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The autonomous exploration and mapping of an unknown environment is useful in a wide range of appli-
cations and thus holds great significance. Existing methods mostly use range sensors to generate two-
dimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth infor-
mation on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud
map that is intuitive for human perception. In this paper, we present a systematic approach with dual
RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment.
With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud
map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observ-
able Markov decision process. Partial map simulation and global frontier search methods were combined
for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way,
the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single
connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of
the developed system and methods.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction strategy is proposed that uses a sonar sensor array for perception
Autonomous robots can acquire information on the environ-
ment and assist humans in various circumstances and applications,
such as rescuing humans from danger, providing service within
urban or home environments, and guiding or otherwise aiding peo-
ple in need [1–6]. Despite the dramatic development of relative
technologies and algorithms, major challenges remain. The com-
plexity and variability of the unknown environment make it diffi-
cult for human operators to provide prior information to a robot
[7]. Thus, it is of great significance to equip a robot with the capa-
bilities of autonomous exploration and mapping, including incre-
mental map construction, localization, path planning, motion
control, navigation, and so on, without direct human intervention.

Heuristic and reactive exploration approaches have been
studied in the literature. In Ref. [8], Yamauchi proposes a
frontier-based heuristic exploration algorithm. In Ref. [9], based
on the angular uncertainty of sonar sensor, a heuristic exploration
and mapping. In Ref. [10], a local map-based frontier graph search
exploration method is developed, and the environment is repre-
sented by a tree structure, making it efficient to determine the next
target position even within a large environment. In Ref. [11],
Keidar and Kaminka describe a morphological frontier detection
method using light detection and ranging (LIDAR) data to
accelerate the map frontier point detection process. In Ref. [12], a
reactive exploration strategy is proposed that uses current velocity
and bearing for rapid frontier selection.

The simulation-based autonomous exploration strategy has
been attracting increasing research effort, since it can assist in
measuring information and generating the goal pose based on a
current robot’s status during exploration. In Ref. [13], Carrillo
et al. propose a utility function with Shannon and Rényi entropy
in order to measure the robot’s actions for exploration. In Ref.
[14], Lauri and Ritala present a forward simulation algorithm,
and formulate the exploration to a partially observable Markov
decision process (POMDP). In Ref. [1], with partially known envi-
ronment information, a red/green/blue-depth (RGB-D) sensor is
used for loop closure detection in an autonomous mapping and
exploration process. In Ref. [15], Bai et al. propose a Gaussian
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Fig. 1. The process of location points creation.
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process regression-based exploration strategy, and predict mutual
information with robot motion samples. In Ref. [16], the autono-
mous exploration problem is formulated as a partial differential
equation; the information is described as a scalar field from the
prior known area to the unknown area.

In existing exploration methods, range sensors are mostly
used and two-dimensional (2D) grid maps are generated. How-
ever, a 2D grid map only contains planar geometric information,
and is often insufficient for human perception [17–19]. RGB-D
sensors directly provide both color and depth information, and
can help to generate a three-dimensional (3D) point cloud map.
RGB-D sensor-based simultaneous localization and mapping
(SLAM) systems were first proposed independently by Henry
et al. [20] and Engelhard et al. [21]. Image features were used
to find matches among each frame, and an iterative closest point
(ICP) algorithm was applied to estimate the point cloud transfor-
mations in the RGB-D SLAM systems. In Ref. [22], Klein and
Murray present the parallel tracking and mapping (PTAM) frame-
work and implement tracking and mapping in dual parallel
threads. Labbé and Michaud [23] propose the real-time
appearance-based mapping (RTABMAP) algorithm, in which loop
closure detection thread and a memory management method are
added. Online incremental mapping and loop closure detection
can be attained, and the mapping efficiency and accuracy can
remain consistent over time.

The field of view (FoV) of existing RGB-D sensors is limited [24].
To obtain a greater scope of environment information, multiple
RGB-D sensors can be used together. Dual RGB-D sensors have
been utilized in visual SLAM for robust pose tracking and mapping
[25], and an RGB-D sensor has been fused with an inertial mea-
surement unit (IMU) for indoor wide-range environment mapping
[26]. In Ref. [27], Munaro et al. present an RGB-D sensor network,
in which multiple RGB-D sensors are deployed in an indoor envi-
ronment for human tracking. In Ref. [28], multiple RGB-D sensors
with non-overlapping FoVs are employed for line detection and
tracking, thus providing a 3D surrounding view and morphological
information on the environment.

