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Ultrasound (US) has become one of the most commonly performed imaging modalities in clinical prac-
tice. It is a rapidly evolving technology with certain advantages and with unique challenges that include
low imaging quality and high variability. From the perspective of image analysis, it is essential to develop
advanced automatic US image analysis methods to assist in US diagnosis and/or to make such assessment
more objective and accurate. Deep learning has recently emerged as the leading machine learning tool in
various research fields, and especially in general imaging analysis and computer vision. Deep learning
also shows huge potential for various automatic US image analysis tasks. This review first briefly intro-
duces several popular deep learning architectures, and then summarizes and thoroughly discusses their
applications in various specific tasks in US image analysis, such as classification, detection, and segmen-
tation. Finally, the open challenges and potential trends of the future application of deep learning in med-
ical US image analysis are discussed.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ultrasound (US), as one of the most used imaging modalities,
has been recognized as a powerful and ubiquitous screening and
diagnostic tool for physicians and radiologists. In particular, US
imaging is widely used in prenatal screening in most of the world
due to its relative safety, low cost, noninvasive nature, real-time
display, operator comfort, and operator experience [1]. Over the
decades, it has been demonstrated that US has several major
advantages over other medical imaging modalities such as X-ray,
magnetic resonance imaging (MRI), and computed tomography
(CT), including its non-ionizing radiation, portability, accessibility,
and cost effectiveness. In current clinical practice, medical US has
been applied to specialties such as echocardiography, breast US,
abdominal US, transrectal US, intravascular US, and prenatal diag-
nosis US, which is specially used in obstetrics and gynecology (OB-
GYN) [2]. However, US also presents unique challenges, such as
low imaging quality caused by noise and artifacts, high depen-
dence on abundant operator or diagnostician experience, and high
inter- and intra-observer variability across different institutes and
manufacturers’ US systems. For example, a study on the prenatal
detection of malformations using US images demonstrated that
the sensitivity ranged from 27.5% to 96% among different medical
institutes [3]. To address these challenges, it is essential to develop
advanced automatic US image analysis methods in order to make
US diagnosis and/or assessment, as well as image-guided interven-
tions/therapy, more objective, accurate, and intelligent.

Deep learning, which is a branch of machine learning, is consi-
dered to be a representation learning approach that can directly
process and automatically learn mid-level and high-level abstract
features acquired from raw data (e.g., US images). It holds the
potential to perform automatic US image analysis tasks, such as
lesion/nodule classification, organ segmentation, and object detec-
tion. Since AlexNet [4], a deep convolutional neural network (CNN)
and a representative of the deep learning method, won the 2012
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), deep
learning began to attract attention in the field of machine learning.
One year later, deep learning was selected as one of the top ten
breakthrough technologies [5], which further consolidated its
position as the leading machine learning tool in various research
domains, and particularly in general imaging analysis (including
natural and medical image analysis) and computer vision (CV).
To date, deep learning has gained rapid development in terms of
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network architectures or models, such as deeper network
architectures [6] and deep generative models [7]. Meanwhile, deep
learning has been successfully applied to many research domains
such as CV [8], natural language processing (NLP) [9], speech
recognition [10], and medical image analysis [11–15], thus demon-
strating that deep learning is a state-of-the-art tool for the perfor-
mance of automatic analysis tasks, and that its use can lead to
marked improvement in performance.

Recent applications of deep learning in medical US analysis have
involved various tasks, such as traditional diagnosis tasks including
classification, segmentation, detection, registration, biometricmea-
surements, and quality assessment, as well as emerging tasks
including image-guided interventions and therapy [16] (Fig. 1). Of
these, classification, detection, and segmentation are the threemost
basic tasks. They are widely applied to different anatomical struc-
tures (organ or body location) in medical US analysis, such as breast
[17,18], prostate [19–21], liver [22], heart/cardiac [23,24], brain
[25,26], carotid [27,28], thyroid [29], intravascular [30,31], fetus
[32–37], lymph node [38], kidney [39], spine [40], bone [41,42],
muscle [43], nerve structure [44], tongue [45–47], and more.
Multiple types of deep networks have involved these tasks. CNN is
known as one of the most popular deep architectures and has also
gained great success in various tasks, such as image classification
[48,49], object detection [29,30], and target segmentation [44,50].
It is a common approach to apply a CNN model to learn from the
obtained raw data (e.g., US images) in order to generate hierarchical
abstract representations, followed by a softmax layer or other linear
classifier (e.g., a support vector machine, SVM) that can be used to
produce one ormore probabilities or class labels. In this case, image
annotations or labels are necessary for achieving the task. This is the
so-called ‘‘supervised learning.” Unsupervised learning is also
capable of learning representations from raw data [8,9].
Auto-encoders (AEs) and restricted Boltzmann’s machines (RBMs)
are two of the most commonly applied unsupervised neural
networks in medical US analysis promising improvements in
performance. Unsupervised learning has one significant advantage
Fig. 1. Illustration of m
over supervised learning, which is that it does not require the
utilization of time-consuming, labor-intensive, and expensive
human annotations.

Although current medical US analysis still focuses on two-
dimensional (2D) US image processing, there is a growing trend
in applications of deep learning in three-dimensional (3D) medical
US analysis. In the past two decades, commercial companies,
together with researchers, have greatly advanced the development
and progress of 3D US imaging technique. A 3D image (also com-
monly known as ‘‘3D volume”) is usually regarded as containing
much richer information than a 2D image; thus, more robust
results are attained when using a 3D volume as compared with a
2D image. More specifically, a 2D US image has certain inevitable
limitations: ① Although US images are 2D, the anatomical struc-
ture is 3D; thus, the examiner/diagnostician must possess the abil-
ity to integrate multiple images in his or her mind (in an often
inefficient and time-consuming process). Lack of this ability will
lead to variability and incorrect diagnosis or misdiagnosis. ② Diag-
nostic (e.g., OB-GYN) and therapeutic (e.g., staging and planning)
decisions often require accurate estimation of organ or tumor vol-
ume; however, 2D US techniques calculate volume from simple
measurements of length, width, and height in two orthogonal
views by assuming an idealized (e.g., ellipsoidal) shape. This may
lead to low accuracy, high variability, and operator dependency.
③ A 2D US image presents a thin plane at various arbitrary angles
in the body. These planes are difficult to localize and reproduce
later for follow-up studies [51]. To overcome the limitations of
2D US, a variety of 3D US scanning, reconstruction, and display
techniques have been developed, which provide a broad founda-
tion for 3D medical US analysis. Furthermore, the current applica-
tion of deep learning in medical US analysis is a growing trend that
is supported by progress in this field [23,52].

