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In this paper, we perform two-layer high-throughput calculations. In the first layer, which involves
changing the crystal structure and/or chemical composition, we analyze selected III–V semiconductors,
filled and unfilled skutterudites, as well as rock salt and layered chalcogenides. The second layer searches
the full Brillouin zone (BZ) for critical points within 1.5 eV (1 eV = 1.602176 � 10�19 J) of the Fermi level
and characterizes those points by computing the effective masses. We introduce several methods to com-
pute the effective masses from first principles and compare them to each other. Our approach also
includes the calculation of the density-of-states effective masses for warped critical points, where tradi-
tional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical
point. We demonstrate the need to consider the band structure in its full complexity and the value of
complementary approaches to compute the effective masses. We also provide computational evidence
that warping occurs only in the presence of degeneracies.
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1. Introduction

The electronic band structure plays a fundamental role in our
understanding of the origins of the physical properties of materials
and in assessing paths for optimization and chemical substitutions.
The dispersion relation of the solutions of the many-body elec-
tronic Schrödinger equation provides quantitative information that
is essential for understanding most of the functionalities that a
material may exhibit. The band structure, En kð Þ, is a mapping from
R

3 ! R
N (where N is the number of relevant bands, n is the band

index, and k is a vector indicating the crystalline momentum) and
is usually represented by considering only two-dimensional (2D)
band plots. Because any given band is a function whose domain
is the three-dimensional (3D) Brillouin zone (BZ), k 2 BZ � R

3,
the graph of a given band is embedded in four dimensions. Band
structure plots along high-symmetry lines are a useful tool for
evaluating a material at a glance. However, the 2D representation
hides the full complexity of the electronic spectrum by ignoring
large sections of the BZ. Conventions, such as those in Ref. [1], pro-
vide common ground for band plots, but 2D band representations
are intrinsically limited.

Critical points, where @En kð Þ=@k ¼ 0 (with @En kð Þ=@k indicat-
ing the gradient of En kð Þ with respect to k), are an important fea-
ture of the electronic band structure. At these points, the density
of states (DOS; also represented by the function of energy E,
D(E)) is large (or diverges; see Ref. [2]):

D Eð Þ ¼ 2
X

n

Z
En kð Þ�E

V

2pð Þ3
dS

@En kð Þ=@kj j ð1Þ

with the unit cell volume V and an infinitesimal element of the con-
stant energy surface dS. Critical points are key in evaluating a mate-
rial’s physical properties and fully characterizing the material. For
example, for a 2D material, it is well known that saddle points lead
to logarithmic singularities [3], and that maxima and minima in
three dimensions lead to square root dependencies of the DOS
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and, in general, to van Hove singularities or non-smooth points [4].
Thus, the identification of all critical points is an important goal.

A related concept associated with the local properties of the
electronic band structure involves the effective mass tensor M�,
which is—assuming Taylor expansibility near k0—a second-rank
tensor in 3D with components:

M�
n;ij k0ð Þ ¼ �h2

me

@2En kð Þ
@ki@kj

 !�1

k0

ð2Þ

where n is the band index, �h is the reduced Planck constant, me is
the mass of electron, and the subscripts i, j are used to label the
Cartesian components of the tensorM� or of the vector k. The recip-
rocal of the effective mass tensor is associated with the curvature of
the energy dispersion, En kð Þ, and is a critical descriptor when dis-
cussing electronic transport and optical properties; its evaluation
must be done by considering the full mathematical complexity of
the band structure. In addition, the possible presence of non-
analytic points—such as points where the Hessian is not a symmet-
ric matrix—leads to warped critical points, which play a role in sev-
eral situations [5,6] but are difficult to identify with 2D band plots.
By determining high-fidelity effective mass tensors at critical
points, it is possible to formulate analytic models of band struc-
tures. Such models are important in many considerations in solid-
state physics and electronic engineering; for example, they can be
used as a starting point for Monte Carlo transport simulations [7]
or for the multi-scale modeling [8] of electronic devices, batteries,
and thermoelectric energy converters. Analytic band structures
are used in applications such as modeling scattering rates where
derivatives and integrals of the bands are necessary [7]. From an
experimental standpoint, the DOS effective mass is a common prop-
erty of the band structure that may be measured through cyclotron
resonance [9–18], the four coefficients method [19], Shubnikov–
de Haas oscillations [16,20–23], magnetophonon resonance
[15,16,24,25], time-of-flight drift velocity [7,26–29], optical trans-
mission and reflection [30–32], and infrared reflection and Faraday
rotation [33–35]. Being able to compare the different measure-
ments of the effective mass obtained with those indirect methods
and reconcile such results with electronic structure calculations is
a major goal.

