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AI for Precision Medicine—Perspective

Information Science Should Take a Lead in Future Biomedical Research
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a b s t r a c t

In this commentary, I explain my perspective on the relationship between artificial intelligence (AI)/data
science and biomedicine from a long-range retrospective view. The development of modern biomedicine
has always been accelerated by the repeated emergence of new technologies. Since all life systems are
basically governed by the information in their own DNA, information science has special importance
for the study of biomedicine. Unlike in physics, no (or very few) leading laws have been found in biology.
Thus, in biology, the ‘‘data-to-knowledge” approach is important. AI has historically been applied to bio-
medicine, and the recent news that an AI-based approach achieved the best performance in an interna-
tional competition of protein structure prediction may be regarded as another landmark in the field.
Similar approaches could contribute to solving problems in genome sequence interpretation, such as
identifying cancer-driving mutations in the genome of patients. Recently, the explosive development
of next-generation sequencing (NGS) has been producing massive data, and this trend will accelerate.
NGS is not only used for ‘‘reading” DNA sequences, but also for obtaining various types of information
at the single-cell level. These data can be regarded as grid data points in climate simulation. Both data
science and AI will become essential for the integrative interpretation/simulation of these data, and will
take a leading role in future precision medicine.
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1. Modern biology and new technologies

The development of modern biology has always been fueled by
the repeated emergence of new technologies. For example, at the
end of the 1960s, there were discussions on the decline of molecu-
lar biology (i.e., the potential limitations of understanding biologi-
cal phenomena in terms of the behavior of underlying
macromolecules). This was because many scientists had become
aware of a certain limitation in the classical approaches—such as
bacteriophage-based experiments—at that time [1]. Several pio-
neers of the field, including Francis Crick himself, then explored
challenges in new directions. With the advent of new technology
(e.g., recombinant DNA), however, so-called molecular biology
has remained in the mainstream of modern biology. As a much
more recent example, the rise and explosive development of
next-generation sequencing (NGS) technology have changed biol-
ogy and medicine, not only quantitatively, but also qualitatively
[2,3]. NGS will eventually affect society through, for example,
changes in social insurance systems. In this commentary, I would
like to introduce my thoughts on the future of biomedical research,

after briefly reviewing its relationships with data science and arti-
ficial intelligence (AI).

2. Information science has special importance in biomedicine

There is no question of the importance of using computers (i.e.,
devices dealing with ‘‘information”) in all fields of scientific
research. Nevertheless, I would like to emphasize that the use of
computers has exceptional importance in the biological/medical
sciences because all life systems are basically governed by their
own genetic information (DNA). A famous motto from a New York
Times article about Leroy Hood comes to mind: ‘‘Biology is an infor-
mation science” [4]. Of course, we are still far from a situation in
which only theoretical studies on genome DNA sequences are
enough to understand biological phenomena. But the relative
importance of computational studies will undoubtedly increase
in biomedicine; even experimental studies would be greatly aided
by robotics and/or AI. To understand complicated biomedical phe-
nomena, such as cancer, we need to consider the systems (i.e., the
interactions between many gene products in many conditions and
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cell types). Such efforts would be impossible without the help of
computational techniques such as computer simulations.

3. Data science suits biology well

Another important characteristic of biology is that no (or very
few) leading laws or principles—equivalent to Newton’s laws in
physics, for example—have been found in biology thus far. Ernest
Rutherford, a famous physicist, once said that ‘‘all science is either
physics or stamp-collecting” [5]. Biology may have been in his
mind as a typical example of ‘‘stamp-collecting.” Even after a cen-
tury, the situation has not changed much. It is possible that this
feature of biology is inherent, due to the fact that biological sys-
tems have evolved in a rather short-sighted manner, analogous
to the development of natural languages. If biological systems
and natural languages have evolved analogously, the effective
methodologies for studying them should also have something in
common. Indeed, like the importance of compiling dictionaries
for the study of natural languages, it is very important in the fields
of biology and medicine to construct databases, which are used for
storing and organizing massive data. For example, a leading aca-
demic journal, Nucleic Acids Research (Oxford University Press),
devotes its entire first issue of every year to the topic of databases
[6]. As another example, probabilistic modeling methods, such as
hidden Markov models (HMMs), have been successfully used in
both fields [7]. I believe that these facts endorse the importance
of data science in biomedicine.

