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First it was chess, then it was Go. Now artificial intelligence (Al)
is challenging human supremacy in a far more complex—and com-
mercially significant—undertaking: designing microchips. In June
2021, researchers at Google Brain (Google’s deep learning division)
reported that they had devised a machine learning system that can
produce manufacturable chip floorplans in a small fraction of the
time taken by human experts. Writing in the June 10 online edition
of Nature [1], a Google team headed by research scientists Azalia
Mirhoseini and Anna Goldie stated that “in under 6 hours, our
method automatically generates chip floorplans that are superior
or comparable to those produced by humans in all key metrics,
including power consumption, performance, and chip area.”

While other companies, including Cadence, International
Business Machines (IBM), and Nvidia, have implemented their
own machine learning-based chip design solutions [2,3], Google’s
is apparently the first to surpass humans at floorplanning. The feat
is an important milestone for Al and may significantly shorten the
development of new microprocessors and other advanced chips.
The editors of Nature hailed the result as “an important achieve-
ment that will be a help in speeding up the supply chain” [4]. In
fact, Google is already putting the system to work, using it to craft
floorplans for the company’s next-generation Al accelerator chips.

Floorplanning is an early stage in the physical design of micro-
chips (Fig. 1). It consists of arranging large blocks (i.e., macros) of
memory and logic control in a rectangular area representing the
chip surface. After an initial floorplan is sketched out, smaller
chunks of logic (i.e., standard cells) are placed in the remaining
open spaces, and wires are routed to connect the macros and cells

[5].

Floorplanning is a delicate balancing act, in which designers try
to simultaneously minimize the chip area, keep wire lengths as
short as possible, avoid routing congestion, and meet timing
requirements and other design criteria. The overall goal is to
achieve an optimal combination of chip performance, power con-
sumption, and cost [6].

It is a dauntingly complex task. Today’s larger chips may have
hundreds or thousands of macros and millions or billions of stan-
dard cells, connected by kilometers of wiring. The number of pos-
sible floorplan arrangements is astronomical. For example, the
floorplans in the Google study have more than 10%°% possible
configurations, according to Mirhoseini et al. [1]. By comparison,
the game of Go has 10°°°. The combinatorial complexity of
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floorplanning means that exhaustive “brute force” computation is
out of the question; all the computing power in the world would
not be nearly enough to try every possible solution in millions of
years [7].

Instead, conventional optimization methods streamline the prob-
lem by using simplified models and heuristics (rules of thumb). So
far, humans armed with intuition and best practices have proven
better at that sort of pragmatic shortcutting than machine-powered
algorithms. “Computers struggle with complex resource optimiza-
tion problems such as floorplanning, where there are many trade-
offs,” said Mathew Guthaus, professor of computer science and
engineering at the University of California at Santa Cruz. “You have
to juggle all these balls, and if you drop one, it all comes crashing
down.” (Guthaus has received research funding support from Google
in the past but was not involved in this project.)
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Fig. 1. Floorplanning is an early step in semiconductor physical design. It consists of
arranging large functional blocks (i.e., macros) on the chip surface while balancing
trade-offs in chip size, performance, and power consumption. Floorplanning is
followed by placement of standard cells, routing of interconnects, and optimization
of timing. IC: integrated circuit. Credit: Wikimedia Commons (public domain).
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Despite decades of research into automated optimization tech-
niques, skilled human floorplanners have continued to outperform
computers, creating superior designs in less time. But even for the
most accomplished designers, it is a long, laborious process, in
which floorplans are painstakingly laid out by hand and repeatedly
adjusted as the design progresses. It can take weeks or months
before a floorplan is finalized [5].

Speeding that process has become a top priority for the technol-
ogy industry as demand for more powerful chips has soared in
fields such as Al. “Since 2012 the amount of computational power
used in the largest Al runs has doubled every several months—
much faster than Moore’s Law,” according to Mirhoseini [8]. For
Google, which is both a prolific Al user and a leading Al innovator,
applying machine learning to the problem seemed a natural choice.