This paper introduces a two-layer high-throughput (HT)
methodology with the aim of partially addressing the misaligne-
ment between theory and experiment in the current literature.
The first layer is a conventional chemical substitution/structural
variation (e.g., see Refs. [36–42]), and the second is a careful explo-
ration of En kð Þ to identify the nature of the critical points and com-
pute the effective mass tensors. The conventional HT considers an
array of prototypical materials: III–V semiconductors, filled and
unfilled skutterudites, as well as rock salt and layered chalco-
genides. For each material, we search the full BZ for critical points
and determine the effective mass at those points using several dif-
ferent methodologies for verification [43]. These methodologies
also characterize the warping of bands and correctly compute the
DOS effective mass at those warped points [6]. To our knowledge,
this is the first HT calculation of effective masses in a large portion
of the BZ.

In Section 2, we illustrate the details of the computations.
Section3presents selected results (a largepart of the data is included
in Appendix A), and Section 4 discusses the impact of this work.
Fig. 1. The AFLOWp workflow script used in this study. More details on AFLOWp
are available in Ref. [47].
2. Methods

The prototypical materials selected for this work are as follows:
III–V semiconductors (AlSb and AlP with the zincblende structure);
rock salt (PbTe, GeTe, SnTe, PbS, GeS, SnS, PbSe, GeSe, and SnSe)
75
and layered chalcogenides (Bi2Te3, Bi2Te2Se, Bi2Se2Te, Bi2Se3,
Bi2Te2S, and Bi2Se2S); and pristine and fully filled cobalt anti-
monide (specifically CoSb3, CaCo4Sb12, and BaCo4Sb12). For each
material, the workflow starts by generating a projected atomic
orbital tight-binding (PAO-TB) Hamiltonian, which is exploited to
interpolate the band structure efficiently and precisely [44]. We
use Quantum Espresso (Quantum ESPRESSO Foundation, UK)
[45,46] to calculate the electronic structure in the AFLOWp HT
computational framework [47].

The AFLOWp’s workflow (Fig. 1) drives the calculation of the
Hubbard U correction within the ACBN0 [48–51] scheme (see
Tables S1, S4, S14, and S18 in Appendix A), optimizes the structure
of the unit cell, and generates the PAO-TB Hamiltonian. The wave-
function and charge kinetic energy cutoffs were 150 and 600 Ry
(1 Ry = 2.179872 � 10�18 J), respectively, and a Monkhorst–Pack
k-point grid with a density of about 0.01 Å�1 has been used. The
choice of pseudopotentials was driven by a need to maximize the
number of well-projected bands in the PAO-TB model; for this pur-
pose, Perdew–Burke–Ernzerhof (PBE)-projector augmented wave
(PAW) pseudopotentials generated from the PSlibrary [52] were
modified to have an extended basis [44]. The computations
included spin–orbit coupling. For comparison and testing of
warping, calculations without spin–orbit were also performed.
PAOFLOW (University of North Texas, USA) [53] was used to pro-
ject the computationally expensive Hamiltonian from the plane
wave basis into the more efficient PAO-TB basis. The PAO-TB
Hamiltonian allows the exploitation of the Fourier interpolation
to obtain a smooth version of the band structure. The full BZ was
divided into a 12� 12� 12 grid, and each voxel was searched for
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an isolated critical point. It was assumed that a voxel would con-
tain at most one critical point. We chose a 12� 12� 12 grid to
strike a balance between accuracy and computational efficiency.
The locations of the critical points in k-space were then compared
using operations of the symmetry group to identify unique critical
points. This was done for ease of computation and for uniformity in
analysis, given different crystal structures.

In order to identify critical points, we identified k-points, where
the band velocities vn are very small.

1
�h
@En kð Þ
@k

���� ���� ¼ vn kð Þ <
1
�h

� 10�8 eV
aB

ð3Þ

Fig. 2 shows a typical case of a saddle point for SnTe. The three
panels show the three components of the velocity v . The electron
group velocity was calculated via the PAO-TB Hamiltonian by tak-
ing the expectation value of the momentum operator p, as dis-
cussed in Ref. [2]

vn kð Þ ¼ 1
�h
hwn kð Þ p

me

���� ����wn kð Þi / hwn kð Þ @H kð Þ
@k

���� ����wn kð Þi ð4Þ

where H is the Hamiltonian and wn is the single-particle
wavefunction.