Several review articles have been written to date on the applica-
tion of deep learning to medical image analysis; these articles focus
on either thewhole field of medical image analysis [11–15] or other
single-imaging modalities such as MRI [53] and microscopy [54].
edical US analysis.
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However, few focus on medical US analysis, aside from one or two
papers that examine specific tasks such as breast US image segmen-
tation [55]. A literature search for all works published in this field
until 2018 Feb 1was conducted by specifying keywords (i.e., ‘‘ultra-
sound” OR ‘‘ultrasonography” OR ‘‘ultrasonic imaging” AND
‘‘convolutional” OR ‘‘deep learning”) in the main databases (e.g.,
PubMed and the Google Scholar database) and in several important
conference proceedings (e.g., MICCAI, SPIE, ISBI, and EMBC). To
screen the papers resulting from this search, the abstract of every
paper was read in detail; papers that were relevant for this review
were then chosen, which finally resulted in nearly 100 relevant
papers, as summarized in Fig. 2 and Table S1 in Appendix A. This
review attempts to offer a comprehensive and systemic overview
of the use of deep learning in medical US analysis, based on typical
tasks and their applications to different anatomical structures. The
rest of the paper is organized as follows. In Section 2, we briefly
introduce the basic theory and architectures of deep learning that
are commonly applied in medical US analysis. In Section 3, we
discuss in detail the applications of deep learning in medical US
analysis, with a focus on traditional methodological tasks including
classification, detection, and segmentation. Finally, in Section 4, we
present potential future trends and directions in the application of
deep learning in medical US analysis.

2. Deep learning architectures

Here, we start by briefly introducing the deep learning architec-
tures that are widely applied in US analysis. Deep learning, as a
branch of machine learning, essentially involves the computation
of hierarchical features or representations of sample data (e.g.,
images), in which higher level abstract features are defined by
combining them with lower level ones [9]. Based on the deep
learning architectures and techniques in question, such as classifi-
cation, segmentation, or detection, the deep learning architectures
that are used in most of the current works in this field can be
categorized into three major classes: ① supervised deep networks
Fig. 2. Current applications of deep learning in medical US analysis. (a) Anatomical struc
FCN: fully convolutional network; Multiple: a hybrid of multiple network architectures
(SAE) and stacked denoising auto-encoder.
or deep discriminative models, ② unsupervised deep networks or
deep generative models, and ③ hybrid deep networks. The basic
models or architectures applied in current medical US analysis
are mainly CNNs, recurrent neural networks (RNNs), RBMs/DBNs
(where DBN refers to deep belief networks), AEs, and variants of
these deep learning architectures, as shown in Fig. 3. The term ‘‘hy-
brid” in the third category above refers to deep architecture that
either comprises or makes use of both generative and discrimina-
tive model components, so that category is no longer specifically
discussed here. Instead, we move on to introduce challenges and
strategies in training the deep models that are commonly involved
in medical US analysis. For convenience, several commonly used
deep learning frameworks are also summarized in Section 2.4.

2.1. Supervised deep models

At present, supervised deep models are widely used for the clas-
sification, segmentation, and detection of anatomical structures in
medical US images; for these tasks, CNNs and RNNs are the two
most popular architectures. A brief overview of these two deep
models follows.

2.1.1. Convolutional neural networks
CNNs are a type of discriminative deep architecture that

includes several modules, each of which generally consists of a
convolutional layer and a pooling layer. These are followed by
other layers, such as a rectified linear unit (ReLu), and batch nor-
malization if necessary. Fully connected layers generally follow
in the last part of the network, to form a standard multi-layer neu-
ral network. In terms of structure, these modules are usually
stacked, with one on top of another, to form a deep model; this
makes it possible to take advantage of spatial and configuration
information by taking in 2D or 3D images as input [8].

The convolutional layer shares many weights by performing
convolution operations on input images. In fact, the role of a
convolutional layer is to detect local features at different positions
tures; (b) year of publication; (c) network architectures. DBN: deep belief network;
; RNN: recurrent neural network; AEs include its variants, the sparse auto-encoder



Fig. 3. Five representative neural network architectures, which can be categorized into two main types: ① supervised deep models, which include (a) CNNs and (b) RNNs;
and ② unsupervised deep models, which include (c) AEs/SAE (d) RBMs and (e) DBNs.
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in the input feature maps (e.g., medical US images) with a set of k
kernel weights W ¼ fW1; W2; . . . ; Wkg, together with the biases

b ¼ fb1; b2; . . . ; bkg, in order to generate a new feature map Al
k.

The convolutional process in every convolutional layer is expressed
mathematically as follows:

Al
k ¼ rðWl

k � Al�1 þ bl
kÞ ð1Þ

where r �ð Þ is an element-wise nonlinear activation function, bl
k is a

bias parameter, and the asterisk, *, denotes a convolutional
operator.

In a general CNN model, the determination of hyperparameters
in a convolutional layer is crucial in order for the CNN to overcome
reduction in the convolution process. This mainly involves three
hyperparameters: depth, stride, and padding. The depth of the out-
put volume corresponds to the number of filters, each of which
learns to locally look for something different in the input. Specify-
ing stride makes it possible to control how the filter convolves
around the input volume. In practice, smaller strides always work
better because small strides in the early layers of the network (i.e.,
those layers that are closer to the input data) can generate a large
activation map, which can lead to better performance [56]. In a
CNN with many convolutional layers, the reduction in output
dimension can present a problem, since some regions—especially
borders—are lost in every convolution operation. Padding (gener-
ally zero-padding) around the border in the input volume is one
of the strategies that is most commonly used to eliminate the
effect of dimensional reduction in the convolution process. One
of the greatest benefits of padding is that it makes it possible to
design deeper networks. In addition, padding actually improves
performance because it prevents information loss at the borders
in the input volume. That is, under the conditions of limited com-
putational cost and time cost, it is necessary to perform trade-offs
between multiple factors (i.e., the number of filters, filter size,
strides and network depth, etc.) for a specific task in practice.

The output of the convolutional layer is subsampled by the sub-
sequent pooling layer in order to reduce the data rate from the
layer below. Together with appropriately chosen pooling schemes,
the weight shared in the convolutional layer can imbue the CNN
with certain invariant properties such as translational invariance.
This can also greatly reduce the number of parameters; for exam-
ple, the number of weights no longer absolutely depends on the
size of the input images. Note that fully connected layers, which
are generally added at the end of the convolutional stream of the
network, usually no longer share the weights. In a standard CNN
model, a distribution over classes is generally achieved by feeding
the activations through a softmax function in the last layer of the
network; however, several conventional machine learning meth-
ods use an alternative, such as voting strategy [57] or linear SVM
[58].

Given their increasing popularity and practicability, many clas-
sical and CNN-based deep learning architectures have been devel-
oped and applied in (medical) image analysis, NLP, and speech
recognition. Examples include AlexNet (or CaffeNet, which is suit-
able for the Caffe deep learning framework), LeNet, faster R-CNN,
GoogLeNet, ResNet, and VGGNet; please refer to Ref. [59] for a
detailed comparison of these architectures in terms of various per-
formance indicators (e.g., accuracy, inference time, memory, and
parameters utilization).
2.1.2. Recurrent neural networks
In practical terms, an RNN is generally considered to be a type of

supervised deep network that is used for a variety of tasks in med-
ical US analysis [21,60]. In an RNN, the depth of the network can be
as long as the length of the input sample data sequences (e.g., med-
ical US video sequences). A plain RNN contains a latent or hidden
state, ht , at time t that is the output of a nonlinear mapping from
its input, xt , and the previous state ht�1, expressed as follows:

ht ¼ rðWxt þ Rht�1 þ bÞ ð2Þ

where the weights W and R are shared over time, b is a bias
parameter.

