
Engineering 5 (2019) 721–729
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Additive Manufacturing—Review
Applying Neural-Network-Based Machine Learning to Additive
Manufacturing: Current Applications, Challenges, and Future
Perspectives
https://doi.org/10.1016/j.eng.2019.04.012
2095-8099/� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: qixinbo@gmail.com (X. Qi).
Xinbo Qi a,⇑, Guofeng Chen b, Yong Li a, Xuan Cheng b, Changpeng Li b

a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
bCorporate Technology, Siemens Ltd., Beijing 100102, China

a r t i c l e i n f o
Article history:
Received 29 July 2018
Revised 6 April 2019
Accepted 9 April 2019
Available online 3 July 2019

Keywords:
Additive manufacturing
3D printing
Neural network
Machine learning
Algorithm
a b s t r a c t

Additive manufacturing (AM), also known as three-dimensional printing, is gaining increasing attention
from academia and industry due to the unique advantages it has in comparison with traditional subtrac-
tive manufacturing. However, AM processing parameters are difficult to tune, since they can exert a huge
impact on the printed microstructure and on the performance of the subsequent products. It is a difficult
task to build a process–structure–property–performance (PSPP) relationship for AM using traditional
numerical and analytical models. Today, the machine learning (ML) method has been demonstrated to
be a valid way to perform complex pattern recognition and regression analysis without an explicit need
to construct and solve the underlying physical models. Among ML algorithms, the neural network (NN) is
the most widely used model due to the large dataset that is currently available, strong computational
power, and sophisticated algorithm architecture. This paper overviews the progress of applying the NN
algorithm to several aspects of the AM whole chain, including model design, in situ monitoring, and
quality evaluation. Current challenges in applying NNs to AM and potential solutions for these problems
are then outlined. Finally, future trends are proposed in order to provide an overall discussion of this
interdisciplinary area.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Additive manufacturing (AM), as opposed to traditional
subtractive manufacturing technologies, is a promising digital
approach for the modern industrial paradigm that has gained
widespread interest all over the world [1–4]. By fabricating objects
layer by layer from three-dimensional (3D) computer-aided design
(CAD) models, AM provides several benefits: ① It creates products
with complex shapes, such as topologically optimized structures,
which are difficult to manufacture with traditional casting or forg-
ing processes; ② it can be used to generate novel characteristics of
materials, such as dislocation networks [5], which are very attrac-
tive to academic researchers; and ③ it reduces material waste and
thus saves on cost for industry. However, AM parts also present
dozens of unique defects that differ from those that appear in their
cast and wrought counterparts; these include porosity due to a lack
of fusion and gas entrapment, heavily anisotropic microstructure
in both the perpendicular and parallel directions relative to the
printing direction, and distortion due to large residual stress intro-
duced by a high cooling rate and steep temperature gradient [6]. It
is thus essential to better understand the complex relationship
between a powder’s metallurgical parameters, the printing
process, and the microstructure and mechanical properties of AM
parts. The AM process always involves many essential parameters
that can determine the final products’ performance. For example,
in selective laser melting (SLM), the processing parameters—which
include laser power, scan speed, hatch spacing, and layer thick-
ness—all significantly affect the quality of the produced parts.
Unfortunately, the relationship between these parameters and
the output quality is too complicated to fully understand, as SLM
is a multi-physics and multiscale process that includes powder-
laser interaction at the microscale, melt pool dynamics and
columnar grain growth at the mesoscale, and thermal–mechanical
coupling at the macroscale. Researchers have tried to develop
various physical models in order to classify this relationship in a
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clearer and more accurate way. Acharya et al. [7] developed a com-
putational fluid dynamics (CFD) and phase-field framework to
simulate grain structure evolution in the as-deposited state for
the laser powder-bed fusion (PBF) process; Fergani et al. [8]
proposed an analytical model to assess residual stress in the AM
process of metallic materials; and Chen et al. [9] adopted a
finite-element model to investigate melt pool profiles and bead
shape. As can be seen, the above simulations vary from the powder
scale to the part scale, and concentrate on only one or two aspects of
the whole process as a result of the lack of an in-depth understand-
ing of AM. It is currently impractical to predict the whole AM
process quickly and accurately via these physics-driven methods
in a short time. In addition to the abovementioned physics-
driven models, data-driven models have been widely used in the
field of AM; these models have the unified name of machine
learning (ML) [10,11]. The overwhelming advantage of this kind
of model is that they do not need to construct a long list of
physics-based equations; instead, they automatically learn the
relationship between the input features and output targets based
on previous data. Among ML methods, the neural network (NN)
algorithm is the most widely used and is currently under rapid
development, as a result of the massive data available today, the
great availability of computational resources, and its advanced
algorithm structure [12]. For example, NNs are the main stimulating
force in these areas: computer vision [13], voice recognition [14],
natural language processing [15], and autonomous driving [16].
The NN shows its great power in recognizing the underlying
complicated patterns in the abovementioned tasks, most of which
were once thought to be only possible for human beings. Further-
more, there is an obvious trend in that the successful experiences
with utilizing NN in these areas are being transferred into
traditional manufacturing fields (which of course include AM).
The NN has exerted a deep and wide impact on all value chain
innovation in industry—from product design, manufacturing, and
qualification to delivery—and it is believed that the impact of NN
will be increasingly intensive. This paper provides an overview of
the current progress achieved by researchers in applying the NN
algorithm to AM. It is organized as follows: Section 2 gives a brief
introduction of AM technologies and the NN algorithm, while
Section 3 summarizes detailed applications of NN in AM. Section 4
outlines challenges and potential solutions, and Section 5 describes
future trends in this area.