Starting from the energy dispersion, we computed the Hessian
matrix using second-order Fourier derivatives [54,55]:

@2En kð Þ
@ki@kj

¼ hwn kð Þ @
2H kð Þ
@ki@kj

�����
�����wn kð Þi þ 2hwn kð Þ

@ki

@H kð Þ
@kj

���� ����wn kð Þi ð5Þ

The inverse of the Hessian matrix is proportional to the effective
mass tensor in the chosen reference system. Diagonalization of M�

leads to the three eigenvalues m1, m2, and m3. The DOS effective
mass is calculated by taking the geometric mean of the three effec-
tive mass components, m1, m2, and m3:

m�
DOS ¼ m1m2m3ð Þ13 ¼ detM�ð Þ13 ð6Þ
It should be noted that, in the definition of m�

DOS, only one
among the possible equivalent k-points is considered. The validity
of the Fourier approach (which is very efficient computationally)
holds for all non-warped bands but fails in the case of warped
bands where the Hessian is not symmetric. In order to treat all
the critical points in the same way, we calculated the inverse effec-
tive mass surface (IEMS) and used it to determine the three diago-
nal components of the effective mass tensor, the DOS effective
mass accounting for band warping effects [6], and the band warp-
ing parameter (w) [5].

The IEMS was generated by interpolating the energy dispersion
using a radial grid centered on each critical point. For each critical
point and each angular direction in the spherical grid (defined by
Fig. 2. A 2D slice k ¼ i; j; 0:5ð Þ of the 3 components of the gradient of the energy for th
with large positive and negative values, respectively, for each gradient component.
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u; hÞ; we found the second derivative of the energy dispersion
along the radial direction kr—that gives, the effective mass in a
given radial direction (Fig. 3) near En k0ð Þ ¼ En0. The band curva-

ture @2E=@k2r gives the second-order coefficient, f 2 u; hð Þ, in the
radial one-dimensional (1D) Taylor expansion (in natural units):

En kr; u; hð Þ ¼ En0 þ f 1 u; hð Þkr þ 1
2
f 2 u; hð Þk2r þ � � � ð7Þ

This angular form is very general [5] and allows for the treat-
ment of non-analytic (hence warped, non-Taylor series expand-
able) critical points in the band structure. Similarly to previous
work [5,6], we opted to fit our radial energy dispersion to a polyno-
mial function greater than order two in order to account for possi-
ble band non-parabolicity, which can be clearly seen in Fig. 3. In
order to calculate the three components of the effective mass,
the DOS effective mass for warped bands, and the warping parame-
ter, we fitted the values of the IEMS at a given critical point. We
chose an expansion in real spherical harmonics to be a general
form for future analysis.

f 2 u; hð Þ ¼
X30
l¼0

Xl

m¼�l

AlmYlm u; hð Þ ð8Þ

The basis of real spherical harmonics, Ylm u; hð Þ includes the
Condon–Shortley phase [56]. For analytic critical points, the diago-
nal form of the inverse effective mass tensor, (m�1

1 , m�1
2 , m�1

3 ), was
found by aligning a set of orthogonal axes with the maximal values
of the IEMS. Fitting the surface in these coordinates to the simpli-
fied form, as shown in Eq. (9), gives the effective masses directly
[5,6].

f 2 u; hð Þ ¼ cos2h
m3

þ 1
m1m2

sin2h m2cos2u þ m1sin
2u

� �
ð9Þ

The direction of the maximal values of the IEMS aligns with the
principal axes of the ellipsoids of constant energy and corresponds
to a coordinate system in which the inverse effective mass tensor is
diagonal. In general, the IEMS near an analytic critical point is a
quadratic form:

f 2 u; hð Þ ¼ k
^

�H � k
^

ð10Þ
where

H ¼ AT �
m�1

1 0 0
0 m�1

2 0
0 0 m�1

3

0B@
1CA � A ð11Þ

is the matrix of second partial derivatives of the energy dispersion
and A is the Euler rotation matrix (see Eq. 4.46 in Ref. [57]). Here,
e bottom conduction band in the first BZ for SnTe. The purple and green represent k



Fig. 3. Energy dispersion in several radial directions around the degenerate, warped
C point k ¼ 0; 0; 0ð Þ near the Fermi level (EFermiÞ in CaCo4Sb12. The lattice
parameter is indicated with a.
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k
^

¼ sin h cosu; sin h sinu; cos hð Þ ð12Þ

is the angular bk unit vector. The matrix H may be diagonalized to
find the diagonal values (m�1

