1 and it was trained through the graphics processing
unit (GPU). The WGAN training process contained 300 000 itera-
tions. In each iteration of the WGAN training, the discriminator
first iterated 100 times, and then the generator iterated one time.

After the generation of the synthetic samples of the HCC cases,
these samples were used to train the DNN classifier. The DNN clas-
sifier, which was a multi-layer perceptron (MLP), was then vali-
dated with the HCC test set. After a series of experiments on the
DNN, the hyperparameters were determined. The dimension of
the classifier’s input was 42, which was equal to the number of fea-
tures in the HCC samples. The classifier had three hidden layers,
each containing 32 ReLUs; the softmax function was used as the
output layer and cross-entropy was used as the loss function.
TensorFlow1.1 and GPU were used to train the DNN classifier as
well, and the number of iterations was set to 3000.

To evaluate the effect of the synthetic training sample size on
the performance of the DNN classifier, we used a different number
of synthetic samples to train the DNN classifier, and then used real
samples to test for the three indicators of accuracy, F-measure, and
G-mean. From 20 synthetic training samples of each class, more
than 20 synthetic samples were generated each time to train the
DNN classifier. In the case of more than 100 synthetic training
samples, more than 100 synthetic samples were generated each
time to train the DNN classifier. The changes in the accuracy,
F-measure, and G-mean are shown in Fig. 4.

With an increase in the synthetic training sample size, the accu-
racy gradually increased. With 100 synthetic training samples, the
accuracy reached 51.61%. When the synthetic training sample size
was 1000, the accuracy was greater than 0.6 (64.52%), and when
the synthetic training sample size reached 2000, the accuracy
was 67.74%. However, after this, increasing the synthetic training
sample size did not lead to an improvement in accuracy, and the
accuracy continued to fluctuate around 67%. When the synthetic
training sample size reached 4000, the accuracy remained stable
at approximately 70%. In addition, when the synthetic training
sample size was increased, the tendency of the F-measure was
basically consistent with that of the accuracy, which showed that
the prediction accuracy of each class’ real samples was consistent
with the overall situation. Furthermore, each stage of HCC could
be predicted effectively, and the misdiagnosis rate was very low.
With an increase in the number of synthetic samples, the G-mean
remained slightly lower than the accuracy but was consistent
overall. This finding indicated that the misdiagnosis rate remained
low. According to the accuracy, F-measure, and G-mean values,
when the synthetic training sample size was 4000, an effective
DNN classifier for the identification of the HCC stage in a small
sample size could be obtained.

In particular, when the number of synthetic samples generated
by WGAN was 4000, the test accuracy of the real samples was
70.97% (of the 31 original samples, 22 were predicted correctly),
the F-measure was 70.07%, and the G-mean was 68.39%. Table 2
presents the DNN prediction results for all of the stages. All of
the healthy samples in the control group were correctly predicted.
Of the eight TNM stage I test samples, five samples were correctly
predicted, two were predicted to be TNM stage II, and one was pre-
dicted to be stage III. Of the ten TNM stage II test samples, seven
samples were predicted correctly; two were predicted to be
healthy, indicating a risk of misdiagnosis; and one was predicted
to be TNM stage III. Of the six TNM stage III real cases, only three
were correctly predicted; the rest were predicted to be TNM stage
I, for an accuracy of only 50%. This decreased the overall DNN
model performance. Therefore, the number of original TNM stage
III samples should be increased in a future study, in order to
improve the specificity of the DNN model for TNM stage III. TNM
stages I and II have similar clinical features and can be classified
into a single category called ‘‘early-stage cancer.” Thus, according
to the results of the early-stage HCC (TNM stages I and II) identifi-
cation, the accuracy of the proposed method reached 77.78%. This
level of accuracy has great significance for the early identification
and treatment of HCC, because a current study [69] has found that
early treatment significantly increases the survival rate of patients
with HCC. A recent study by Holzinger et al. [70] indicates that dig-
ital pathology will dramatically change medical workflows if
pathologists are augmented by machine-learning methods. Thus,
our integrated approach with accurate prediction holds potential
to promote further research into the pathogenesis of HCC.



Y. Liu et al. / Engineering 5 (2019) 156–163 161
3.3. Evaluation of WGAN combined with a DNN

To test the effectiveness of the proposed approach in classifying
the TNM stage of HCC with a limited number of samples, a classical
statistical machine-learning classifier and a data oversampling
method were used for a comparison. A random forest (RF) is an
ensemble learning method with higher accuracy and a better gen-
eralization capability than other machine-learning models [71],
while a naïve Bayes (NB) classifier has a simple principle and a
stable classification performance [72]. These two algorithms were
chosen as the representatives of classical statistical machine-
learning classifiers. The deep-learning method cannot be applied
effectively if there is a limited number of real samples of HCC
due to the lack of sufficient data on HCC; however, the classical sta-
tistical machine-learning method has a relatively low demand for
datasets, so this method can be used. In the classical statistical
machine-learning experiments with original samples, the classi-
fiers were trained using the training set and then tested with the
test set. In the oversampling experiments, SMOTE was adapted to
generate the oversampling samples by using the oversampling
HCC training set of all of the stages. The RF, NB, and DNN classifiers
were then trained with the oversampling samples. Next, the
trained classifiers were validated with the HCC test set. In the pro-
posed framework based on WGAN, a large number of synthetic
samples generated by WGAN were used to train the RF, NB, and
DNN classifiers. The classifiers were then validated using real
samples.