The RNN has an inherent advantage for modeling sequence data
(e.g., medical US video sequences) due to the structural character-
istics of the network. However, until recently, RNNs have not been
widely utilized in the various study tasks that are referred to as
sequence models. This is partly because it is difficult to train the
RNN itself to capture long-term dependencies, in which the RNN
usually gives rise to gradient explosion or gradient vanishing prob-
lems that were discovered in the early 1990s [61]. Therefore,
several specialized memory units have been developed, the earliest
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and most popular of which are long short-term memory (LSTM)
cells [62] and their simplification-gated recurrent unit [63]. Thus
far, RNNs are mainly applied in speech or text-recognition
domains, and are rarely used in medical image analysis, much less
medical US analysis.

RNN can also be considered to be a type of deep model for unsu-
pervised learning. In the unsupervised learning mode, the RNN is
usually used to predict the subsequent data sequences using the
previous data samples. It does not need additional class informa-
tion (e.g., target class labels) to help learning, although a label
sequence is essential for learning in the supervised mode.

2.2. Unsupervised deep models

Unsupervised learning means that task-specific supervision
information (e.g., the annotated target class labels) is unnecessary
in the learning process. In practice, various deep models with
unsupervised learning are utilized to generate data samples by
sampling from the networks, such as AE, RBMs/DBNs, and general-
ized denoising AE [64]. From this perspective, unsupervised deep
models are usually regarded as generative models to be applied
in a variety of tasks. Below, we briefly introduce the three basic
deep models for unsupervised feature/representation learning that
are used most in medical US analysis.

2.2.1. The auto-encoder and its variants
Simply speaking, the AE is a nonlinear feature-extraction

approach that does not involve the use of target class labels. This
approach is usually used for representation learning or for effective
encoding of the original input data (e.g., in the form of input vec-
tors) in hidden layers [9]. As such, the extracted features are
focused on conserving and better representing information, rather
than on performing specific tasks (e.g., classification), although
these two goals are not always mutually exclusive.

An AE is typically a simple network that includes at least three
layers: an input layer, x, which represents the original data or input
feature vectors (e.g., patches/pixels in an image or spectrum in a
speech) one or more hidden layers, h, which denote the trans-
formed features; and an output layer, y, which matches the input
layer x for reconstruction through the nonlinear function r in order
to activate the hidden layers:

h ¼ rðWxþ bÞ ð3Þ
To date, many variants of AEs have been developed. Examples

include sparse auto-encoders (SAEs) [64] and denoising auto-
encoders (DAEs) and their stacked versions [65]. In an SAE
model, regularization and sparsity constraints are adopted in
order to enhance the solving process in the training network,
while ‘‘denoising” is used as a solution to prevent the network
from learning a trivial solution. The stacked version of these
models is usually generated by placing the AE layers on top of
each other.

2.2.2. Restricted Boltzmann’s machines and deep belief networks
An RBM is a particular type of Markov’s random field with a

two-layer architecture [66]. In terms of structure, it is a single-
layer undirected graphical model consisting of a visible layer
and a hidden layer, with symmetric connectivity between them
and no connectivity among units within the same layer.
Therefore, it is essentially an AE [67]. In practice, an RBM is rarely
used alone; rather, it is stacked one by one to generate a deeper
network, which typically results in a single probabilistic model
called a DBN.

A DBN consists of a visible layer and several hidden layers; the
top two layers form an undirected bipartite graph (e.g., an RBM)
and the lower layers form a sigmoid belief network with directed
and top-down connections. A DBN is capable of good generaliza-
tion because it can be pre-trained layer-wise using unlabeled data;
this is practically accomplished using a small number of labeled
training samples. Since the DBN is trained in an unsupervised man-
ner, a final fine-tuning step is necessary for a specific task in prac-
tice; this is done by providing a supervised optimization option by
adding a linear classifier (e.g., SVM) to the top layer of the DBN. For
unsupervised learning models, a fine-tuning step that follows after
the final representation learning is also a practical and common
solution to address a specific task such as image classification,
object detection, or organ segmentation.

2.3. Challenges and strategies in training deep models

The great success of deep learning comes from the fact that a
large number of labeled training samples are required in order to
achieve excellent learning performance. However, this require-
ment is difficult to meet in current medical US analysis, where
expert annotation is expensive and where some diseases (e.g.,
lesions or nodules) are scarce in the datasets [68]. Therefore, the
question of how to train a deep model using a limited training
sample has become an open challenge in medical US analysis.
One of the most common problems when using limited training
samples is that it is easy to over-fit the deep model. To address
the issue of model overfitting, two main pathways can be selected:
model optimization and transfer learning. For model optimization,
several fruitful strategies such as well-designed initialization
strategies, stochastic gradient descent and its variants (e.g.,
momentum and Adagrad [69]), efficient activation functions, and
other powerful intermediate regularization strategies (e.g., batch
normalization) have been proposed and constantly improved in
recent years, as follows [11]:

(1) Well-designed initialization/momentum strategies [70]
refer to the utilization of well-designed random initialization and
a particular type of schedule in order to slowly increase the
momentum parameter on the iterations of the training model.

(2) Efficient activation functions, such as ReLu [71,72], perform
a nonlinear operation generally following the convolutional layer.
In addition, Maxout [73] is actually a type of activation function
being particularly suited for training with dropout.

(3) Dropout [74] randomly deactivates the units/neurons in a
network at a certain rate (e.g., 0.5) on each training iteration.

(4) Batch normalization [75] performs the normalization opera-
tion for each training mini-batch and back-propagates the gradi-
ents through the normalized parameters on each training iteration.

(5) Stack/denoising [65] is mainly used for AEs in order to make
the model deeper and reconstruct the original ‘‘clean” inputs from
the corrupted ones.

Another key solution is transfer learning, which has also been
widely adopted and which exhibits excellent capacity for improv-
ing the performance of learning without the need for large sam-
ples. This method avoids expensive data-labeling efforts in the
application of a specific domain. According to Pan and Yang [76],
transfer learning is categorized into three settings: inductive trans-
fer learning, in which the target and the source tasks are different,
regardless of whether the target and source domains are the same
or not; transductive transfer learning, in which the target task is the
same as the source task, while the target domains are different
from the source domains; and unsupervised transfer learning, which
is similar to inductive transfer learning, except that the target task
differs from but is related to the source task. Based on what is
being transferred, the approaches used for the abovementioned
three different settings of transfer learning can be classified into
four cases: the instance approach, the representation approach,
the parameter-transfer approach, and the relational knowledge
approach. However, this review is most concerned with how to
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improve the performance by transferring knowledge from another
domains (in which it is easy to collect a large number of training
samples, e.g., CV, speech, and text) to the medical US domain. This
process involves two main strategies: ① using a pre-trained net-
work as a feature extractor (i.e., to learn features from scratch);
and ② fine-tuning a pre-trained network on medical US images
or video sequences—a method that is widely applied at present
in US analysis. Both strategies achieve excellent performance in
several specific tasks [77,78].