1 , m�1
2 , and m�1

3 ), as well as the direc-
tions of the principal axes. Alternatively, if the principal axes can
be found first, as described above, the masses may be read off from
a fit to Eq. (9). The algorithm is described as follows: Given the stan-
dard Cartesian basis X, Y, and Z defined by the coordinate system of
the Ylms, let X0, Y 0, and Z0 be the axes after step ①, as defined below,
and X0 0, Y 0 0, and Z0 0 be the axes transformed from X0, Y 0, and Z0 with
the transformation in ② below. The procedure can be done by
① finding Euler angles U and H that rotates the reference Z axis
to the direction of the maximum absolute value of the IEMS; and
② with a fixed U andH from the previous step, rotating the X0 axis
around the Z0 axis until it achieves a maximum value. The third
direction is orthogonal to the Z0 0 ¼ Z0 and X0 0 axes in a right-
handed coordinate system. The value of the IEMS along the X0 0,
Y 0 0, and Z0 0 axes corresponds to m�1

1 , m�1
2 , and m�1

3 , respectively. In
the case of non-analytic critical points, the DOS effective mass
m�

DOS is computed by integrating a particular function of the IEMS
[6] over the entire angular surface at a given point:

m�
DOS ¼ � C�

2p
ð13Þ

C� ¼
ZZ

sin h

2 f 2 u; hð Þj j32
dhdu ð14Þ

The sign of the integral depends on the sign of the IEMS. For
saddle points, the value of the integrand in Eq. (14) approaches
infinity when f 2 u; hð Þ approaches zero. In principle, one can inte-
Table 1
Comparison of the IEMS fit (m�

I ), Fourier derivative (m�
F), and warped (m�

w) DOS effective m
band-type (e: electron, h: hole, so: split-off), L and C are the conventional labels for two d

Sample Type m�
I

PbTe m�
e Lð Þ 0.105

PbTe m�
h Lð Þ �0.120

AlP m�
e Cð Þ 0.235

AlP m�
so �0.346

AlSb m�
so �0.237

AlSb m�
e Cð Þ 0.100
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grate over the range of u and h where f 2 u; hð Þ is positive and sep-
arately where it is negative. In practice, however, it proves difficult
to achieve convergence for the integral, and we do not include the
calculation of the DOS effective mass for warped saddle points in
our results. To the best of our knowledge, the problem of properly
accounting for saddle points is still unsolved.
3. Results

There is a wide range of effects on the DOS and other material
properties from the local band structure at critical points [4]. The
HT procedure produces many such critical points for a given crys-
tal, and the distribution and type of critical points ultimately
account for the similarities and differences in material properties.
Table 1 [58,59] summarizes some of our computations for several
common materials in comparison with reference values. The effec-
tive mass was computed by all three methods discussed above:
m�

DOS by fitting Fourier derivatives (Eq. (6), m�
F), m

�
DOS by fitting

the IEMS (m�
I ), and m�

DOS from the warped definition (m�
w evaluated

from Eqs. (13) and (14)). It should be noticed that, in Table 1, all
calculations for masses agree for non-warped critical points,
including the warped calculation of Eqs. (13) and (14). This is to
be expected and is reflected in the data in general. Large discrepan-
cies in the experimental effective masses of different materials
make it difficult to directly compare with the calculated effective
mass; however, our study compares favorably in most cases with
the results from previous work (Table 1). All our results are
included in Appendix A, specifically the band structure plots, the
Hubbard U corrections, and the effective mass computed for criti-
cal points in the proximity of the Fermi level. It should be noted
that experimental data are not available for critical points away
from the Fermi level.

It is found that, overall, there are a considerable number of
critical points, and warped critical points are not uncommon.
Fig. 4 shows a typical BZ for FCC GeS (included in Table S5 in
Appendix A). The plotted shapes display 18 critical point locations.
Each critical point also has several symmetry-related neighbors
that are determined by the point group at the location of the given
critical point. In this case, there are 307 critical points in total,
including all symmetries (but discounting critical points at the
same k but different energy). We found that 57% of the critical
points identified in our search were saddle points that manifest
as van Hove singularities in the DOS [3]. In the case of a saddle
point, the eigenvalues of M� have a different sign. The DOS effec-
tive mass obtained using Eqs. (13) and (14) diverges for a hyper-
bolic IEMS and is not calculated. The calculations of the DOS
effective mass determined via the fitting procedure and via
second-order derivatives are numerically equivalent in cases
where band warping does not occur. Where warping occurs (e.g.,
in Table 2), there is a large difference between the fitting procedure
and the Fourier derivative method, since the warping effects pre-
vent the energy from being Taylor expanded in three dimensions.
We found that band warping only occurred at critical points with
degenerate energy eigenvalues, and we did not find any band
asses calculated in our study with measured values (m�
exp). The subscripts indicate the

ifferent critical points.