In our previous work, we developed RGB-D-based localization
and motion planning and control methods [24], and realized
RGB-D-based exploration [17]. Nevertheless, the robustness and
efficiency of the exploration process was limited due to the small
FoV of the RGB-D sensor. In this work, we used dual RGB-D sensors
for the mobile robot. The deployment of dual RGB-D sensors pro-
vided a larger FoV, but also introduced technical challenges in
interference, data synchronization, and processing. With the syn-
chronized data from the dual RGB-D sensors, location points were
generated and a 3D point cloud map and 2D grid map were incre-
mentally constructed. An autonomous exploration strategy was
established by combining partial map simulation with global fron-
tier search methods. In this way, the local optimum can be avoided
and the exploration efficacy can be ensured. The experimental
results demonstrated the high robustness and efficiency of the
developed system and methods.

This paper is organized as follows: Section 2 presents the 3D
and 2D mapping method with dual RGB-D sensors, and Section 3
describes the autonomous exploration algorithm in detail. Section 4
describes the mobile robot system that validates the proposed
mapping and exploration method. Section 5 presents the experi-
ments and results. Finally, Section 6 concludes the paper.

2. Mapping with dual RGB-D sensors

With the information provided by dual RGB-D sensors, a 3D
point cloud map can be constructed in real time. This process
includes location point creation, mapping, and loop closure
detection.
2.1. Location point generation

Fig. 1 presents the process of creating location points. In order
to construct a 3D point cloud map, the sensor data must be pro-
cessed; this includes the RGB images and depth images from the
dual RGB-D sensors, and the wheel odometry data from the mobile
chassis. The data should then be synchronized. The pose between
the dual RGB-D sensors is known, as it can be determined by cali-
bration after system assembly.

Past information is not included in the current frame of the
information queue, including RGB images, depth images from the
dual RGB-D sensors, and the wheel odometry information. Fig. 2
depicts the synchronization implemented with the robot operating
system (ROS) message filter method.

The synchronized sensor data are processed to create location
points. Dual RGB-D color and depth data are simultaneously com-
bined into an integrated data structure that comprises the current
sensor data, which can be used for the location point creation pro-
cess. The oriented fast and rotated brief (ORB) feature points and
corresponding descriptors are obtained from the RGB images. The
3D feature points in the robot frame are integrated with the 2D fea-
ture points and with corresponding depth data from the depth
images, as the pose between the dual RGB-D cameras is known.
The fundamental matrix based on the epipolar constraint is calcu-
lated in order to determine the inliers, using matched 3D feature
points from the last frame and the current frame. With enough
inliers, data from the wheel odometry is extracted to provide an
initial guess of the transformation between the last frame and
the current frame.



Fig. 2. Sensor data synchronization.

Fig. 3. The process of mapping and loop closure detection.

Fig. 4. The process of 3D point cloud segmentation and 2D grid map construction.
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The transformation between the frames is estimated by the ran-
dom sample consensus (RANSAC) algorithm based on the perspec-
tive–n–points (PnP) model, using matched 3D feature points. The
bag of words (BoW) of a frame is created by corresponding ORB
descriptors, and the environment vocabulary is incrementally con-
structed with the BoW online, rather than pre-training in the target
environment, as doing so is more suitable for autonomous explo-
ration tasks. The location point, Lt, is created with the above infor-
mation and the current timestamp, t, and the edge between the last
and current location point is initialized, with its weight set to zero.

Depth errors and feature mismatch errors may exist in an
unknown environment, especially in a place with few features
and varying illumination. A sudden change in RGB-D localization
may occur, which can detrimentally impact the real-time motion
control of the mobile robot. Furthermore, although wheel odome-
try changes smoothly, it contains accumulated error. However, the
RGB-D localization and wheel odometry can be fused by means of
an extended Kalman filter in order to achieve robust localization.

2.2. Point cloud mapping and loop closure detection

The mapping and the loop closure detection process are tightly
coupled using graph optimization and memory management
methods to ensure stability and real-time performance. The simi-
larity and pose of the location points are optimized in the tree-
based network optimizer (TORO) framework [29] to ensure global
consistency.