Some additional strategies need to be noted, such as data pre-
processing and data augmentation/enhancement [4,16].

2.4. Popular deep learning frameworks

With the rapid development of the relevant hardware (e.g.,
graphics processing unit, GPU) and software (e.g., open-source
software libraries), deep learning techniques have quickly become
popular in various research domains throughout the world. Five of
the most popular open-source deep learning frameworks (i.e.,
packages) are listed below:

(1) Caffe [79]: https://github.com/BVLC/caffe;
(2) Tensorflow [80]: https://github.com/tensorflow/tensorflow;
(3) Theano [81]: https://github.com/Theano/Theano;
(4) Torch7/PyTorch [82]: https://github.com/torch/torch7 or

https://github.com/pytorch/pytorch; and
(5) MXNet [83]: https://github.com/apache/incubator-mxnet.
Most of the popular frameworks provide multiple interfaces,

such as C/C++, MATLAB, and Python. In addition, several packages
provide a higher level library written on top of these frameworks,
such as Kerasy. For the advantages and disadvantages of these
frameworks, please refer to Ref. [84]. In practice, researchers can
choose any framework, or use their own written frameworks, based
on the actual requirements and personal preferences.
3. Applications of deep learning in medical US analysis

Asnoted earlier, current applications of deep learning techniques
in US analysis mainly involve three types of tasks: classification,
detection, and segmentation for various anatomical structures or
tissues, such as the breast, prostate, liver, heart, and fetus. In this
review, we discuss the application of each task separately for vari-
ous anatomical structures. Furthermore, 3DUSpresents a promising
trend in improving US imaging diagnosis in clinical practice, which
is discussed in detail as a separate sub-section.

3.1. Classification

The classification of images is a fundamental cognitive task in
diagnostic radiology, which is accomplished by the identification
of certain anatomical or pathological features that can discriminate
one anatomical structure or tissue from others. Although comput-
ers are currently far from being able to reproduce the full chain of
reasoning required for medical image interpretation, the automatic
classification of targets of interest (e.g., tumors/lesions, nodules,
fetuses) is a research focus in computer-aided diagnosis systems.
Traditional machine learning methods often utilized various hand-
crafted features extracted from US images in combination with a
multi-way linear classifier (e.g., SVM) in order to achieve a specific
classification task. However, these methods are susceptible to
image distortion, such as deformation due to the internal or exter-
nal environments, or to conditions in the imaging process. Here,
deep neural networks (DNNs) have several obvious advantages
due to their direct learning of mid- and high-level abstract features
y https://github.com/fchollet/keras.
from the raw data (or images). In addition, DNNs can be directly
used to output an individual prediction label for each image, in
order to classify targets of interest. For different anatomical appli-
cation areas, several unique challenges exist, which are discussed
below.
3.1.1. Tumors or lesions
According to the latest statistics from the Centers for Disease

Control and Prevention�, breast cancer has become the most com-
mon cancer and the second leading cause of cancer death among
women around the world. Although mammography is still the lead-
ing imaging modality for screening or diagnosis in clinical practice,
US imaging is also a vital screening tool for the diagnosis of breast
cancer. In particular, the use of US-based computer-aided diagnosis
(CADx) for the classification of tumor diseases provides an effective
decision-making support and a second tool option for radiologists or
diagnosticians. In a conventional CADx system, feature extraction is
the foundation on which subsequent steps, including feature selec-
tion and classification, can be integrated in order to achieve the final
classification of tumors or mass lesions. Traditional machine learn-
ing approaches for breast tumor or mass lesion CADx often utilize
handcrafted and heuristic lesion-extracted features [85]. In contrast,
deep learning can directly learn features from images in an auto-
matic manner.

As early as 2012, Jamieson et al. [86] performed a preliminary
study that referred to the use of deep learning in the task of clas-
sifying breast tumors or mass lesions. As illustrated in Fig. 4(a),
adaptive deconvolutional networks (ADNs), which are unsuper-
vised and generative hierarchical deep models, were utilized to
learn image features from diagnostic breast tumor or mass lesion
US images and generate feature maps. Post-processing steps that
include building image descriptors and a spatial pyramid matching
(SPM) algorithm are performed. Because the model was trained in
an unsupervised fashion, the learned high-level features (e.g., the
SPM kernel output) were regarded as the input to train a super-
vised classifier (e.g., a linear SVM), in order to achieve binary clas-
sification between malignant and benign breast mass lesions. The
results showed that the performance reached the level of conven-
tional CADx schemes that employ human-designed features. Fol-
lowing this success, many similar studies applied deep learning
methods to breast tumor diagnosis. Both Liu et al. [87] and Shi
et al. [19] employed a supervised deep learning algorithm called
a deep polynomial network (DPN), or its stacked version, namely
stacked DPN (S-DPN), on two small US datasets. With the help of
preprocessing (i.e., the shearlet transform based texture feature
extraction and region of interest (ROI) extraction) and a SVM clas-
sifier (or multiple kernel learning), the highest classification accu-
racies of 92.4% is obtained, outperforming the unsupervised deep
learning algorithms, such as stacked AE and DBN. This approach
is a good alternative solution to the problem of a local patch being
unable to provide rich contextual information when using deep
learning to learn image representation from patch-level US sam-
ples. In addition, the stacked denoising auto-encoder (SDAE) [88],
a combination of the point-wise gated Boltzmann machine (PGBM)
and RBM [89], and the GoogLeNet CNN [90] have been applied to
breast US or shear-wave elastography images for breast cancer
diagnosis; all of these obtained a superior performance when com-
pared with human experts. In the work of Antropova et al. [91], a
method that fuses the extracted and pooled low- and mid-level
features using a pre-trained CNN with hand-designed features
using conventional CADx methods was applied to three clinical
imaging modality datasets, and demonstrated significant perfor-
mance improvement.
� https://www.cdc.gov/cancer/dcpc/data/women.htm.

https://github.com/BVLC/caffe
https://github.com/tensorflow/tensorflow
https://github.com/Theano/Theano
https://github.com/torch/torch7
https://github.com/pytorch/pytorch
https://github.com/apache/incubator-mxnet
https://github.com/fchollet/keras
https://www.cdc.gov/cancer/dcpc/data/women.htm


Fig. 4. Flowcharts of (a) unsupervised deep learning and (b) supervised deep learning for tumor US image classification. It is usually optional to perform the preprocessing
and data-augmentation steps (e.g., ROI extraction, image cropping, etc.) for US images before using them as inputs to deep neural networks. Although the post-processing
step also applies to supervised deep learning, few researchers do this; instead, the feature maps are directly used as inputs to a softmax classifier for classification.