m�
F m�

w m�
exp

0.105 0.105 0.13 [58]
�0.120 �0.120 0.13 [58]
0.235 0.235 0.22 [59]

�0.346 �0.346 0.29–0.34 [59]
�0.237 �0.237 0.22 [59]
0.099 0.100 0.09–0.18 [59]
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warping at isolated non-degenerate critical points. Fig. 5 shows an
example of the band structure of silicon (Si), with the critical points
marked with red points and the degree of warping noted as red
disks. The magnitude of the warping parameter is indicated by
the diameter of the disk. It can be seen that the valence band is
warped, albeit mildly with respect to some of the other critical
points, whereas the conduction band minimum along D is not
warped. Table 2 shows a sample of some representative warped
critical points. The warping parameter gives a measure of the
degree of warping. With zero warping, the critical point is ellip-
soidal or hyperbolic, and the DOS effective masses from the other
two methods (m�

I and m�
F) agree with the warped calculation

(m�
w). However, it can be seen that the values of the direct fit

(m�
I ) and Fourier derivative (m�

F) method do not agree with each
other at warped critical points. This is to be expected, since the
fit will depend on the choice of coordinates at a non-analytic point.
The failure stems from the fact that the IEMS cannot be fit to an
ellipsoidal surface at a warped point. The warping parameter, as
defined in Ref. [5], is computed for all critical points and determi-
nes whether a fitting procedure to an ellipsoidal form is
appropriate.
Table 2
Warping extent w and DOS effective mass at selected warped critical points calculated wit
order Fourier derivative. The table includes the following critical points: hole band m�

e (H), h
valence band (m�

maxÞ at X = (1, 0, 0) or C, and selected saddle point (m�
sad) at C.

Sample Type En kð Þ w

AlSb m�
hh Cð Þ 0 �0.1

AlSb m�
lh Cð Þ 0 �0.0

AlP m�
max Xð Þ �2.391 0.1

CaCo4Sb12 m�
e Hð Þ �0.027 0.0

PbTe m�
max Cð Þ �1.017 0.1

PbTe m�
sad Cð Þ �1.017 �0.4

GeTe m�
max Cð Þ �1.569 0.0

GeTe m�
sad Cð Þ �1.569 �0.5

Note: For saddle points, the warped DOS effective mass is unavailable. The fit (m�
I ) and

valid when the IEMS is not warped (ellipsoidal or hyperboloidal). When the IEMS is war
differs from the correct value of m�

w .

Fig. 4. Critical points for FCC GeS in the first BZ. Each polyhedral shape relates to a
different symmetry (star of the k-point) of the BZ, depending on the location of a
representative point.
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Consider Fig. 6 where the relative error of the direct fitting
relative to the warped DOS effective mass is plotted versus the
warping parameter. It can be seen from the figure that there is a
general positive correlation, indicating that the warping parameter
is a measure of how badly traditional methods (e.g., direct fitting or
the Fourier method) perform when evaluating effective masses;
thus, the warping parameter is an indication of how badly a Taylor
approximation will perform in approximating the surface of an
IEMS at a warped point. This is similar to what is reported in
Ref. [6] for a surface warped in Kittel’s form. Thus, the only correct
value for the DOS effective mass is m�

w. Fig. 7 shows the DOS of
CaCo4Sb12. Critical points (van Hove singularities) are marked as
red disks. The size of the disk indicates the amount of warping,
as calculated in Ref. [5]. It can be seen that the DOS effective
masses give rise to the shape of the non-smooth points. The particu-
lar shape can be expressed in terms of the DOS effective mass [4,6].
With spin–orbit coupling included, the largest warping value w is
about 1.94 in CaCo4Sb12 at C. In general, without spin–orbit cou-
pling, there are many more warped points (since spin–orbit cou-
pling lifts degeneracy), and the warping is larger in that case.
This study provides a computational answer to questions related
to the origin and occurrence of warping effects [60]. Without
exception, warping did not occur at a specific critical point without
the presence of degeneracies.
h 3 different methods: integral over the IEMS, ellipsoidal fit of the IEMS, and second-
eavy-hole band (m�

hh), and light-hole band (m�
lh) at C ¼ 0; 0; 0ð Þ; the maximum of the

m�
w m�

I m�
F

86 �0.549 �0.193 �0.0950
36 �0.099 �0.095 �0.1890
01 3.979 2.936 0.5746
55 0.598 0.517 1.2390
38 0.556 0.393 0.4080
97 — �0.841 �1.0830
97 0.316 0.246 1.0430
51 — �0.712 �0.9480