As shown in Table 3, the RF and NB models trained with the
training set and tested with the test set resulted in the relatively
low accuracies of 54.84% and 32.26%, F-measure values of 56.73%
and 12.20%, and G-mean values of 45.50% and 0, respectively.
The NB indexes were considerably lower than those of the RF,
which indicated that the NB was more sensitive than the RF in
the case of the considered dataset. These results indicate that the
misdiagnosis rate was high and that a number of HCC cases were
not discriminated. Thus, given a limited training set, classical
machine-learning models cannot be effectively trained.

In comparison, the RF and NB models trained with 4000 over-
sampling samples generated by SMOTE performed better in terms
of all the indexes. These results indicate that SMOTE improved the
classical machine-learning model performance and reduced the
misdiagnosis rate to a certain extent. The DNN model trained with
4000 oversampling samples generated by SMOTE showed signifi-
cant improvement in all of the indexes: The accuracy increased
to 64.52%, the F-measure increased to 66.05%, and the G-mean
increased to 63.32%. These results show that the deep-learning
model resulted in better performance than the classical machine-
learning model.

The RF and NB models trained with 4000 synthetic samples
generated by WGAN exhibited different performance changes.
The RF model had worse indexes than the model trained with
the oversampling samples, while the NB model’s indexes increased
considerably. These results imply that with the synthetic samples
generated by WGAN, the classical machine-learning models did
Table 3
Performance of different classification strategies.

Accuracy F-measure G-mean

RF 0.5484 0.5673 0.4550
NB 0.3226 0.1220 0
RF with SMOTE 0.5806 0.6254 0.4811
NB with SMOTE 0.5484 0.5600 0.5233
DNN with SMOTE 0.6452 0.6605 0.6332
RF with WGAN 0.2903 0.2931 0.2627
NB with WGAN 0.6129 0.6260 0.6043
DNN with WGAN 0.7097 0.7007 0.6839
not provide good results. In the proposed framework, the deep-
learning model DNN with synthetic samples from WGAN per-
formed best among all the considered classifiers. Compared with
the oversampling samples generated by SMOTE, this method fur-
ther increased the accuracy from 64.52% to 70.97%, the F-
measure value from 66.05% to 70.07%, and the G-mean value from
63.32% to 68.39%, which demonstrates that WGAN with a DNN
effectively solved the HCC stage recognition problem. Above all,
these findings indicate that the deep-learning method can success-
fully be applied to a multi-classification problem with a limited
number of samples.

3.4. Discussion

According to the experimental results given above, WGAN com-
bined with a DNN can be applied to the identification of HCC
stages, and results in excellent performance compared with tradi-
tional methods. This finding is of significance to cancer research.
Research into most cancers is hindered by the small sample size
problem; samples with accurate staging information are particu-
larly rare. This problem has led to slow progress in the early diag-
nosis and treatment of cancers; furthermore, it affects the
exploration of the pathogenesis of cancer. Our data augmentation
method based on WGAN may well provide a solution for these
issues. The proposed approach was designed not only to solve
the problem of HCC staging, but also to solve the small sample size
problem using supervised learning. Therefore, cancer-staging data
based on serum samples were selected, as such data result in
unsatisfactory performance with traditional statistical machine
learning due to the small sample size problem. The proposed
framework does not rely on a precise domain knowledge of cancer,
due to the characteristics of deep learning. Therefore, the proposed
method has a low barrier to successful application in other biolog-
ical research domains, and may even be applied in more far-
ranging fields once the performance has been optimized. Further-
more, the combination of WGAN with a DNN holds enormous
potential for bringing domains that lack samples into the intelli-
gence era [26,73–75].
4. Conclusion

In this paper, a WGAN approach combined with a DNN was pre-
sented for cancer stage identification on the basis of a small sample
size. Using the indicators of precision, F-measure, and G-mean, we
demonstrated that in comparison with classical machine-learning
methods and oversampling methods, the proposed approach sub-
stantially improved the classification effectiveness with an
increase in the number of synthetic samples. Early recognition of
cancer is particularly significant for the diagnosis and treatment
of cancer. Because the feature selection did not rely on precise
domain knowledge from experts, the proposed supervised deep-
learning approach based on a small sample size holds potential
to provide effective solutions to other problems involving a small
sample size in various fields. Thus, this approach could easily be
used to promote intelligent development in other fields. This
new approach strongly promotes the new stage of artificial intelli-
gence. In future, the proposed approach will be applied to more
datasets from various fields in order to continuously improve our
research [76,78].
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