The location points are stored in the working memory (WM) or
long-term memory (LTM), as determined by the similarity, as
shown in Fig. 3. The location points in the WM are used for real-
time loop closure detection, while other location points are stored
in the LTM as candidates. The candidates will either be retrieved to
the WM or deleted, according to their similarity and storage time
in the LTM.

First, Lt is set as a new vertex of the graph and the similarity of Lt
and the nearest M location points is calculated by their BoWs, as
shown inEq. (1),whereKmatched represents thematchedBoWnumber
between the BoW of Lt and a BoW from one of the nearest N location
points, Lc.Kt andKc are theBoWnumbersof Lt and Lc, respectively. The
similarity of Lt and Lc is marked as k. When k is greater than the
threshold, e, Lc is merged into Lt and Lt is loaded into WM.

k Lt; Lcð Þ ¼
Kmatched

Kt
; Kt > Kc

Kmatched

Kc
; Kt � Kc

8>><
>>: ð1Þ

The conditional probabilities of the loop closure among Lt and
other location points on the graph are updated with k. The weight
of the graph edges among Lt and the other location points are cor-
rected by TORO, including the location points in the WM and
LTM. The transformations among Lt and the location points in the
WM are calculated by the ICP algorithm, with an initial guess from
the wheel odometry. Loop closure is established if the variation is
smaller than the given threshold.With the estimated current trans-
formation, the weights of the edges are updated and the poses of
other location points are corrected to ensure the global consistency
of the pose from each location point. The location point in the WM
with the lowest weight and longest residence time will be trans-
ferred to the LTM, and the location point in the LTM with the grea-
test weight will be retrieved to the WM. The global 3D point cloud
map is updated with the corrected information from the graph.

Fig. 4 shows the 3D point cloud segmentation and 2D grid map
construction process with dual RGB-D sensors. The point cloud
map is voxelized and down-sampled with the voxel filter in the
Point Cloud Library (the voxel size is set as 0.05 m). A point set is
selected and its normal vector is estimated by the k nearest neigh-
bor algorithm. The point set size k is set as 10, which reconciles the
computing efficiency with the precision. The normal vector is esti-
mated as shown in Eq. (2).

C ¼ 1
k

Xk

i¼1ðpi � p
�Þðpi � p

�ÞT;C 2 R3�3

C � vd ¼ kd � vd; d 2 f1;2;3g; vd 2 R3�1; kd 2 Rþ

vnormal ¼ vn; where kn ¼maxfk1; k2; k3g
ð2Þ



Fig. 5. The exploration process based on the POMDP model.
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Here, pi is the coordinate of each point and p
�
is the center coor-

dinate of the corresponding point set. C is the covariance matrix,
and vd and kd are the eigenvector and eigenvalue of C, respectively.
The eigenvector with the biggest eigenvalue, vn is selected as the
normal vector of the point set, vnormal [30]. The point sets in the
point cloud can be determined and segmented with the above
information. If the point set has a normal vector that deviates from
the vertical direction by more than a given threshold, it is set as an
obstacle. Otherwise, it is possible to move to the next step. The
point set is then processed with the Euclidean clustering extraction
method. If the height of its center is greater than a given threshold,
the point set will be set as an obstacle. Otherwise, it is taken as free
space. The grid map is constructed with the (x, y) coordinates from
the obstacle portion of the point cloud.

A robot may pass by a region with few visual features or with
features that are similar to the surroundings, which leads to the
failure of loop closure detection [31]. In such circumstances, the
mobile robot can execute autonomous motion in the exploration
process; this changes the FoV of the dual RGB-D sensors in order
to obtain more environment information.

3. Autonomous exploration

The real-time updated 2D grid map and localization are set as
prior information for the autonomous exploration. The updated
map and odometry information are used for the next goal pose
generation, so as to expand the map and further explore the
environment.

3.1. Autonomous exploration based on the POMDP model

Assuming that the environment is partially known and contains
stochastic information, the mobile robot exploration process can
be described by a POMDP model hs;S;U;Z;TS ;O;Ri.
� s ¼ 0;1; . . . ; k; . . .f g represents the decision epoch of the goal
generation in the exploration task.
� S ¼ X �M ¼ f½X0;M0�; ½X1;M1�; . . . ; ½Xk;Mk�; . . .g represents
the state space of the exploration task, including the mobile
robot state XðXk ¼ ½xk; yk; hk�TÞ and the map state M. X and
M are both observable. (The errors from applying a given
motion to the robot and from applying the localization data
are not considered, so X is completely observable and M is
partially observable.)