Specifically, the Google team used a technique called reinforce-
ment learning, where an artificial “agent” consisting of a deep neu-
ral network (a neural network with many layers) learns by trial
and error. As it places the blocks and explores various floorplan
options, the agent receives reward signals based on estimates of
wire length, congestion, and density. Positive rewards strengthen
connections within the neural network, and it gets better over
time.

Once trained in this way, the system was able to produce usable
floorplans in mere hours on its first try, without the many
iterations usually needed by human designers. In head-to-head com-
parisons with conventional automated approaches such as simulated
annealing, the system was significantly faster and produced higher-
quality designs, based on metrics such as wire length, timing, routing
congestion, area, and power. Compared to human-generated designs,
the system was much quicker, while matching or exceeding the qual-
ity in most cases. “It is very exciting, and the results look amazing,”
said Guthaus, who cautioned that “more comparisons to best-in-
class human designs are still needed.”

One major advantage over both conventional automation and
humans is the system'’s ability to learn from a large number of
instances, getting more proficient and versatile with experience.
“As we train over a greater number of chip blocks, our method
becomes better at rapidly generating optimized placements for
previously unseen chip blocks,” the Google team said [1]. After
pre-training with 10 000 example floorplans, the system gained
the ability to “generalize across different chips”—creating floor-
plans for a wide variety of chip types, a feat that the Google team
likens to mastering many games with different rules.

Interestingly, the machine-generated floorplans look nothing
like those made by humans. Human designers typically arrange
the macros in orderly rows and columns, often grouping related
functions tightly together around the periphery of the chip while
leaving interior areas open for standard cells. The result resembles
grid-like apartment blocks separated by broad thoroughfares
(Fig. 2). By contrast, Google’s automated floorplans appear almost
random (Goldie has described them as “alien-looking” [9]): A
patchwork of macros and open areas scattered across the chip with
no obvious pattern.

The Google team said that its new method “has the potential to
save thousands of hours of human effort for each new [chip] gen-
eration” [1]. Andrew Kahng, professor of computer science and
electrical engineering at the University of California at San Diego,
added that “the development of methods for automated chip
design that are better, faster, and cheaper than current approaches
will help to keep alive the ‘Moore’s Law’ trajectory of chip technol-
ogy” [5]. Moreover, because of its speed, the system can explore a
much wider array of design possibilities than can human designers,
who are limited by slow manual methods and tight schedules.

The benefits appear to be more than theoretical. Google has
promptly put its automated system to practical use, creating
manufacturable floorplans for the company’s next-generation

Engineering 10 (2022) 7-9

Processor cores

Control logic I

Level 2 cache Additional cores

Fig. 2. Human floorplanners typically create orderly designs in which macros are
grouped by function (processor blocks, memory, control logic, etc.). The open areas
between the macro groups are then filled with smaller blocks of logic (standard
cells) and interconnects (wiring that connects the various blocks).

tensor processing units (TPUs). TPUs are application-specific
integrated circuits (ASICs) designed to accelerate the machine
learning systems vital to many Google services, including internet
search, Street View, and Google Photos, as well as Google’s
commercially available cloud-based Al services [10].

The Google team ultimately foresees a positive feedback loop in
which machine learning speeds the development of more powerful
chips, and the chips, in turn, accelerate machine learning. “In the
past decade, systems and hardware have truly transformed
machine learning,” said Mirhoseini [11]. “And it is now time for
machine learning to return the favor and transform the way sys-
tems and hardware are designed.”

Chips may just be the beginning. “Placement optimizations of
this form appear in a wide range of science and engineering appli-
cations, including hardware design, city planning, vaccine testing
and distribution, and cerebral cortex layout,” said Mirhoseini
et al. [1]. “Therefore, we believe that our placement optimization
methodology can be applied to impactful placement problems
beyond chip design.”
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