S. Liu et al. / Engineering 5 (2019) 261–275 267
Another common tumor is liver cancer, which has become the
sixth most common cancer and the third leading cause of cancer
death worldwide [92]. Early accurate diagnosis is very important
in increasing survival rates by providing optimal interventions.
Biopsy is still the current golden standard for liver cancer diagno-
sis, and is heavily relied upon by conventional CADx methods.
However, biopsy is invasive and uncomfortable, and can easily
cause other adverse effects. Therefore, US-based diagnostic tech-
niques have become one of the most important noninvasive meth-
ods for the detection, diagnosis, intervention, and treatment of
liver cancer. Wu et al. [22] applied a three-layer DBN in time-
intensity curves (TICs) extracted from contrast-enhanced US
(CEUS) video sequences in order to classify malignant and benign
focal liver lesions. They achieved a highest accuracy of 86.36%, thus
outperforming conventional machine methods such as linear dis-
criminant analysis (LDA), k-nearest neighbors (k-NN), SVM, and
back propagation net (BPN). To reduce computational complexity
using TIC-based feature-extraction methods, Guo et al. [93]
adopted deep canonical correlation analysis (DCCA)—a variant of
canonical correlation analysis (CCA)—combined with a multiple
kernel learning (MKL) classifier—a typical multi-view learning
approach—in order to distinguish benign liver tumors from malig-
nant liver cancers. They demonstrated that taking full advantage of
these two methods can result in high classification accuracy
(90.41%) with low computational complexity. In addition, the
transfer learning strategy is frequently adopted for liver cancer
US diagnosis [58,94].
3.1.2. Nodules
Thyroid nodules have become one of the most common nodular

lesions in the adult population worldwide. At present, the diagno-
sis of thyroid nodules relies on non-surgical (mainly fine needle
aspiration (FNA) biopsy) and surgical (i.e., excisional biopsy) meth-
ods. However, both of these methods are too labor-intensive for
large-scale screenings, and may make the patients anxious and
increase the costs. With the rapid development of US techniques,
US has become an alternative tool for the diagnosis and follow-
up of thyroid nodules due to its real-time and noninvasive nature.
To alleviate operator dependence and improve diagnostic perfor-
mance, US-based CADx systems have been developed to detect
and classify thyroid nodules. Ma et al. [95] integrated two pre-
trained CNNs in a fusion framework for thyroid nodule diagnosis:
One was a shallower network that was preferable for learning
low-level features, and the other was a deeper network that was
good at learning high-level abstract features. More specifically,
the two CNNs were trained on a large thyroid nodule US dataset
separately, and then the two learned feature maps were fused as
input into a softmax layer in order to diagnose thyroid nodules.
Integrating the learned high-level features from CNNs and conven-
tional hand-designed low-level features is an alternative scheme
that is demonstrated in Liu et al. [96,97]. In order to overcome
the problem of redundancies and irrelevancies in the integrated
feature vectors, and to avoid overfitting, it is necessary to select a
feature subset. The results indicated that this method can improve
the accuracy by 14%, compared with the traditional features. In
addition, efficient preprocessing and data-augmentation strategies
for a specific task have been demonstrated to improve the diagno-
sis performance [48].
3.1.3. Fetuses and neonates
In prenatal US diagnosis, fetal biometry is an examination that

includes an estimation of abdominal circumference (AC); however,
it is more difficult to perform an accurate measurement of AC than
of other parameters, due to low and non-uniform contrast and
irregular shape. In clinical examination and diagnosis, incorrect
fetal AC measurement may lead to inaccurate fetal weight estima-
tion and further increase the risk of misdiagnosis [98]. Therefore,
quality control for fetal US imaging is of great importance.
Recently, Wu et al. [99] proposed a fetal US image quality assess-
ment (FUIQA) scheme with two steps: ① A CNN was used to local-
ize the ROI, and② based on the ROI, another CNN was employed to
classify the fetal abdominal standard plane. To improve the perfor-
mance, the authors adopted several data-enhancement strategies
such as local phase analysis and image cropping. Similarly, Jang
et al. [100] employed a specially designed CNN architecture to clas-
sify image patches from an US image into the key anatomical struc-
tures; based on the accepted fetal abdominal plane (i.e., the
standard plane), fetal AC measurement was then estimated
through an ellipse detection method based on the Hough trans-
form. Gao et al. [101] explored the transferability of features
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learned from large-scale natural images to small US images
through the multi-label classification of fetal anatomical struc-
tures. The results demonstrated that transferred CNNs outper-
formed those that were directly learned from small US data
(91.5% vs. 87.9%).

The location of the fetal heart and classification of the cardiac
view are very important in aiding the identification of congenital
heart diseases. However, these are challenging tasks in clinical
practice due to the small size of the fetal heart. To address these
issues, Sundaresan et al. [102] posed the solution as a semantic
segmentation problem. More specifically, a fully convolutional
neural network (FCN) was applied to segment the fetal heart views
from the US frames, allowing the detection of the heart and classi-
fication of the cardiac views to be accomplished in a single step.
Several post-processing steps were adopted to address the prob-
lem of the predicted image possibly including multiple labels of
regions of different non-background. In addition, Perrin et al.
[103] directly trained a CNN on echocardiographic images/frames
from five different pediatric populations to differentiate between
congenital heart diseases. In a specific fetal standard plane recog-
nition task, a very deep CNN with a global average pooling (GAP)
strategy achieved significant performance improvement on the
limited training data [104,105].

3.2. Detection

The detection of objects of interest (e.g., tumors, lesions, and
nodules) on US images or video sequences is essential in US anal-
ysis. In particular, tumor or lesion detection can provide strong
support for object segmentation and for differentiation between
malignant and benign tumors. Anatomical object (e.g., fetal stan-
dard plane, organs, tissues, or landmarks) localization has also
been regarded as a prerequisite step for segmentation tasks or clin-
ical diagnosis workflow for image-based intervention and therapy.

3.2.1. Tumors or lesions
Detection or localization of tumors/lesions is vital in the clinical

workflow for therapy planning and intervention, and is also one of
the most labor-intensive tasks. There are several overt differences
in the detection of lesions in different anatomical structures. This
task typically consists of the localization and identification of small
lesions in the full image space. Recently, Azizi et al. [20,106,107]
successfully accomplished the detection and grading of prostate
cancer through a combination of high-level abstract features
extracted from temporal-enhanced US by a DBN and the structure
of tissue from digital pathology. To perform a comprehensive com-
parison, Yap et al. [108] contrasted three different deep learning
methods—a patch-based LeNet, a U-net, and a transfer learning
approach with a pre-trained FCN-AlexNet—for breast lesion detec-
tion from two US image datasets acquired from two different US
systems. Experiments on two breast US image datasets indicated
that an overall detection performance improvement was obtained
by the deep learning algorithms; however, no single deep model
could achieve the best performance in terms of true positive frac-
tion (TPF), false positive per image (FPs/image), and F-measure.
Similarly, Cao et al. [109] performed a comprehensive comparison
among four state-of-the-art CNN-based object detection deep
models—Fast R-CNN [110], Faster R-CNN [111], You Only Look
Once (YOLO) [112], and Single-Shot MultiBox Detector (SSD)
[113]—for breast lesions detection, and demonstrated that SSD
achieved the best performance in terms of both precision and
recall.