� U ¼ fU0;U1; . . . ;Uk; . . .gðUk ¼ ½vk;xk�TÞ represents the feasible
motion according to the robot motion constraint.
� Z represents the observation space.
� TS ¼ TX � TM represents the state transfer model, which

consists of TX and TM. TX : X � U � X ! Rþ describes a

state transfer Tkþ1
k from the current mobile robot state Xk

and motion Uk to the next state, Xk+1.
TM :M�U �M! ½0;1�; ½0;1� represents the scope of occu-
pancy grid probabilities. TM is independent of U , which means
that TMðMk;Ui;Mkþ1Þ ¼ TMðMk;Uj;Mkþ1Þ for any Ui;Uj 2 U.

� O : Z � X �M�U ! ½0;1� represents the observation model,
as shown in Fig. 5. According to the current mobile robot pose
and the 2D grid map, an observation value of the current state
is taken by ray tracing the model.
� R : B � X �M� U ! Rþ represents the reward function con-
structed by the state, observation, and action, as measured by
the belief state value. Mutual information function is chosen
as the form of the reward function.

Based on the 2D grid map and the robot pose, a series of mobile
robot motions are generated for trajectory simulation, from which
the current goal pose is selected. The motions are evaluated by the
reward function, with the target being to maximize the reward
function in the corresponding decision epoch. In the POMDP
model-based exploration process, the reward function is defined
as the mutual information function, as in Eq. (3). Rk represents
the reward function value in decision epoch k, which is determined
by the states of N particles. Particles are simulated from the belief
state Bk and Ukð ÞN;with the robot state Xkþ1ð ÞN; and with the obser-
vation ðZkþ1ÞN of the map state Mkþ1.

Rk ¼ 1
N

XN
n¼1

log
p Xn;kþ1jBk; Uk; Zn;kþ1
� �

p Xn;kþ1jBk;Uk

� �
 !"

þ
Z
M
p Mn;kþ1jBk; Uk; Zn;kþ1; Xn;kþ1
� �

�log p Mn;kþ1jBk; Uk; Zn;kþ1; Xn;kþ1
� �

p Mn;kþ1jBk; Uk
� �

 !# ð3Þ

The first term of Eq. (3) is the expected information gain of the
mobile robot state. Considering that the experimental environment
is a flat terrain on which the given motion can be executed cor-
rectly, we assume that there is no noise in the mobile robot motion
model Xkþ1 ¼ f Xk;Ukð Þ [32], as shown in Eq. (4). This assumption
aligns with the decision to choose the particle state with the max-
imum likelihood value Xnm ;kþ1as the expected result. Therefore, the
mutual information gain described by the robot state and observa-
tion is set as 0.

xkþ1
ykþ1
hkþ1

2
64

3
75 ¼

xk
yk
hk

2
64

3
75þ

� vk

xk
sinhk þ vk

xk
sin hk þxkDtð Þ

vk

xk
coshk � vk

xk
cos hk þxkDtð Þ

xkDt

2
66664

3
77775 ð4Þ

The second term of Eq. (4) is the expected information gain of
the map state, which is represented by the mutual information
gain of the map state and the observation value. The integral is
implemented by summing up the entropy of the selected grids dur-
ing the simulation. The probability range of the grid is 0; 1½ �: 0 for
the free state and 1 for the occupied state. The entropy of the
binary random variable is defined in Eq. (5).

E pð Þ ¼ �plog pð Þ � 1� pð Þlog 1� pð Þ ð5Þ
Theentropysummingscope is set basedon the ray-tracingobser-

vationmodel of the sensor. Themodel is described as follows:Define
a sector with (xk, yk) as the origin, themaximumobservation range r
as the radius, and the observation angle h as the center angle. Select
theprobability value of the grids in the ray-tracingbeamdirection of
the sector and calculate the corresponding entropy value. For grids
with an unknown probability (which means that the grid is in the
unknown environment), set the entropy value as 1.
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3.2. Partial map simulation and global frontier search

The mobile robot autonomous exploration process is described
by the POMDP model, in which the goal pose of each epoch is
generated by the combined strategies of partial map simulation
and global frontier search, as shown in Fig. 6. A goal pose Xg and
its reward function value Rg is generated by the partial map simu-
lation process with the current 2D grid map and robot pose. This
process is listed as Procedure 1, and contains particle sampling,
weight calculation, and resampling. The parameters include the

iteration number I, particle number N, sampling number f/igIi¼1;
sample distribution kernel function fi; ray-tracing model v; simu-
lation stage H; resampling lower bound �N ; and discount factor c.