Fourier (m�
F) methods for computing the components of the effective mass are only

ped, then the fit and Fourier method fail and the m� calculated with those methods

Fig. 5. An example of the Si band structure computed along the path suggested by
Ref. [1] without spin–orbit coupling and with warping noted in red circles. The
magnitude of the warping parameter w, is given as the size of the disk.



Fig. 6. The error between the warped effective mass DOS calculation and the DOS
effective mass calculated with the fit to the IEMS versus the dimensionless warping
parameter (w), for the materials in this study.

Fig. 7. DOS for CaCo4Sb12 including spin–orbit coupling. The van Hove singularities
are identified by red disks, where the diameter of the disk is determined by the
warping parameter of the critical point located at the center of the disk. The shapes
of the IEMS at the warped critical points are included in the figure. Blue (red)
portions of the IEMS represent negative (positive) band curvature.
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In all of the cubic materials, all saddle points at C and at L (or
other critical points) are warped. The reason for this can be seen
in the requirements placed on the IEMS: The IEMS will have
regions of positive and negative values due to the saddle behavior
of the energy dispersion, and the cubic symmetry forces the prin-
cipal directions to be the same. These two competing geometric
requirements lead to warping at these points.

The HT list of critical points and effective masses has a variety of
applications. For example, a full approximate analytic model of the
BZ may be accomplished by approximating each critical point with
the corresponding ellipsoid or saddle in the case of materials
where warping is not an issue for critical points near the Fermi
energy. This could be used for calculating scattering rates in Monte
Carlo simulations [7] or for calculations of relaxation times [61] for
different scattering processes. Moreover, a full analytic band struc-
ture would allow for possible band engineering, for the exploration
of material properties, and even for the low-dimensionality reduc-
tion of thermoelectric properties [62]. A full description of the
effective masses would also provide a model for the exploration
of anisotropic transport considerations. As opposed to critical
points that are not near high-symmetry points, lines, or planes,
none of the effective masses from a quadratic expansion of the
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energy dispersion need to be the same. This gives rise to anisotro-
pic transport that is all but ignored to avoid excessive complica-
tion. This procedure provides examples where anisotropy may be
relevant for transport or other properties and provides a first step
toward realistic analytic descriptions of band structures with these
properties.

The Appendix A includes: ① the Hubbard U correction deter-
mined with the ACBN0 self-consistent protocol (Tables S1, S4,
S14, and S18); ② characterization of the critical points found in
the proximity of the Fermi level for AlSb, AlP, GeS, GeSe, GeTe,
PbS, PbSe, PbTe, SnS, SnSe, SnTe, CoSb3, CaCo4Sb12, BaCo4Sb12, Bi2-
Se2Te, Bi2Te3, Bi2Te2Se, Bi2Se3, Bi2Te2S, and Bi2Se2S (Tables S2, S3,
S5, S7–S13, S15–S17, and S19–S24 in Appendix A); and ③ band
structure plots (Figs. S1–S20 in Appendix A).
4. Conclusions

We have designed and applied a two-level HT calculation with
the aim of finding and characterizing critical points in the BZs of
several materials. This search identified features of the band struc-
tures, En kð Þ, that are not visible in 2D plots but nonetheless con-
tribute to electronic transport, DOS, and other material
properties. We used three different methods to compute the DOS
effective masses at these critical points: namely, the direct method,
the Fourier derivative method, and the warped method. At analytic
(ellipsoidal) critical points, all approaches agreed with each other
and aligned well with literature values, where available. This study
also identified many warped critical points and used Eqs. (13) and
(14) to correctly calculate the DOS effective mass. At these warped
points, we provided reliable values for m�

DOS using the theory
reported in Ref. [5]. All three methods disagreed, but the ‘‘warped”
method was correct. Standard 2D band structure plots are often
inadequate to convey the complicated nature of the effective
masses at important critical points. Our HT procedure overcomes
this issue and facilitates comparison with experiments and the
development of analytical models, as well as band structure engi-
neering and the tuning of properties for technological applications.
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