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To design microstructure and microhardness in the additive manufacturing (AM) of nickel (Ni)-based
superalloys, the present work develops a novel data-driven approach that combines physics-based mod-
els, experimental measurements, and a data-mining method. The simulation is based on a computational
thermal-fluid dynamics (CtFD) model, which can obtain thermal behavior, solidification parameters such
as cooling rate, and the dilution of solidified clad. Based on the computed thermal information, dendrite
arm spacing and microhardness are estimated using well-tested mechanistic models. Experimental
microstructure and microhardness are determined and compared with the simulated values for
validation. To visualize process–structure–properties (PSPs) linkages, the simulation and experimental
datasets are input to a data-mining model—a self-organizing map (SOM). The design windows of the
process parameters under multiple objectives can be obtained from the visualized maps. The proposed
approaches can be utilized in AM and other data-intensive processes. Data-driven linkages between
process, structure, and properties have the potential to benefit online process monitoring control in order
to derive an ideal microstructure and mechanical properties.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Accelerating the process and materials design in additive
manufacturing (AM) has been investigated in the current literature
(e.g., Refs. [1–3]). In this respect, multiscale and multiphysics
modeling and simulation are vital, because they have the potential
to significantly reduce the cost and time expended in experiments
[4,5]. Many efforts have been made to model and simulate AM
processes in order to predict process–structure–property (PSP)
relationships [6–9]. Meanwhile, it is critical for model validation
and verification to employ highly controlled experimental
measurements, which include online monitoring of the process,
microstructure characterization, and mechanical testing [10–12].

However, merely combining experiments with simulations
cannot achieve the desired acceleration in AM process and
materials design, because it is difficult to understand and utilize
the high-dimensional datasets produced by simulations and
experiments. There is an essential need for supportive data science
approaches that efficiently integrate the iterations between
experiments and multiscale simulation. Popova et al. [13] used
data science approaches to understand the process–structure
linkages in AM, and used a proposed data science workflow in an
attempt to understand the relationships between process
conditions and synthetic grain structure. An integration of
physics-based and data-mining approaches for temperature field
prediction in AM has been proposed [14,15]. A surrogate model
based on a functional Gaussian process was calibrated by means
of three-dimensional (3D) finite-element analysis (FEA) and
experimental thermal image data [14,15]. Salloum et al. [16]
undertook high-dimensional dataset compression by using
adaptive Alpert tree wavelets in the laser-engineered net shape
(LENS) process. The self-organizing map (SOM), which was
proposed by Kohonen [17,18], is an unsupervised machine learning
algorithm based on neural networks that is able to map high-
dimensional data to two-dimensional (2D) planes while preserving
topology [19,20]. Compared with an artificial neural network
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(ANN), which is commonly used for regression problems, the main
advantage of the SOM is that it can visualize high-dimensional data
in the form of a low-dimensional map, which helps researchers to
visually identify underlying relations between the features. As a
tool to visualize high-dimensional datasets, the SOM is beneficial
for the cluster analysis of real-life design problems as well [21].

In this study, an SOM is used to visualize high-dimensional data
in AM; these data are obtained from well-designed experimental
measurements and multiphysics models. The SOM is introduced
to find the relationships among laser power, mass flow rate, energy
density, dilution, cooling rate, dendrite arm spacing, and micro-
hardness in AM. In addition, the design windows of process param-
eters under multiple objectives can be obtained from the
visualized SOM. A schematic diagram of this work is shown in
Fig. 1 [22].
2. Experimental dataset

Single tracks of Inconel 718 powder were deposited on an AISI
1045 carbon steel disc using a 1020 nm high-powered continuous
wave laser. The beam diameter at its focus is 3 mm. The laser
power was set to be constant, while the mass flow rate was incre-
mented from 3.35 to 27.2 g�min�1 in 2.65 g�min�1 increments. At
each mass flow rate, the laser power was incremented from 1000
to 2000 W in 200 W increments, resulting in 60 single tracks. The
detailed process parameters and conditions can be found in our
previous paper [10]. Materials characterization in this case
Fig. 1. A schematic description of the workflow typically employed in current compu
description of how this can be augmented with a data-mining approach to recover high-
experiment.
included CR measurements, dilution measurements, dendrite arm
spacing measurements, and hardness testing. An infrared thermal
camera was used to determine the cooling rate from the solidus
to liquidus temperature of the steady-state melt pool, as detailed
in Ref. [10]. After etching the clad cross-section, dilution and den-
drite arm spacing can be identified and quantified. Vickers micro-
hardness measurements were taken to obtain the averaged
microhardness. A summary of the experimental efforts as well as
a chart detailing the dilution are provided in Fig. 2. Details of
experiments can be found in Ref. [22].
3. Physics-based simulation dataset