The partial map simulation process based on the POMDP model
is presented in Procedure 1. First, the algorithm iterates over
i ¼ 1; . . . ; I and simulates particles over n ¼ 1; . . . ; N. Based on
the iteration number, a kernel function fi is chosen for particle

sampling, generating the motion series UðnÞ0:H�1;i. For uniformity of
the initial sampling and a better solution for subsequent sampling,
f1 is set as a uniform distribution and fiði � 2Þ is set as a normal

distribution with the mean from UðnÞ0:H�1;i by initial sampling f1.
The range of the uniform distribution Urange and the covariance
matrix of the normal distribution R are set based on the velocity
range of the mobile chassis. Current particle poses are updated
based on the mobile robot motion model and the generated
motions. The map observation is updated from the ray-tracing
model and given an observation range, and the reward function
value of each particle is also updated. The sampling number

f/igIi¼1 is an increasing linear sequence of i /i ¼ aiþ bð Þ; and is a
faster way to converge to the optimal solution of the probability
Fig. 6. Diagram of the exploration strategy.
meaning. The weights of the particles are updated after the simu-
lation stage has occurred H times. The prior and posterior informa-

tion are evaluated with observation z nð Þ
1:H;j, based on ray-tracing

model v and the inverse sensor model. In practical applications,
the reward function is calculated using prior and posterior infor-
mation. The log odds of the prior and posterior probability are cal-
culated, with random value lISM as the noise of the inverse sensor
model. The discount factor c indicates the relationship between
the simulated information and the current information. For exam-
ple, c > 1 means that further simulated information takes on more
weight. If the weights of the particles are overly dispersed,

1=
PN

n¼1 wðnÞi

h i2
< �N; then the particles should be resampled and

new particle poses and map observations should be generated.
The goal pose and corresponding reward function value are simu-
lated from the motion series with maximum weight.

The optimization time and simulation range must be limited.
An optimal solution of the probability meaning can be reached
for the partial map simulation process by means of the Monte Carlo
method over a limited simulation range. The mobile robot may
continue to pace around, or may get stuck when entering the
region with the local information optimum. Thus, a global frontier
search strategy is introduced in order to avoid a local optimum.

Procedure 1. The partial map simulation process based on the
POMDP model.