In fact, modern biology has made great progress as a data-
driven science. In the old days, ingenious (small-scale) experi-
ments were performed to prove certain hypotheses; in contrast,
nowadays, massive amount of data, which are produced system-
atically and in an unbiased manner, are processed to find novel
knowledge or hypotheses, in an approach that is sometimes
called ‘‘data to knowledge” (D2K). This is exactly where data
science is required; even with our ignorance of backbone princi-
ples, our understanding of biomedicine should be deepened to a
level that is beneficial enough to our welfare with the help of
data science.

4. AI and biomedicine: A retrospective

In computer science, the study of AI (here, I simply define AI as
the attempt to make computers more ‘‘intelligent,” like humans)
has a long history that includes a variety of attempts, some of
which are closely related to biomedicine. For example, in the early
1970s, a computer program named MYCIN, which was aimed at
diagnosing patients with bacterial infectious diseases, had a great
impact on society [8]. As another example, in the late 1970s, the
MOLGEN project at Stanford University applied knowledge-based
problem-solving to several cases, including to design experiments
on genetics [9]. I myself chose the topic of applying AI—more
specifically, the knowledge/rule-based expert system—for the
interpretation of newly determined genome sequences when I was
a PhD student. What I actually did was to construct an ‘‘if–then”-
type expert system for predicting the subcellular localization
of proteins from their amino acid sequences [10,11]. The rules
were prepared based on the knowledge of various protein sorting
signals and sequence features, such as amino acid composition,
which are known to be correlated with their subcellular location.
The system was named PSORT and was used in the international
yeast genome project, among others. Later, we completely updated
the system using a machine learning technique (k-nearest neigh-
bor algorithm) so that its updating and optimization with fre-
quently updated training data would become much easier
[12,13]. It was made available through the Internet, which was still

in its infancy at that time. Since then, the PSORT family of predic-
tors has been widely used by molecular biologists. Presently, the
mainstream of AI application to biomedicine seems to be occupied
with deep learning (see below) but I believe that traditional
attempts to use knowledge bases in biomedicine remains to be
important. Such studies are now active in the field of the semantic
web [14].

5. AI and biomedicine: Recent exciting developments

It has been recognized that waves of enthusiasm for the impact
of AI have occurred several times over the years. It seems evident
that we are now seeing such a wave, largely caused by the suc-
cesses of deep learning and related technology [15]. In the field
of biology, one milestone might be the recent success of AI in the
Critical Assessment of protein Structure Prediction (CASP) compe-
tition, which has been held biennially since 1994. In the CASP, par-
ticipants receive a set of amino acid sequences of proteins without
their known folded (three-dimensional (3D)) structures, and sub-
mit their predicted 3D structures, which are critically assessed by
the organizer. In the latest CASP13, it turned out that the predic-
tion system named AlphaFold, which was developed by the Deep-
Mind team (which is already famous for its success in the
traditional game Go) showed the best prediction accuracy [16].
The protein-folding problem is fundamental and has been studied
for many years. Thus, this result is quite extraordinary, although it
does not mean that the problem itself has been solved completely.
Therefore, it seems likely that similar approaches would contribute
much to existing problems in DNA sequence interpretation, which
should be beneficial for personalized medicine. For example, AI
would be helpful for identifying potential disease-related muta-
tions in the genome sequence of each individual. Indeed, a com-
mercial AI-based system (the IBM Watson for Oncology) gives
physicians prioritized treatment options based on various kinds
of available data. Recently, a concordance study between this AI
system and clinical practices for cancer patients in China was pub-
lished [17]. Such technology would undoubtedly be useful to
① accelerate the personalized diagnosis of a large number of
patients, ② facilitate prompt updating of the system in order to
keep up with new incoming data, and ③ optimize the system for
specific ethnic groups. A next great challenge may be to unify such
machine learning approaches with the above-mentioned
knowledge-based ones.