2. Methods

2.1. AM technologies

As a terminology, AM is comparable with traditional subtractive
manufacturing (i.e., casting, forging, and computer numerical con-
trol (CNC)); it can be divided into several categories based on dif-
ferent printing technologies [17]. Among them, PBF [18], binder
jetting (BJ) [19], and material extrusion (ME) [20] are three widely
used technologies. PBF uses a thermal source to build parts layer
upon layer by sintering or melting fine metal/plastic powders.
Based on different application cases, PBF can further be divided
into selective laser sintering (SLS), SLM, electron beam melting
(EBM), and so on. SLS and SLM both utilize a laser as the thermal
source; however, in SLM, the material is fully melted rather than
sintered as in SLS [21,22]. In contrast, the thermal source of EBM
is an electron beam, which results in certain advantages such as
smaller residual stress and less oxidation, in comparison with
laser-based technologies [23]. The BJ process uses two materials:
a powder-based material and a binder. The binder is selectively
deposited onto areas of the powder bed, and bonds these areas
together to form a solid part one layer at a time [24]. Fused depo-
sition modeling (FDM) is a kind of ME technology. During printing,
molten materials are extruded from the nozzle of an FDM printer
to form layers, as the material hardens immediately after extrusion
[25]. It can be seen that there are various kinds of AM technologies,
and that these produce different kinds of data sheets. How to orga-
nize these data with a unified format and integrate the data-flow
into the subsequent ML algorithms is a challenging task.

2.2. NN algorithm

NNs are a kind of supervised ML, while other forms of ML are
unsupervised learning. The easiest method to distinguish between
these two patterns is to check whether the dataset that they oper-
ate on has labels or not. That is to say, in an NN algorithm, the data
is labeled—that is, the model has been told the ‘‘answer” to the
inputs. This is suitable for an AM case, since there are always clear
targets and qualification methods for this manufacturing tech-
nique. An NN has strong evaluating skills for representing complex,
highly nonlinear relationships between input and output features,
and it has been shown that a network with only one hidden layer
but sufficient neurons can express an arbitrary function. The archi-
tecture or settings of an NN consist of three kinds of layers: the
input layer, hidden layer, and output layer [26]. Each layer consists
of nodes or neurons, which borrow the idea from neurological
sciences. The parameters or coefficients in NN are called weights,
and represent the connection magnitudes between neurons in
adjacent layers. The values of weights are determined by training
the NN iteratively, in order to minimize the loss function between
predictions and actual outputs. Within this type of process, the
most famous and widely used method for updating weights is
called back propagation, which uses the mathematical chain rule
to iteratively compute gradients for each layer [27]. Once training
is achieved, the NN will have the capacity to infer the outputs
based on previously unseen inputs. Many types of specific NNs
have been proposed by researchers over the decades of its develop-
ment. The following three classes of NNs have proved their value
and gained wide popularity. ① The multilayer perceptron (MLP)
[28] is the most typical NN; its common mathematical operations
are linear summation and nonlinear activation (such as the
sigmoid function). It is widely used in dealing with tabular data.
② The convolutional neural network (CNN) [13] dominates image
processing, since it considers the spatial relationship between
image pixels. It is named after the mathematical ‘‘convolution”
operation. ③ The recurrent neural network (RNN) [29] plays a
key role in dealing with temporal dynamics, since it builds connec-
tions between the nodes in one layer. The most famous RNN is long
short-term memory (LSTM), which accurately reproduces the
finite-element simulation in the following case.
3. Applications

AM is a value chain incorporating many aspects: model design,
material selection, manufacturing, and quality evaluation. This sec-
tion stresses the application of NNs to the following parts of AM:
design, in situ monitoring, and the process–property–performance
linkage.