A computational thermal-fluid dynamics (CtFD) model was
developed to simulate the directed energy deposition (DED) pro-
cess [23]. The current paper does not describe the modeling equa-
tions, but rather provides a few features to offer an understanding
of the CtFD model and process–structure models. The non-
isothermal Navier–Stokes (N–S) equations, which include mass,
momentum, and energy equations, were solved to obtain the tem-
perature field and liquid metal flow in the melt pool [24,25]. A
physics-based arbitrary Lagrangian–Eulerian (ALE) method was
utilized to track the free surface of the melt pool [23]. The melt
pool dimensions, dilution, and cooling rate at the liquid–solid
interface can be computed based on the steady-state melt pool
temperature field. Dendrite arm spacing is evaluated by the Hurt
formula [26]. Vickers hardness (HV) can be determined by the
tational efforts (top row) and of experimental efforts (bottom row), along with a
value PSP linkages of interest to material innovation efforts. CALC: calculated; EXP:



Fig. 2. Orthogonal views of the experimental dataset with variable laser power and mass flow rate, and four resulting measurement outputs: cooling rate, dilution, secondary
dendrite arm spacing (SDAS), and microhardness, from microstructure and hardness characterization.
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nickel (Ni) equivalent for Ni-based superalloys [27]. Details of
these models have been described in our previous work [22]. In
total, 25 simulation cases with various laser power levels and mass
flow rates were computed. For each case, the structures and
properties observed were the melt pool geometry, dilution, cooling
rate, secondary dendrite arm spacing (SDAS), and microhardness. A
summary of the simulation efforts is shown in Fig. 3.
Fig. 3. Orthogonal views of the simulation dataset with variable laser
4. Data mining for visualizing PSPs linkages

The SOM Toolbox in MATLAB [28] was used to simultaneously
visualize high-dimensional datasets and design process
parameters. Using physics-based simulations and experimental
measurements, seven-dimensional (7D) PSP datasets were
obtained for data mining as the input vector, xm, as shown in
power and mass flow rate, along with selected simulation results.



Fig. 4. A typical SOM including input vectors. n: total datasets; Wi;j: weight.

Fig. 5. Variance–epoch curve of the trained SOM.
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Fig. 4. Because the simulation results agree well with the experi-
mental results [22], 25 simulation data points and five experimen-
tal data points were used as input vectors to train a single 8 � 8
SOM indistinctively. We compared the results from differently
sized SOMs, and found that the 8 � 8 SOM has the best perfor-
mance. If the map size is too small, the map resolution is very
low; however, an SOM that is too large results in overfitting. Each
7D input vector contains seven variables, including: four process
variables (i.e., laser power, mass flow rate, energy density, and
cooling rate), two microstructure variables (i.e., dilution and SDAS),
and one property variable (i.e., microhardness). In this illustrative
case, only five experimental data points were used as the input
of the SOM out of the total 60 experimental points, because only
five experimental data points have all seven measurements. The
current version of the SOM requires data points with the same
dimension of features. Therefore, the rest of the experimental data
are used to validate the simulation results, rather than train the
SOM. The goal of this work is to demonstrate a data-driven work-
flow in order to understand and design high-dimensional datasets
in AM. There is potential for more experimental and simulation
datasets to be involved in order to obtain better map resolution
without changing the workflow.

The training procedure can be described by the pseudo code, as
shown in Algorithm 1. The map neurons are hexagonal. The labels
of the X and Y axes are the integers 1 � i � SizeX, and 1 � j � SizeY ,
respectively, as shown in Fig. 4. Initially, the weights of the neu-

rons are set to be Wi;j
0 with random number [0, 1]. The elements

of each input vector are normalized linearly to [0, 1]. After initial-
ization, the SOM is trained for a number of T epochs. For the cur-
rent epoch t and each input vector xm, first, the best matching
unit (BMU) is determined by calculating the distance between
the input vector and each neuron weight using Eq. (1). The BMU
is a map unit has the shortest distance to input vector xm. Second,
the diameter of the neighborhood around the BMU can be deter-
mined by Eq. (2), where d(t) is a function that decreases monoto-
nously with time. The initial distance coefficient is d0 and is 8 in