3.2.2. Fetus
As a routine obstetric examination for all pregnant women, fetal

US screening plays a critical role in confirming fetal viability,
establishing gestational age accurately, and looking for malforma-
tion that could influence prenatal management. Among the work-
flow of fetal US diagnosis, acquisition of the standard plane is the
prerequisite step and is crucial for subsequent biometric measure-
ments and diagnosis [114]. In addition to the use of traditional
machine learning methods for the detection of the fetal US stan-
dard plane [115,116], there has recently been an increasing trend
in the use of deep learning algorithms to detect the fetal standard
plane. Baumgartner et al. [117,118] and Chen et al. [78,119]
accomplished the detection of 13 fetal standard views (e.g., kid-
neys, brain, abdominal, spine, femur, and cardiac plane) and the
fetal abdominal (or face and four-chamber view) standard plane
in 2D US images through the transferred deep models, respectively.
To incorporate the spatiotemporal information, a transferred RNN-
based deep model has also been employed for the automatic detec-
tion of multiple fetal US standard planes (e.g., abdominal, face
axial, and four-chamber view) in US videos [60]. Furthermore,
Chen et al. [120] presented a general framework based on a com-
posite framework of the convolutional and RNNs for the detection
of different standard planes from US videos.

3.2.3. Cardiac
Accurate identification of cardiac cycle phases (end-diastolic

(ED) and end-systolic (ES)) in echocardiograms is an essential pre-
requisite for the estimation of several cardiac parameters such
stroke volume, ejection fraction, and end-diastolic volume. Dezaki
et al. [121] proposed a deep residual recurrent neural network
(RRN) to automatically recognize cardiac cycle phases. RRNs com-
prise residual neural networks (ResNet), two blocks of LSTM units,
and a fully connected layer, and thus combines the advantage of
the ResNet, which handles the vanishing or exploding gradient
problem when the CNN goes deeper, and that of the RNN (LSTM),
which is able to model the temporal dependencies between
sequential frames. Similarly, Sofka et al. [122] presented a fully
convolutional regression network for the detection of measure-
ment points in the parasternal long-axis view of the heart; this net-
work contained an FCN to regress the point locations and LSTM
cells to refine the estimated point location. Note that reinforce-
ment learning has also been combined with deep learning for
anatomical (cardiac US) landmark detection [123].

3.3. Segmentation

The segmentation of anatomical structures and lesions is a pre-
requisite for the quantitative analysis of clinical parameters related
to volume and shape in cardiac or brain analysis. It also plays a
vital role in detecting and classifying lesions (e.g., breast, prostate,
thyroid nodules, and lymph node) and in generating ROI for subse-
quent analysis in a CADx system. Accurate segmentation of most
anatomical structures, and particularly of lesions (nodules) in US
images, is still a challenging task due to low contrast between
the target and background in US images. Furthermore, it is well
known that manual segmentation methods are time consuming
and tedious, and suffer from great individual variability. Therefore,
it is imperative to develop more advanced automatic segmentation
methods to solve these problems. Examples of some results of
anatomical structure segmentation using deep learning are illus-
trated in Fig. 5 [21,38,44,46,50,57,124–126].

3.3.1. Non-rigid organs
Echocardiography has become one of the most commonly used

imaging modalities for visualizing and diagnosing the left ventricle
(LV) of the heart due to its low cost, availability, and portability. In
order to diagnose cardiopathy, a quantitatively functional analysis
of the heart must be done by a cardiologist, which is often based on
accurate segmentation of the LV at the end-systole and



Fig. 5. Examples of segmentation results from certain anatomical structures using deep learning. (a) prostate [21]; (b) left ventricle of the heart [124]; (c) amniotic fluid and
fetal body [50]; (d) thyroid nodule [125]; (e) median nerve structure [44]; (f) lymph node [38]; (g) endometrium [126]; (h) midbrain [57]; (i) tongue contour [46]. All of these
results demonstrated a segmentation performance that was comparable with that of human radiologists. Lines or masks of different colors represent the corresponding
segmented contours or regions.
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end-diastole phases. It is obvious that manual segmentation of the
LV is tedious, time consuming, and subjective, problems that can
potentially be addressed by an automatic LV segmentation system.
However, fully automatic LV segmentation is a challenging task
due to significant appearance and shape variations, a low signal-
to-noise ratio, shadows, and edge dropout. To address these issues,
various conventional machine learning methods such as active
contours [127] and deformable templates [128] have been widely
used to successfully segment the LV, under the condition of using
prior knowledge about the LV shape and appearance. Recently,
deep learning-based methods have also been frequently adopted.
Carneiro et al. [129–134] employed DNNs that are capable of learn-
ing high-level features from the original US images to automati-
cally segment the LV of the heart. To improve the segmentation
performance, several strategies (e.g., efficient search methods, par-
ticle filters, an online co-training method, and multiple dynamic
models) were also adopted.

The typical non-rigid segmentation approach often divides the
segmentation problem into two steps: ① rigid detection and
② non-rigid segmentation or delineation. The first step is of great
importance because it can reduce the search time and training
complexities. To reduce the complexity of training and inference
in a rigid detection while maintaining the segmentation accuracy,
Nascimento and Carneiro [124,135] utilized a sparse manifold
learning method combined with DBN to segment non-rigid objects.
Their experiments demonstrated that the combination of sparse
manifold learning and DBN in the rigid detection stage yielded a
performance as accurate as the state of the art, but with lower
training and search complexity. Unlike the typical non-rigid seg-
mentation scheme, Nascimento and Carneiro [136] directly per-
formed non-rigid segmentation through the sparse low-
dimensional manifold mapping of explicit contours, but with a lim-
ited generalization capability. Although most studies have demon-
strated that the use of deep learning can yield a much superior
performance when compared with conventional machine learning
methods, a recent study [137] showed that handcrafted features
outperformed the CNN on LV segmentation in 2D echocardio-
graphic images at a markedly lower computational cost in training.
A plausible explanation is that the supervised descent method
(SDM) [138] regression method applied to hand-designed features
is more flexible in iteratively refining the estimated LV contour.