3.1. Design for AM

Design for AM (DfAM) involves building a CAD model of AM
parts; thus, it is the first and crucial step for the whole processing
chain. However, there are always deviations between CAD models
and the printed parts, because of residual stress introduced by dis-
tortion in the processing results. Thus, compensation is usually
performed in order to obtain an AM part with high accuracy.
Chowdhury and Anand [30] presented an NN algorithm to directly
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compensate the part geometric design, which helps to counter-
balance thermal shrinkage and deformation in the manufactured
part. The whole process is as follows: ① A CAD model of the
required part is prepared, and its surface 3D coordinates are
extracted as the input of the NN model; ② a thermo–mechanical
finite-element analysis software (such as ANSYS or ABAQUS) is
used to simulate the AM process with a defined set of process
parameters. The deformed surface coordinates are extracted as
the output of the NN model; ③ an NN model with 14 neurons
and mean square error (MSE) as the loss function is trained to learn
the difference between the input and output; and ④ the trained
network is implemented to STL file to make the required geometric
corrections so that manufacturing the part using the modified
geometry results in a dimensional-accurate finished product.

Koeppe et al. [31] proposed a framework that combined
experiments, finite-element method (FEM) simulation, and NNs,
as illustrated in Fig. 1. First, they conducted actual experiments
to validate FEM simulation. Next, FEM was used to run 85
simulation samples based on a different parametric combination
of global loads, displacement and strut radius, and cell scale. These
are the NN input features, and the outputs are the maximum Von
Mises and equivalent principal stresses. The NN architecture
contains a fully connected layer with 1024 rectified linear units,
two LSTM cells with 1024 units, respectively, and a fully connected
linear output layer. It should be noted here that LSTM is selected
and recommended because of its excellent capacity in dealing with
time series events. After training, an NN can reproduce the loading
history in good agreement with an FEM simulation. From this point
on, the NN can act as a substitute for traditional numerical
simulation methods with a low operating velocity.

Unlike the above two cases, which applied an NN to DfAM,
McComb et al. [32] attempted to establish an autoencoder (a kind
of NN that learns from the input and then tries to reconstruct the
input with high accuracy) to learn a low-dimensional representa-
tion of the part design. In addition to this autoencoder, the other
three networks were trained to determine the relationship
between the design geometries and three DfAM attributes (i.e.,
part mass, mass of support material, and build time). In this way,
a combination of these four NNs can be utilized to evaluate the
attributes of parts designed for AM. Another interesting instance
of applying ML to DfAM concerns the security level of the 3D print-
ing process. Li et al. [33] trained a CNN to detect and recognize ille-
gal components (e.g., guns) made through AM. After the CNN is
well constructed, it is integrated into the printers in order to detect
gun printing at an early stage and then terminate the manufactur-
ing process in time. The authors collected a dataset of 61340 two-
dimensional (2D) images of ten classes, including guns and other
non-gun objects, corresponding to the projection results of the
Fig. 1. Application of an NN model to predict the deformation of an AM structure. (a) Sp
(b) the FEM, whose simulation results are validated by specimens; (c) the NN, which is t
history in a faster way than the FEM. FC: fully-connected layers. Reproduced from Ref.
original 3D models. The CNN model is composed of two convolu-
tional layers, two pooling layers, and one fully connected layer.
According to the experimental results, the error rate of classifica-
tion can be reduced to 1.84%.

3.2. In situ monitoring

In situ monitoring for data acquisition from multiple sensors
provides first-hand information regarding product quality during
the AM process. If these real-time data can be analyzed syn-
chronously and accurately, complete closed-loop control for
manufacturing is realized. The data source is divided into three
types, including one-dimensional (1D) data (e.g., spectra), 2D data
(e.g., images), and 3D data (e.g., tomography) [34]. Each data type
has its pros and cons. For example, 1D data can be processed faster
and its hardware is relatively cheaper; however, it may provide
less useful information than the others. Two examples will be
proposed to demonstrate the usage of these different types of
signal data. Shevchik et al. [35,36] presented a study on in situ
quality monitoring for SLM using acoustic emission (AE) and
NNs, which is depicted in Fig. 2. The AE signals are recorded using
a fiber Bragg grating sensor, while the selected NN algorithm is a
spectral convolutional neural network (SCNN), which is an
extension of a traditional CNN. The input features of the model
are the relative energies of the narrow frequency bands of the
wavelet packet transform. The output feature is a classification of
whether the quality of the printed layer is high, medium, or poor.
It was reported that the classification accuracies using SCNN are as
high as 83%, 85%, and 89% for high, medium, and poor workpiece
qualities, respectively.