Input: Xc; Mc; I; N; f/igIi¼1; fi; H; �N; c
Output: Xg; Rg

1: X0  Xc

2: for i ¼ 1; . . . ; I do
3: for n ¼ 1; . . . ; N do
4: if i ¼ 1 then

5: U nð Þ
0:H�1;1 	 f1 Urange

� �
6: else

7: UðnÞ0:H�1;i 	 fiðUðnÞ0:H�1;i�1; RÞ
8: end if

9: XðnÞ1:H;i  f X0;U
ðnÞ
0:H�1;i

� �
10: for j ¼ 1; . . . ; /i do
11: for k ¼ 0; . . . ; H � 1 do

12: lprior ¼ l zðnÞk;j

h i
13: zðnÞk;j 	 v zkjSðnÞk

h i
14: lISM ¼ rand l pð Þ½ �
15: lposterior ¼ l zðnÞk;j

h i
þ lISM

16: RðnÞ0:H�1;j ¼ E lprior
� �� E lposterior

� �
17: end for
18: end for

19: wðnÞi  wðnÞi�1
Q/i

j¼1
PH�1

t¼0 ct�HRðnÞt; j

h i
20: end for
21: for n ¼ 1; . . . ; N do

22: wðnÞi  
wðnÞ

iPN

n¼1w
ðnÞ
i

23: end for
24: if 1PN

n¼1 wðnÞi½ �2 < �N then

25: resample particles,w nð Þ
i  1

N

26: end if
27: end for

28: nm  argmaxn w nð Þ
I

h i
29: Xg  f X0; U

ðnmÞ
0: H�1; I

h i
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Frontiers between the known region (which is constructed by the
exploration process) and the unknown region are detected by
Fig. 7. The mobile robot hardware platform.
means of a global frontier search strategy based on a breadth-first
search algorithm. The nearest connected frontier point to the cur-
rent mobile robot pose is selected, and the connected point is
defined as a point with eight existing grids around it. The explo-
ration time and region cannot be ensured, as the observable
unknown environment near frontier points cannot be determined
by such a heuristic search strategy. The global frontier search strat-
egy can avoid a local optimum using the current known map. Infor-
mation on the unknown environment can be measured by means of
the partial map simulation strategy, thus ensuring new information
is obtained within each exploration epoch. The combined strategy is
shown in Fig. 6. The goal pose Xg and its reward function value Rg

are generated by the partial map simulation. If Rg > �R; the goal
pose can be sent to the motion control process. Otherwise, the glo-
bal frontier search strategy is triggered for a new goal pose. The new
exploration process begins when the mobile robot arrives at the
goal pose within a given time; alternatively, the current exploration
and the motion control process will be suspended if the time
exceeds the limit.

The lower bounds of the reward, iteration number, and particle
number mainly affect the efficiency and robustness of the explo-
ration process. The lower bound ensures the efficiency of the par-
tial map simulation, and a local optimum can be avoided with a
global frontier search. More information can be obtained when
using increased iterations and particles, but the efficiency may
decrease with the resulting heavier computation.

4. System implementation

4.1. System implementation with dual RGB-D sensors

A mobile robot system was constructed to validate the pro-
posed autonomous exploration and mapping method. The system
consisted of a Yujin Kobuki mobile chassis, dual Kinect RGB-D sen-
sors, and an HP Envy 15-j105tx mobile computing unit. The envi-
ronment color and depth data obtained by the Kinect were used
in the method. The resolution of the RGB and depth images was
640 � 480 pixels, with a frequency of 30 Hz. The FoV was 57�
horizontal degrees by 43� vertical degrees, and the depth range
in the indoor environment was 0.5–5 m [33]. The Yujin Kobuki
mobile chassis was differentially driven by the two wheels, with
a diameter of 0.46 m, a maximal linear speed of 70 cm�s�1, and
an angular speed of 180��s�1. The frequency of the wheel odometry
had a maximum of 50 Hz. The mobile computing unit was
equipped with a CPU i7 4702 M and 8 GB RAM. ROS Indigo, OpenNI
RGB-D driver, the Point Cloud Library, and OpenCV were also
installed on the mobile computing platform.

Kinect obtains depth data bymeans of structured light measure-
ment, mainly by projecting an infrared speckle to the measured
object and capturing the depth information through the comple-
mentary metal-oxide semiconductor (CMOS) infrared sensor. An
interference problem occurs in situations when multiple Kinect
FoVs overlap [34]. To avoid structured light interference among
the sensors and to expand the FoV of the system, dual Kinect RGB-
D sensors were installed, as shown in Fig. 7; their pose relative to

the mobile chassis is shown in Eq. (6). ½x; y; z�T and ½h;/;w�T are the
translation and ZYX Euler angles of the Kinect frame relative to the
mobile chassis. The transformation among the dual Kinect RGB-D
sensors and the mobile chassis is given by Eq. (6).

½x1; y1; z1; h1; /1; w1�T ¼ ½�0:118; 0:0; 0:271; 0:0; 0:0; 0:0�T

½x2; y2; z2; h2; /2; w2�T ¼ ½�0:118; 0:0; 0:481; �90


; 0:0; 0:0�T

ð6Þ

N. Yu, S. Wang / Engin
4.2. System workflow

Fig. 8 shows the mobile robot autonomous exploration and
mapping workflow.

(1) Mapping and localization. According to the environment
RGB-D information that was obtained by the dual Kinect RGB-D
sensors and the wheel odometry from the mobile chassis, the
RTABMAP algorithm was adopted to estimate localization informa-
tion. The pose was fused with the RGB-D localization and wheel
odometry based on an extended Kalman filter (EKF, integrated in
the ROS robot_pose_ekf package), and a 3D point cloud map was
constructed. A 2D grid map was generated from the 3D point cloud
for autonomous exploration and motion control.