Compared with adult LV segmentation, fetal LV segmentation is
more challenging, since fetal echocardiographic sequences suffer
from inhomogeneities, artifacts, poor contrast, and large inter-
subject variations; furthermore, there is usually a connected LV
and left atrium (LA) due to the random movements of the fetus
in the womb. To tackle these problems, Yu et al. [139] proposed
a dynamic CNN method based on multiscale information and
fine-tuning for fetal LV segmentation. The dynamic CNN was
fine-tuned by deep tuning with the first frame and shallow tuning
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with the rest of frames in each echocardiographic sequence,
respectively, in order to adapt to the individual fetus. Furthermore,
a matching method was utilized to separate the connection area
between the LV and LA. The experiments showed that the dynamic
CNN obtained a remarkable performance improvement from
88.35% to 94.5% in terms of the mean of the Dice coefficient, when
compared with the fixed CNN.

3.3.2. Rigid organs
Boundary incompleteness is a common problem for many

anatomical structures (e.g., prostate, breast, kidney, fetus, etc.) in
medical US images, and presents great challenges to the automatic
segmentation of these structures. Two main methodologies are
currently used to address this issue: ① a bottom-up manner that
classifies each pixel into foreground (object) or background in a
supervised manner; and ② a top-down manner that takes advan-
tage of prior shape information to guide segmentation. By classify-
ing each pixel in an image in an end-to-end and fully supervised
learning manner, many studies reached the task of pixel-level seg-
mentation for different anatomical structures, such as fetal body
and amniotic fluid [50], lymph node [38], and bone [140]; all of
the deep learning methods presented in these studies outper-
formed the state-of-the-art methods in both performance and
speed in terms of the specific task.

One significant advantage of the bottom-up manner is that it
can provide a prediction for each pixel in an image; however, it
may be unable to deal with boundary information loss due to a lack
of the prior shape information. In contrast, the top-down manner
can provide strong shape guidance for the segmentation task by
modeling the shape, although appropriate shape modeling is diffi-
cult. In order to simultaneously accomplish landmark descriptor
learning and shape inference, Yang et al. [21] formulated boundary
completeness as a sequential problem—namely, modeling for
shape in a dynamic manner. To take advantage of both the
bottom-up and top-down methods, Ravishankar et al. [39]
employed a shape that had been previously learned from a shape
regularization network to refine the predicted segmentation result
obtained from an FCN segmentation network. The results on a kid-
ney US image dataset demonstrated that incorporation of the prior
shape information led to an improvement of approximately 5% in
the kidney segmentation. In addition, Wu et al. [141] implanted
the FCN core into an auto-context scheme [142] in order to take
advantage of local contextual information, and thus bridge severe
boundary incompleteness and remarkably improve the segmenta-
tion accuracy. Anas et al. [143] applied an exponential weight map
in the optimization of a ResNet-based deep framework to improve
the local prediction.

Another way to perform the segmentation task is to formulate
the problem as a patch-level classification task, as was done in
Ref. [125]. This method can significantly reduce the extensive com-
putation cost and memory requirement.

3.4. 3D US analysis

Due to the difficulty of 3D deep learning, the deep learning
methods that are currently applied in medical US analysis mostly
work on 2D images, although the input may be 3D. In fact, 3D deep
learning is still a challenging task, due to the following limitations:
① Training a deep network on a large volume may be too compu-
tationally expensive (e.g., with a significantly increased memory
and computational requirement) for real clinical application; and
② a deep network with a 3D patch as input require more training
samples, since a 3D network contains parameters that are orders of
magnitude higher than a 2D network. This may dramatically
increase the risk of overfitting, given the limited training data
[144]. In contrast, US image analysis fields often struggle with
limited training samples (usually in the hundreds or thousands,
even after using data-augmentation strategies) due to the difficulty
in generating and sharing lesion or disease images. Nevertheless, in
the domain of medical US analysis, an increasing number of
attempts are being made to address these challenging 3D deep
learning tasks.

In routine gynecological US examination and in endometrium
cancer screening in women with post-menopausal bleeding, endo-
metrium assessment via thickness measurement is commonly per-
formed. Singhal et al. [126] presented a two-step algorithm based
on FCN to accomplish the fully automated measurement of endo-
metrium thickness. First, a hybrid variational curve-propagation
model, called the deep-learned snake (DLS) segmentation model,
was presented in order to detect and segment the endometrium
from 3D transvaginal US volumes. This model integrated a deep-
learned endometrium probability map into the segmentation
energy function, with the map being predictively built on U-net-
based endometrium localization in a sagittal slice. Following the
segmentation, the thickness was measured as the maximum dis-
tance between the two interfaces (basal layers) in the segmented
mask.

To address the problem of automatic localization of the needle
target for US-guided epidural needle injections in obstetrics and
chronic pain treatment, Pesteie et al. [145] proposed a convolu-
tional network architecture along with a feature-augmentation
technique. This method has two steps:① plane classification using
local directional Hadamard (LDH) features and a feed-forward neu-
ral network from 3D US volumes; and ② target localization by
classifying pixels in the image via a deep CNN within the identified
target planes.

Nie et al. [146] proposed a method for automatically detecting
the mid-sagittal plane based on complex 3D US data. To avoid
unnecessary massive searching and the corresponding huge com-
putation load, they subtly turned the sagittal plane detection prob-
lem into a symmetry plane and axis searching problem. More
specifically, the proposed method consisted of three steps: ① A
DBN was built to detect an image patch fully containing the fetal
head from the middle slice of the 3D US data, as proposed in Ref.
[147];② an enhanced circle-detection method was used to localize
the position and size of the fetal head in the image patch; and
③ finally, the sagittal plane was determined by a model, with prior
knowledge of the position and size of the fetal head having been
obtained in the first two steps.

It should be pointed out that all three methods are actually 2D
deep learning-based approaches in a slice-by-slice fashion,
although both can be used in 3D US volumes. Here, the advantage
is high speed, low memory consumption, and the ability to utilize
pre-trained networks either directly or via transfer learning. How-
ever, the disadvantage is being unable to exploit the anatomical
contextual information in directions orthogonal to the image
plane. To address this disadvantage, Milletari et al. [57] proposed
a patch-wise multi-atlas method called Hough-CNN, which was
employed to perform the detection and segmentation of multiple
deep brain regions. This method used a Hough voting strategy sim-
ilar to the one proposed in an earlier study [26]; the difference was
that the anatomy-specific features were obtained through a CNN
instead of through SAEs. To make full use of the contextual infor-
mation in 3D US volumes, Pourtaherian et al. [148] directly trained
a 3D CNN to detect needle voxels in 3D US volumes; each voxel
was categorized from locally extracted raw data of three orthogo-
nal planes centered on it. To address the issue of highly imbalanced
datasets, a new update strategy involving the informed re-
sampling of non-needle voxels in the training stage was adopted
in order to improve the detection performance and robustness.