Recently, Zhang et al. [37] built a vision system with a high-
speed camera for process image acquisition. The system can
detect the information of three objects: the melt pool, plume,
and spatter, as illustrated in Fig. 3. The features of these objects
are carefully extracted based on the authors’ understanding of
the physical mechanisms of the process in order to feed them
into the traditional ML algorithm. However, the authors stress
that the CNN model does not require this feature-extraction step,
as it still has a high accuracy of 92.7% in quality-level identifica-
tion. It is believed that CNN has great potential to achieve
real-time monitoring in industrial applications. The cases men-
tioned above mainly focus on purely in situ monitoring of the
AM process; however, the qualification result of the NN model
cannot affect the real manufacturing in reverse. On the contrary,
the following case realizes closed-loop control by seamlessly
integrating a vision-based technique and an NN tool for liquid
metal jet printing (LMJP) [38]. First, Wang et al. developed a
vision system with a charge-coupled device (CCD) camera to
ecimens, which are manufactured and tested under controlled loading conditions;
rained by the data generated by the FEM, and then used to predict the deformation
[31] with permission of Elsevier, � 2018.



Fig. 2. Scheme of the AM quality monitoring and analyzing system. The workflow is as follows: An acoustic signal is emitted during the AM process, and then captured by
sensors; an SCNN model is finally applied to the recorded data in order to distinguish whether the quality of the printed layer is adequate or not. Reproduced from Ref. [35]
with permission of Elsevier, � 2018.

Fig. 3. Scheme of the SLM process monitoring configuration. A high-speed camera is used to capture sequential images of the built process; a CNNmodel is applied to identify
quality anomalies. CMOS: complementary metal-oxide semiconductor; ROI: region of interest. Reproduced from Ref. [37] with permission of Elsevier, � 2018.
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capture the jetting images, which contain various droplet
patterns. Second, they formulated an NN model to establish a
complex relationship between the voltage level and the droplet
features. Thus, the real-time jetting behavior and the ideal
behavior (in which each pulse of the input signal generates only
a single droplet with sufficient volume and without satellites
behind it) can be converted into exact voltage values according
to the NN model. Finally, proportional integral derivative (PID)
control technology was used to compare these values in order
to adjust the drive voltage and stabilize the printing process
accordingly.
3.3. Process–property–performance linkage

From a technological and economic point of view, process
parameter selection for the optimization of the performance of
AM parts is highly desirable. Constructing a direct linkage between
process, property, and performance is of great interest to scientists
and engineers. This linkage is often highly nonlinear, since the
amount of the input variables is usually greater than three. As a
result, it is very difficult to identify the underlying mathematical
formula for such a linkage. Because of its intrinsic nonlinear
characteristics, NN models have been applied to formulate these



Table 1
NN application to build process–property–performance linkage.

AM technique Processing parameters Property/performance Ref.

FDM Layer thickness, orientation, raster angle, raster width, air gap Compressive strength [39]
FDM Layer thickness, orientation, raster angle, raster width, air gap Wear volume [40]
FDM Orientation, slice thickness Volumetric error [41]
FDM Layer thickness, orientation, raster angle, raster width, air gap Dimensional accuracy [42]
FDM Layer thickness, orientation, raster angle, raster width, air gap Dimensional accuracy [43]
BJ Layer thickness, printing saturation, heater power ration, drying time Surface roughness [44]
BJ Layer thickness, printing saturation, heater power ration, drying time Shrinkage rate (Y-axis) [44]
BJ Layer thickness, printing saturation, heater power ration, drying time Shrinkage rate (Z-axis) [44]
SLS Laser power, scan speed, scan spacing, layer thickness Density [45]
SLS Laser power, scan speed, scan spacing, layer thickness Dimension [46]
SLS Z height, volume, bounding box Build time [47]
SLS Laser power, scan speed, hatch spacing, layer thickness, scan mode, temperature, interval time Shrinkage ratio [48]
SLS Layer thickness, laser power, scan speed Open porosity [49]
SLS Laser power, scan speed, hatch spacing, layer thickness, powder temperature Tensile strength [50]
SLS Laser power, scan speed, hatch spacing, layer thickness, scan mode, temperature, interval time Density [51]
SL Layer thickness, border overcure, hatch overcure, fill cure depth, fill spacing and hatch spacing Dimensional accuracy [52]
LMD Laser power, scanning speed, powder feeding rate Geometrical accuracy [53]
EBM Spreader translation speed, rotation speed Volume, roughness [54]
WAAM Bead width, height, center distance of adjacent deposition paths Offset distance [55]