(2) Combined strategy of partial map simulation and global
frontier search. Based on the forward simulation algorithm, the

goal pose ½xg; yg; hg�T of the exploration process was generated using

the 2Dgridmap and the current pose ½xc; yc; hc�T;with the simulation
strategy using partial information from the gridmap, and the search
strategy using global frontier points from the grid map.

(3) Dynamic window motion control based on motion con-

straints. According to the robot’s current pose ½xc; yc; hc�T; a 2D grid
map Mc; and a goal pose ½xg; yg; hg�T from the exploration strategy,
the robot’s motion control command was generated. To ensure
the stability of the mapping process, cost function was added with
the motion constraint, based on a dynamic window control algo-
rithm [35].

In the exploration algorithm, the distance between an available
goal and the current position was set to be between 0.5 and10 m,
the maximum speed of the robot was 0.5 m�s�1, and the cycle time
was below 1.0 s. During the exploration process toward the next
goal, the point cloud map, grid map, and pose were updated to pro-
vide environment information. The point cloud and grid map
update rate was 1 Hz, and the pose update rate could be increased
up to 20 Hz. Thus, these parameters were able to meet the
demands of the exploration process.

5. Experiments and results

5.1. Experimental settings

The autonomous exploration and mapping environment set-
tings are shown in Fig. 9(a). The mobile robot set off in the starting



Fig. 8. The workflow of the mobile robot for autonomous exploration.

170 N. Yu, S. Wang / Engineering 5 (2019) 164–172
region and executed the autonomous exploration and mapping
task. The task was finished when the robot arrived at the target
region. Eight kinds of indoor scenes were tested, as shown in the
figure. Scene (i) was a rectangular area with obstacles on three
sides and only one exit. Scenes (ii–iv) were aisles with widths of
1.43 and 0.85 m, respectively ((iii), (iv) for the entrance and exit).
Scenes (v) and (vii) were regions with various obstacles and aisle
widths of 0.90 and 0.78 m, respectively. Scenes (vi) and (viii) were
different perspectives of the open area.

According to the mobile robot exploration process in the labo-
ratory, the scenes were divided into two types: single connected
regions and multi-branch regions. Scenes (i–iv) were single con-
nected regions, with only one aisle connecting scene (i) to scene
(iv). The mobile robot made a 90� right turn from scene (i) to scene
(ii), and then a 90� right turn to scenes (iii) and (iv), in which the
view of the sensors was restricted by the baffle plates and the
width of the aisle. The height of the baffle plates was 1.5 m, which
was greater than the vertical range of the RGB-D sensors. Scenes
(v–viii) were multi-branch regions; the order in which the mobile
robot explored these scenes was not unique due to the stochastic
Fig. 9. The autonomous exploration and mapping experiment. (a) The experiment en
(c) generated 2D grid map and mobile robot trajectory from the autonomous mapping
nature of the exploration algorithm. Thus, the experimental task
was activated from the start region of the indoor environment
and was stopped after entering the target region. The starting
region was a rectangular area in the aisle, with a length of
1.18 m from the edge of the cabinet on the right side to the rear
obstacle, and a width of 1.12 m. The target region was a rectangu-
lar area in scenes (vi) and (viii) bounded by the door and the wall,
with a length of 2.68 m and a width of 2.44 m.

In the single connected regions, the FoV was limited, regardless
of whether single or dual RGB-D sensors were deployed. In the
multi-branch regions, the scene was wider, and the dual RGB-D
sensors allowed more information to be detected and fed into
the system. Thus, the experiment was able to demonstrate the effi-
cacy of utilizing dual RGB-D sensors by comparing the experimen-
tal performances in the single connected and multi-branch regions.

5.2. Results

Combining the methods of partial map simulation with a global
frontier search ensures that the simulated goal pose is the
vironment from scene (i) to (viii). The (b) constructed 3D point cloud map and
and exploration process.



Fig. 10. The time-region curve in the autonomous mapping and exploration process
comparing a single RGB-D sensor with dual RGB-D sensors.
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optimum in the observation scope, and that a local optimum can
be avoided by searching the map frontier. Thus, the exploration
task was successfully accomplished.