A typical non-rigid object segmentation scheme that is widely
applied to 2D images is also suitable for the segmentation of 3D
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US volumes. Ghesu et al. [52] employed this typical non-rigid seg-
mentation method, which consists of two steps—rigid object local-
ization and non-rigid object boundary estimation—to achieve the
detection and segmentation of the aortic valve in 3D US volumes.
To address the issue of 3D object detection, marginal space deep
learning (MSDL), which takes advantage of marginal space learning
(MSL) [149] and deep learning, was adopted. Based on the detected
object, an initial estimation of the non-rigid shape was determined,
followed by a sparse adaptive DNN-based active shape model to
guild the shape deformation. The results on a large 3D trans-
esophageal echocardiogram image dataset demonstrated the effi-
ciency and robustness of the MSDL in the 3D detection and
segmentation task of the aortic valve; it showed a significant
improvement of up to 42.5% over the state of the art. By only using
the central processing unit (CPU), the aortic valve can be success-
fully segmented in less than one second with higher accuracy than
the original MSL.

The segmentation of fetal structures is more challenging than
that of anatomical structures or organs. For example, the placenta
is highly variable, as its position depends on the implantation site
in the uterus. Although handcrafted manual segmentation and
semi-automated methods have proven to be accurate and accept-
able, they are time consuming and operator dependent. To address
these issues, Looney et al. [150] employed DeepMedic to segment
the placenta from 3D US volumes. No manual annotations were
used in the training dataset; instead, the output of the semi-
automated random walker (RW) method was used as the ground
truth. DeepMedic is a dual pathway 3D CNN architecture, proposed
by Kamnitsas et al. [151], which was originally used to segment
lesions in brain MRI. However, the successful placental segmenta-
tion from the 3D US volumes seemed to demonstrate that DeepMe-
dic is a generic 3D deep architecture that is suitable for different
modalities of 3D medical data (volumes). Recently, Yang et al.
[152] implanted an RNN into the customized 3D FCN for the simul-
taneous segmentation of multiple objects in US volumes, including
fetus, gestational sac, and placenta. To tackle the ubiquitous
boundary uncertainty, an effective serialization strategy was
adopted. In addition, a hierarchical deep supervision mechanism
was proposed to boost the information flow within the RNN and
further improve the segmentation performance. Similarly,
Schmidt-Richberg et al. [153] integrated the FCN into deformable
shape models for 3D fetal abdominal US volume segmentation.
4. Future challenges and perspectives

From the examples provided above, it is evident that deep
learning has entered various application areas of medical US anal-
ysis. However, although deep learning methods have constantly
updated state-of-the-art performance results across different
application aspects in medical US analysis, there is still room for
improvement. In this section, we summarize the overall challenges
commonly encountered in the application of deep learning in med-
ical US analysis, and discuss future perspectives.

Clearly, the major performance improvement that can be
achieved with deep learning greatly depends on large training
sample datasets. However, compared with the large and publicly
available datasets in other areas (e.g., more than 1 million anno-
tated multi-label natural images in ImageNet [6]), the current pub-
lic availability of datasets in the field of medical US is still limited.
The limited training data act as a bottleneck for the further appli-
cation of deep learning methods in medical US image analysis.

To address the issue of small sample datasets, one of the most
commonly used methods by researchers at present is performing
cross-dataset (intra-modality or inter-modality) learning—that is,
transfer learning. As pointed out earlier, there are two main ideas
regarding the use of transfer learning: directly utilizing a pre-
trained network as a feature extractor, and fine-tuning by fixing
the weights in parts of the network [77]. Depending on whether
the destination and source come from the same domain or not,
transfer learning can be divided into two types: cross-modal and
cross-domain transfer learning. Cross-domain transfer learning is
the most common way to accomplish a variety of tasks in medical
US analysis. In any case, the pre-training of models is currently
always performed on large sample datasets. Doing so ensures an
excellent performance; however, this is absolutely not the optimal
choice in the medical imaging domain. When using small training
samples, the de novo training of domain-specific deep models (if
the size of the model is selected properly) can achieve a superior
performance when compared with transfer learning from a net-
work that has been pre-trained using large training samples in
another domain (e.g., natural images) [154]. The underlying reason
for this may be that the mapping from the raw input image pixels
to the feature vectors used for a specific task (e.g., classification) in
medical imaging is much more complex in the pre-trained case,
and requires a large training sample for good generalization.
Instead, a specially designed small network may be more suitable
to the smaller-scale training datasets that are commonly encoun-
tered in medical imaging [155]. Consequently, developing
domain-specific deep learning models for medical imaging can
not only improve task-specific performance with a low computa-
tion complexity, but also facilitate technological advantages in
CADx in the medical imaging domain.

In addition, models trained on natural images may not be opti-
mal for medical images, which are typically single channel, low
contrast, and texture rich. In medical imaging, and especially in
breast imaging, multiple modalities such as MRI, X-ray, and US
are frequently used in the diagnostic workflow. Either US or mam-
mography (i.e., X-ray) is usually regarded as the first-line screening
examination, for which it is much easier to collect large training
samples. However, breast MRI is a more costly and time-
consuming method that is commonly used for screening high-
risk populations, and it is much more difficult to collect sufficient
training datasets and ground-truth annotation for this method. In
this case, cross-modal transfer learning can be an advisable choice.
Few experiments have demonstrated that cross-modal transfer
learning may be superior to a cross-domain one for a specific task
in the absence of sufficient training datasets [156]. Considering the
fact that large samples are rarely collected from a single site (i.e.,
institute or hospital), and are instead often collected from multiple
different sites (or machines), it is possible to make attempts to per-
form cross-site (or cross-machine) transfer learning of the same
modality.

Finally, other issues regarding current transfer learning algo-
rithms must be addressed; these include how to avoid negative
transfer, how to deal with heterogeneous feature spaces between
source and target domains or tasks, and how to improve generali-
zation across different tasks. The purpose of transfer learning is to
leverage the knowledge learned from the source task in order to
improve learning performance in the target task. However, an
inappropriate transfer learning method may sometimes decrease
the performance instead, resulting in negative transfer [157].

Ignoring the inherent differences between different methods,
the effectiveness of any transfer method for a given target task
mainly depends on two aspects: the source task, and how it is
related to the target. Ideally, a transfer method would produce a
positive transfer between sufficiently related tasks while avoiding
negative transfer, although the tasks would not be an appropriate
match. However, these goals are difficult to achieve simultane-
ously in practice. To avoid negative transfer, the following strate-
gies may be used: ① recognizing and rejecting harmful source
task knowledge, ② choosing the best source task from a set of
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candidate source tasks (if possible), and ③ modeling the task
similarity between multiple candidate source tasks. In addition,
mapping is necessary in order to translate between task represen-
tations when the representations of the source and target tasks are
heterogeneous.

It is worth stressing again that 3D US is a very important imag-
ing modality in the field of medical imaging, and that 3D US image
analysis has shown great potential in US-based clinical application,
although several issues remain to be addressed. It can be foreseen
that more novel 3D deep learning algorithms will be developed to
perform various tasks in medical US analysis, and that greater per-
formance improvements will be achieved in the future. However, it
is currently difficult to proceed with the development of 3D deep
learning methods without the strong support of other communi-
ties, and especially that of the CV community.
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