SL: stereolithography; LMD: laser metal deposition; WAAM: wire and arc additive manufacturing.
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mathematical relationships for various AM processes. Table 1
[39–55] summarizes the application of NNs into AM (in fact, NN
is referred to here as MLP, since all the datasets are the tabular
type), and lists the input values of the processing parameters and
the output values of the property/performance. As can be seen in
Table 1, different AM techniques should select different input fea-
tures, since the key factors in determining the AM part are differ-
ent. Furthermore, because a large number of parameters can
exert influence on the final products, determining which parame-
ters to select requires a deep knowledge of the AM process. This
topic will be discussed in detail in Section 4.3.

The detailed setting of the NN algorithm is summarized in
Table 2. The typical hyperparameters to determine an NN structure
usually consist of four parts: the number of hidden layers, number
of neurons in one layer, activation function, and loss function.

(1) Number of hidden layers. In the ‘‘Layer/neuron” column of
Table 2, ‘‘5-8-1” means that this NN contains three layers: the
input layer has five neurons, the only hidden layer has eight neu-
rons, and the output layer has one neuron. As can be seen from
the table, one hidden layer is sufficient for a large majority of AM
problems.

(2) Number of neurons in one layer. The neuron numbers of
the input layer and output layer are determined by the problem
Table 2
Detailed information on the NN algorithm.

AM technique Layer/neuron Activation function

FDM 5-8-1 Tanh
FDM 5-8-1 Tanh
FDM 4-15-12-1 Sigmoid
FDM 5-6-4 —
FDM 5-7-3 —
BJ 4-6-1 Sigmoid
BJ 4-20-1 Sigmoid
BJ 4-11-1 Sigmoid
SLS 4-9-1 Sigmoid
SLS 4-6-1 —
SLS 3-7-1 —
SLS 7-7-1 —
SLS 3-9-1 Tanh
SLS 5-27-1 Sigmoid
SLS 7-8-1 —
SL 6-20-5 Sigmoid
LMD 3-9-3 —
EBM 2-200-2 Sigmoid
WAAM 3-12-1 Sigmoid

MAE: mean absolute error; RMSE: root mean square error; SSE: sum square error.
itself. However, the number of neurons for the only hidden
layer needs to be selected carefully, since it is directly related to
the underfitting and overfitting problems in ML [56]. According
to Table 2, we suggest 5–10 neurons to be the starting point for
determining the optimal number of hidden units for AM
applications.

(3) Activation function. The activation function is the nonlin-
ear transformation over the input signal (x); it decides whether a
neuron should be activated or not. This is of vital importance to
the NN, because a network without an activation function is just
a linear regression model, and cannot handle complicated tasks.
Some popular types of activation functions are as follows:

Sigmoid xð Þ ¼ 1
1þ e�x

ð1Þ

Tanh xð Þ ¼ 2
1þ e�2x � 1 ð2Þ

ReLU xð Þ ¼ max 0; xð Þ ð3Þ
In a real implementation, the gradient toward either end of the

sigmoid and tanh functions and at the negative axis of the ReLU
function is going to be small and even zero; as a result, the weights
Error function Dataset Error (%) Ref.

MAE 32 1.2 [39]
— 32 1 [40]
MAE 375 0–7.9 [41]
— 27 4.07 [42]
— 27 0–0.12 [43]
MSE 16 0.2–8.5 [44]
MSE 16 4.0–19.6 [44]
MSE 16 8.0–29.1 [44]
SSE 15 7 [45]
— 34 1.05–1.360 [46]
MSE 130 15 [47]
MSE 33 4.35–27.60 [48]
RMSE 36 0–9.1 [49]
MSE 66 0.9–9.2 [50]
MAE 32 — [51]
MSE 140 6 [52]
RMSE 120 2.0–5.8 [53]
MAE 45 1.74–2.27 [54]
MSE 35 — [55]
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will not be adjusted during learning. This situation gives rise to the
vanishing gradient problem. Max–min normalization, which
refines the inputs to a range 0;1ð Þ, is a good supplementary tech-
nique to avoid this problem. If necessary, batch normalization
[57] should be used in order to continue to refine input signals in
every layer.