Fig. 9(b) depicts the 3D point cloud map constructed from the
mobile robot autonomous mapping and exploration experiment.
This laboratory 3D point cloud map was constructed using the
mobile robot odometry and the information from the dual RGB-D
sensors; it includes the narrow aisles, obstacles, and open area.
The constructed 3D point cloud map corresponded well with the
actual indoor environment; examples of good correspondence
included the rear box in scene (i), the color blocks near the wall
in scene (ii), the obstacles in scenes (v) and (vii), the door in scene
(vi), and the open area in scenes vi and viii. The 3D point cloud map
was incrementally constructed during the autonomous exploration
process, thus preserving spatial consistency with effective
stitching.

Fig. 9(c) depicts the 2D grid map that was generated from the
3D point cloud map and the mobile robot trajectory. In this 2D grid
map, the length of the x axis is 11.40 m, and the length of the y axis
is 9.40 m. The actual dimensions of the laboratory were 11.04 m by
7.93 m. The dimensions of the starting region were 1.25 m by
1.20 m, and the dimensions of the target region were 2.80 m by
2.43 m. The size, location of obstacles, and dimensions of the 2D
map matched well with the real situation.

With the combined method of partial map simulation and glo-
bal frontier search, the mobile robot continuously obtained envi-
ronment information during the autonomous mapping and
exploration process. Furthermore, in circumstances with insuffi-
cient information, the trajectory to the destination could be recov-
ered with sufficient information by triggering the frontier search
method. If a goal pose with sufficient information could not be
simulated in the current robot pose, the global frontier search
strategy was triggered in order to change the view of the robot sen-
sors for further exploratory orientation to the target region; for
example, the scene might change from (iv) to (v), corresponding
to (�1.7, �3.6) in Fig. 9.

Fig. 10 shows the time-region curve of the autonomous map-
ping and exploration process, with a comparison between the use
of a single RGB-D sensor and dual RGB-D sensors. The area was
measured by the generated 2D grid map. A total area of 31.0 m2

was explored over 196 s with the dual RGB-D sensors, whereas
a total area of 27.6 m2 was explored over 297 s with a single
RGB-D sensor. In the single connected regions, the view obtained
by the autonomous mobile robot system was limited by the aisle;
thus, the exploration efficiency with a single RGB-D sensor was
similar to that of the system with dual RGB-D sensors. In the
multi-branch regions, the exploration cost time with the dual
RGB-D sensors was significantly less than with a single RGB-D
sensor; furthermore, the exploration area covered with the dual
RGB-D sensors was larger than the area covered with a single
RGB-D sensor. The mobile robot equipped with dual RGB-D sen-
sors obtained more environment information than when
equipped with a single RGB-D sensor. In the autonomous map-
ping and exploration process, the map region stably increased
over time, thus demonstrating the efficacy of the proposed
method.

5.3. Discussion

The exploration process will be aborted if neither the partial
map simulation algorithm nor the global frontier search algorithm
can generate an available exploration goal. The partial map simu-
lation algorithm may fail if no goals with sufficient information
can be generated. Furthermore, the global frontier search algo-
rithmmay fail if no feasible connected frontier point can be discov-
ered. As shown in Fig. 6, if both algorithms fail, the current
exploration process is stopped. The robot can remain in place,
return to the starting point, or execute orders from the human
operator.

In the autonomous mapping and exploration process, the use of
the dual RGB-D sensors improved the exploration efficiency. If
more RGB-D sensors are deployed, the localization accuracy may
be further improved, as has been observed in other applications
[25]. More sensors can be integrated into the system for
application-specific measurements [6]. The number and type of
sensors can be determined with respect to application, computa-
tional cost, real-time capability, and accuracy requirements.

Multiple robots can collaborate in the exploration process in
order to obtain more information and improve the exploration effi-
ciency [36]. The fusion of autonomous exploration with tele-
operation from human operators holds promise for overcoming
possible pitfalls in robot autonomy [37].
6. Conclusion

In this work, we have presented a systematic approach for the
autonomous exploration and mapping of an unknown environ-
ment using dual RGB-D sensors. The synchronized and processed
RGB-D data provided environment color and depth information.
Both a 3D cloud map and a 2D grid map were incrementally
generated. Partial map simulation and global frontier search
methods were combined for autonomous exploration, and
dynamic action constraints were utilized in motion control in
order to avoid a local optimum. The experimental results demon-
strated the high robustness and efficiency of the developed sys-
tem and methods.

Future work will focus on a semantic analysis of the 3D point
cloud map in order to achieve abundant environment information
in the exploration process.
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