this study. The decrease rate is k. Third, the weights Wi;j
m in the

BMU and its neighborhoods are updated according to Eqs. (3)
and (4). In Eqs. (3) and (4), hBMU;i;j represents the Gaussian kernel
function, where a tð Þ is a learning rate parameter, ri;j is the position
of each unit, and rBMU is the position of the BMU. The current epoch
is finished after all the xm have been calculated to the SOM. By
selecting a large enough number of epochs T ¼ 100 in this case,
the SOM can converge. Fig. 5 presents the variance of weights of
the neuron points as a function of the epoch, indicating the conver-
gence of the trained SOM. When training is finished, the map can
reorder the original datasets while preserving the topological prop-
erties of the input space.
Algorithm 1. Program SOM
Initialize weights of neurons Wi;j
0 with random number ½0; 1�
Index of epoch: t

Index of input vector in the dataset: m

Do t ¼ 0 to T (max index of epoch)

Do m ¼ 1 to n (max index of input vector)

Find BMU:
WBMU
m ¼ argmin

i ¼ 1:::SizeX
j ¼ 1:::SizeY

k Wi;j
m � xm k2
 (1)
Determine diameter of neighborhood around BMU:

d tð Þ ¼ d0exp �t=kð Þ
 (2)
Update weights Wi;j
mþ1 in BMU and neighborhoods:� �
Wi;j
mþ1 ¼ Wi;j

m þ hBMU;i;j xm �Wi;j
m� �
(3)
hBMU;i;j ¼ a tð Þexp �k ri;j � rBMU k2= 2d2 tð Þ� �
 (4)
End do

End do
Each map is shown in Fig. 6. The relation between the PSP
variables can be understood visually. For example, as shown
in Fig. 6, the mass flow rate and SDAS are positively correlated,
as the component planes of the mass flow rate and SDAS have
similar values at similar positions. Conversely, the mass flow
rate and dilution are highly negatively correlated. Thus,
according to the visualized SOM in Fig. 6, the following results
are obtained in this study:

� The mass flow rate, more than laser power, greatly con-
tributes to the cooling rate and SDAS.

� The dilution and microhardness depend on both the mass
flow rate and laser power.

� The microhardness is dominated by the dilution, rather than
by the SDAS or cooling rate.

Obtained through the data-mining approach, these elations pro-
vide valuable insight into the complex underlying physical phe-
nomena and material evolution during the AM process. In
addition, it is possible to obtain the desired process parameter win-
dow with multiple objective microstructure and property ranges.
In this study, the objective dilution is from 0.1 to 0.3. In this range
of dilution, the solidified track can avoid both lack of fusion due to
low dilution and property degradation due to high dilution [29].
The SDAS should be minimized and the microhardness should be
maximized in order to maintain good mechanical properties. An
iteration procedure through all the units is undertaken in order
to seek units that satisfy these restrictions. An objective cluster



Fig. 6. Contour plots of all design variables with the optimized design window outlined by a white wireframe.
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that includes multiple units can be selected as a white wireframe,
as shown in Fig. 6. Thus, the following desired process parameters
can be obtained: a laser power ranging from 1000 to 1100 W and a
mass flow rate ranging from 22.4 to 24.8 g�min�1. The desired
energy density, which is defined as laser power divided by mass
flow rate, ranges from 2.4 � 106 to 2.9 � 106 J�kg�1.

The effect of uncertainties, such as the simulation error, on the
fidelity of the SOM is an interesting and important topic. In our
future work, a modified SOM with uncertain inputs will be inves-
tigated by using a larger database.

5. Conclusion

This work presented a novel workflow to produce, visualize, and
design high-dimensional PSP linkages in AM through the utiliza-
tion of multiphysics modeling, experimental measurements, and
advanced data science techniques. An application of this workflow
to quantify and design microstructure and microhardness was
demonstrated herein. High-dimensional datasets, which include
laser power, mass flow rate, energy density, cooling rate, dilution,
dendrite arm spacing, and microhardness, were derived by means
of physics-based models and experiments. The profound relations
among PSP data were visualized using an SOM, and important rela-
tionship trends were identified. Multiple objective optimization
examples were proposed and solved in order to attain desired pro-
cess parameters. The presented approach can be applied to a broad
variety of PSP datasets for AM and other data-intensive processes.
Data-driven relationships between process, structure, and property
can provide online monitoring and process control to derive ideal
microstructure and mechanical properties.
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