(4) Loss function. The loss function should be determined by
the exact problem, and often carries a real-world interpretation.
For example, both the root mean square error (RMSE) and the
mean absolute error (MAE) are ways of measuring the distance
between two vectors: the vector of predictions and the vector of
target values. Their expressions are listed below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � ytð Þ2
n

s
ð4Þ

MAE ¼
Pn

i¼1 yi � ytjj
n

ð5Þ

where i is the sample index, yi is the predicted value, and yt is the
targeted value. There are some small variations between them:
Computing the RMSE corresponds to the L2 norm (i.e., the Euclidean
norm), which is the most common familiar distance; computing
MAE corresponds to the L1 norm (i.e., the Manhattan norm), which
measures the distance in a rectangular grid from the origin to the
target. More generally, the Lp norm is expressed by the following:

Lp ¼
Xn
i¼1

yij � yt jp
 !1=p

ð6Þ

where p is the norm index. The bigger p is, the more sensitive it is
to large values. For example, since an L2 norm squares the error,
the model will encounter a much larger error than the L1 norm.
If this case is an outlier, the L2 norm will pay more attention to this
single outlier case, since the errors of many other common cases
are smaller. In other words, if it is important to consider any out-
liers, the RMSE method is a better choice. On the other hand, the
MAE is more helpful in studies in which outliers may safely and
effectively be ignored. It should be noted that in some special
cases, it may be necessary to consider designing the loss function
in house.

4. Challenges and potential solutions

4.1. Small dataset

Since the NN method is data-driven, its performance is directly
related to the amount of accessible data. Some areas have built
their own big datasets for training, such as ImageNet [58] for image
recognition, MNIST [59] for optical character recognition, SQuAD
[60] for natural language processing, and YouTube-8M [61] for
video classification. As a result, NNs have demonstrated their great
power in these areas. In contrast, AM has no huge dataset, as it is
always expensive to collect training data. Furthermore, economic
considerations limit the activity of interested parties to create their
own open-source dataset. As a result of this dilemma, it is essential
to build up the current small datasets. In fact, certain methods
called generative models can realize data augmentation in order
to enlarge a dataset artificially. For example, the autoencoder is a
representative technology that is capable of randomly generating
new data that looks very similar to the training data [11]. It uses
an encoder to convert the inputs to an internal representation,
and then uses a decoder to generate new outputs that are similar
to the inputs based on this representation. A famous extension of
the basic autoencoder is called the variational autoencoder (VAE)
[62]. It transforms the input into a Gaussian distribution with
mean l and standard deviation r; when the decoder samples a
point from this probabilistic distribution, new input data gener-
ates. Other generative models, such as generative adversarial nets
(GANs) [63] and adversarial autoencoders (AAEs, in a combination
of AE and GAN) [64], can also provide ways to perform data
augmentation.

4.2. Lack of experience in labeling data

As mentioned before, most of the NN use-cases are supervised
learning, which requires outputs as targets to learn. However,
sometimes it is very difficult to label data. For example, how can
the different objects in Fig. 3 be accurately labeled as melt pool,
plume, or spatters? The authors of Fig. 3 admit that many spatters
have characteristics that are similar to those of a melt pool in terms
of shape, size, and grey value. In other words, these judgments
heavily rely on the analyst’s deep knowledge of the welding pro-
cess. Such a dependency will greatly hinder the development of
NNs in the AM area. In other words, the massive application of
NNs to AM requires deep cooperation between experts in both
computer science and material science.

4.3. Lack of knowledge in selecting good features

Many processing parameters may heavily affect the properties
of AM parts, whereas others may have a smaller effect. Meanwhile,
for a limited dataset, an overabundance of input features can easily
cause the model to overfit. Therefore, it is of vital importance to
ensure that the NN algorithm is operating on a good set of features.
A type of preprocessing on input data named feature engineering
can bring considerable benefits to researchers. It can be divided
into two aspects: ① Feature selection aims to select the most useful
features from the existing ones as inputs. For example, people may
select ‘‘hatch distance,” ‘‘laser power,” and ‘‘layer thickness” as the
most influential factors in determining the properties of parts. In
this situation, the principles of selection rely on the researchers’
experience with and knowledge of AM—that is, in terms of
performing in-depth investigation into the mechanisms of the
AM process, not just in terms of doing experiments again and
again. Another useful way is to use statistical tools to perform
quantitative analysis. The following are some widely used parame-
ters in statistical science. The Pearson correlation coefficient is a
good parameter to measure the linear relationship between two
features; when it is close to 1/�1, it indicates that there is a strong
positive/negative correlation between these two inputs. The
Kendall rank correlation coefficient is another parameter to
measure the nonlinear relationship between two features. A scatter
matrix is a mathematical tool to plot every numerical attribute
against every other numerical attribute. Through the calculation
of these parameters, it is possible to obtain information on which
attributes are much more correlated with the targeted property.
② Feature combination aims to perform dimensionality reduction
on input features, and thus concentrates on newly produced
features. Once the translation rule is known, manual manipulation
may be preferable. For example, energy density has been shown to
have an obvious influence on solidification and metallurgy during
AM processing, as well as on the resulting microstructures and
mechanical properties of the fabricated parts [65]. Energy density
(E) is represented in SLM as follows:

E ¼ P
vhd ð7Þ

where P is laser power, v is scan speed, h is hatch distance, and d is
layer thickness. These four features can then be converted into the
novel but influential feature E. Furthermore, it is still possible to use
mathematical tools for assistance, such as applying principle
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components analysis (PCA) to reduce dimensionality based on the
feature’s value rather than its attribute.

4.4. The problem of overfitting and underfitting

A good generalization ability is the key goal of an NN algorithm,
and is a measure of how accurately the algorithm is able to predict
outputs from previously unknown data. However, a cause of poor
performance of an NN algorithm is the overfitting or underfitting
problem. Overfitting means that the NN algorithm tries to fit every
data point in the training set; thus, the model is very vulnerable to
noises or outliers. In contrast, underfitting means that the NN algo-
rithm fails to extract the reasonable relationship between the data
points in the training set. Some techniques to avoid overfitting and
underfitting include regularization [66] and dropout [67].
5. Future perspectives

5.1. Data

5.1.1. Strengthening the interoperability of APIs for data acquisition
With the rapid development of AM, huge amounts of data are

generated every day. However, the accessibility of these data is
not easy across different research groups, since the data in ‘‘these
isolated islands” usually have inconsistent application program-
ming interfaces (APIs) to call. Thus, a unified API for data acquisi-
tion will be beneficial for every stakeholder in this area. The
paradigm for this kind of qualified API should include well-
defined schema for the thermal–mechanical attributes and pro-
cessing parameters of materials, a unified image type for
microstructure characterization, and the same testing standards
for qualification. In this way, there will be fewer or no barriers to
‘‘fluent” data flow, and a closer e-collaboration will be realized in
the community.

5.1.2. Data preprocessing
Data preprocessing is an essential prerequisite for a data-driven

NN algorithm, since it erases ‘‘dirty” data and feeds the correct data
into the models. However, this step usually includes many cum-
bersome tasks that need to be accomplished. For example, there
is currently a batch of scanning electron microscope (SEM) images
that contain both grain and porosity information, while the corre-
sponding NN model only requires the crack feature as inputs. The
problem is to accurately extract the crack distribution separately
from the grain boundaries. It can be a challenge for someone
without solid knowledge and experience in image processing and
analysis to identify these digital representations of structural
features. One necessary task may be to establish standards and
best practices for data preprocessing, especially for image features.
A successful implementation can then be transferred to a broader
area.

5.1.3. Database construction
In many material areas, researchers have developed well-

known databases for organizing/storing/accessing data electroni-
cally, such as MatWeb, OQMD, and Citrine [68]. Given the high
complexity and variety of AM, it is necessary to build a unified
database platform to host the huge amounts of data that are gen-
erated every day by different research groups and different
machines. A currently accessible project is the AM Material Data-
base (AMMD), which was developed by the National Institute of
Standards and Technology (NIST) [69]. This data management sys-
tem is built with a Not Only Structured Query Language (NoSQL)
database engine, whose flexible data structure fits the AM case
very well. AMMD is web-visualized by the Django framework, so
it is very easy to access. For application development, AMMD also
provides a representational state transfer (REST) API for third par-
ties to call.

5.2. Sensing

5.2.1. Hardware
As demonstrated in Section 3.2, researchers have developed

several kinds of sensor systems in order to provide real-time
information on AM. Sensors are deployed to precisely detect and
measure optical, thermal, acoustic, and ultrasonic signals, and to
deliver valuable insights to solidify the understanding of AM. How-
ever, huge requirements still exist for a reliable sensor system. For
example, the sensors installed inside of a printer must survive and
operate in a harsh environment for a long time. In EBM technology,
the metallic vapor generated by a high-energy electron beam in a
vacuum environment may destroy the camera lens. Furthermore,
the sensor system must be quick enough to capture the central
position of the melt pool, since the laser’s scanning speed is usually
very fast. From this perspective, a qualified sensor system is highly
desirable in the rapid developing area of AM.

5.2.2. Software
The sensors need to be controlled by powerful operating soft-

ware. The basic modes of the control software include monitoring,
recording, analyzing, and storing data. In a typical scenario, such as
during the process of SLM, once the hardware delivers the captured
melt pool image to the software, it may have the capability to com-
pute the temperature profiles and extract thermal and dimensional
metrics for next-step analysis. Other interesting functional points
can be added to the sensing software. For example, it is desirable
for software to be equipped with the algorithms of detecting voids,
lack of fusion or porosity, and so forth (especially aided with ML
methods).

5.3. Control/optimization

AM builds parts layer by layer, and the quality of every layer
exerts a great influence on the properties of the final products.
As a result, it is necessary to ensure the quality of every layer. Mul-
tiple types of sensors, such as those capturing photonic, electrical,
sonic, and thermal signals, can provide in situ measurements of the
AM process. Closed-loop control can be achieved with the applica-
tion of ML in order to analyze this information synchronously and
then feed the outputs into the controller of the machine. A possible
use is to train a CNN to judge whether the quality of a layer is ade-
quate or not based on the layer picture captured by a high-speed
camera. In this case, the NN algorithm must quickly respond to
the input picture. Fortunately, some model compression technolo-
gies are already available, such as parameter pruning and sharing,
low-rank factorization, and knowledge distillation [70].

5.4. Whole chain linkage

Sections 3.2 and 3.3 have shown the great power of NNs in
building the relationships between structure–property and
process–property, respectively. In addition, researchers have con-
structed other models to establish the process–structure–
property–performance (PSPP) linkage. For example, Azimi et al.
[71] utilized a fully convolutional neural network (FCNN) to
classify martensite/bainite/pearlite phases in low-carbon steels,
as depicted in Fig. 4. The classification accuracy can reach
93.94%, which greatly exceeds the state-of-the-art method with
an accuracy of 48.89%. Although this case is not within the scope
of AM, its concept can easily be transferred to AM; we anticipate
an explosive development in building PSPP linkages using NNs,



Fig. 4. Workflow of martensite/bainite/pearlite classification approach using FCNNs. H: height; W: width. Reproduced from Ref. [71] with permission of Springer Nature,
� 2018.
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since the latter holds intrinsic advantages in complex pattern
recognition in comparison with other methods and models.
5.5. Modeling forecasting

As mentioned before, the physics-based model is a traditional
computational way to reproduce the AM process. However, it
requires substantial computational cost in terms of time, hard-
ware, and software. As demonstrated in Section 3.1, it is possible
to learn from previously accumulated numerical datasets and
extract the embedded linkages between inputs and simulated
outputs. In other words, numerical simulations can be a data
source for the ML algorithm, and can play the same role as exper-
imental data. Popova et al. [72] developed a data science workflow
to combine ML with simulations. This workflow is then applied to a
set of AM microstructures obtained using the Potts kinetic Monte
Carlo (kMC) approach, which is open-source hosted in the Harvard
Dataverse [73]. Karpatne et al. [74] proposed the concept of
theory-guided data science (TGDS) as a new paradigm for integrat-
ing physics-based models and data-driven models. They have
identified five broad categories of approaches for combining
scientific knowledge with data science in diverse disciplines. In
the near future, the combination of these two kinds of models will
certainly provide a way to address the current issues of a lack of
experimental AM data, non-interpretable NN models, and so on.
6. Conclusion

Two explosive developments have recently occurred in the
areas of manufacturing and information technology: AM and
NNs. AM has advantages such as integration with digital CAD mod-
els and the capability to build parts with complex morphology,
while NNs excel at avoiding constructing and solving complicated
multiscale and multi-physical mathematical models. The combina-
tion of AM and NN has demonstrated great potential for realizing
the attractive concept of ‘‘agile manufacturing” in industry. This
paper provided a comprehensive overview of current progress in
applying the NN algorithm to the complete AM process chain, from
design to post-treatment. The scope of this work covers many
variants of NNs in various application scenarios, including: a
traditional MLP for linking the AM process, properties, and perfor-
mance; a convolutional NN for AMmelt pool recognition; LSTM for
reproducing finite-element simulation results; and the VAE for
data augmentation. However, as they say, ‘‘every coin has two
sides”: It is difficult to control the quality of AM parts, while NNs
rely strongly on data collection. Thus, some challenges remain
in this interdisciplinary area. We have proposed potential
corresponding solutions to these challenges, and outlined our
thoughts on future trends in this field.
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