6. Modern biomedicine produces massive data through NGS

As I wrote above, all life systems are constituted based on
their own information encoded as DNA sequences (i.e., the gen-
ome information). Recent progress in NGS technology has enabled
the determination of the entire genome of each individual, which
is a sequence of about 3.3 billion bases (actually, each individual
basically has two genomes, originating from two parents) at a
reasonably affordable cost (about 1000 USD or less) [2,18,19]
(Fig. 1). To understand what kind of information is written in
the genome DNA, NGS can be useful in various ways. ① Since
most diseases are related to a defect or variation of the genome,
a comparison of genome DNA sequences between disease
patients and their healthy counterparts should be useful for spot-
ting which part(s) of the differences is linked to the disease. This
kind of approach is called genome-wide association study
(GWAS). Once any candidate position (i.e., locus) of DNA and a
certain phenotype is found, another technique called DNA editing
(through the clustered regularly interspaced short palindromic
repeats (CRISPR)/Cas system) might be applied in order to culture
cells to confirm the relationship. ② Similarly, an extensive com-
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parison of the genome sequences of different species and/or of
many individuals should be performed in order to specify which
parts of DNA are held in common (i.e., conserved), because these
regions are likely to share common functions. It would also be
interesting to use such comparisons to find out what kind of evo-
lutionary innovations have taken place via the occurrence of
novel change(s) in the genome of a species. For example, since
our genome and that of the chimpanzee (and other primates)
are quite similar, it is very important to know what the critical
differences are between our genomes [20]. ③ Importantly, DNA
sequence affects our life not only directly, but also indirectly,
through the mechanism known as epigenetics. For example, it is
now established that the regions of DNA where genes are actively
read are in an exposed structure and are marked with specialized
chemical modifications on the DNA itself or on its binding pro-
teins (histones). These marks are used as a kind of cellular mem-
ory. Such mechanisms seem to be the key for understanding how
a single fertilized egg systematically produces a variety of cells.
Interestingly, NGS technology is not only used for ‘‘reading”
DNA sequences, but also for determining various epigenetic states
through techniques such as Chromatin-immunoprecipitation
(ChIP) sequencing (ChIP-seq) [21] and Hi-C [22]. Recently, it has
even become possible to obtain such data from individual cells
(through single-cell sequencing/epigenomics), enabling the pre-
cise tracing of the entire development of some simpler organisms
on the cellular level [23]. Such a single-cell technology would also
be useful in understanding the heterogeneity of cancer cells: how
a novel somatic mutation that can boost tumor growth occurs
within a population of tumor cells; how a subpopulation of cells
with such a mutation proliferates with the progression of tumor
stages; and how some of the cells acquire the ability to circulate
in body fluids, leading to the spread of cancer to parts of the body
distant from its origin (i.e., metastasis) [24]. Indeed, it has been
revealed that a trace of fragmented DNA originating from tumor
cells circulates in the blood in even relatively early stages of can-
cer. The technology to detect such DNA (cell-free DNA (cfDNA))
for the prognosis of patients, which is known as liquid biopsy,
is set to revolutionize early cancer detection [25]. ④ DNA
sequencing is applied not only to purified DNA samples, but also
to mixtures of DNA—that is, to DNA originating from a number of
species (metagenomics). One typical example is the metagenome
sequencing of gut bacteria, from which we can estimate the
rough composition of bacteria in the gut. Such information would
be quite valuable for understanding human health, because gut

bacteria are known to influence our health in various ways by
interacting with the body through various metabolites (chemical
compounds) and so forth [26]. Thus, in combination with metabo-
lome data, which are systematically obtained using high-
throughput mass spectrometers, we can obtain a more precise
portfolio of our health status. In summary, NGS can be used in
various ways in biomedicine, and all of these efforts will inevita-
bly be expanded to produce a veritable avalanche of data (Fig. 2)
[27]. The pace of NGS performance improvement even exceeds
that of Moore’s law (Fig. 1). This situation must be addressed
using data science and AI—in fact, these technologies should lead
biomedicine rather than just help to address its issues.

7. Conclusion

When the Human Genome Project was underway about
20 years ago, I heard an interesting analogy between biology and
weather forecasting:y In our childhood, weather forecasting was
done by experienced professionals, but their forecasting was not par-
ticularly reliable. Nowadays, a combination of data (e.g., tempera-
ture, humidity, and air pressure) is obtained at many grid points
and fed into supercomputers. Consequently, the forecasting based
on these simulation results has become more reliable. In a similar
way, the combination of precise data—such as the variety of NGS
data introduced above—that has been measured at a great number
of points (e.g., individual cells) will be used to computationally pre-
dict various things (e.g., the potential risk of an individual having a
disease within the next ten years). Such approaches are currently
mentioned in the context of multi-omics and/or precision medicine.
Both data science and AI will become essential for the integrative
interpretation and simulation of these data. These technologies will
indicate what kind of additional information is necessary, and what
kind of experiments are needed in order to prove the generated
hypotheses. Therefore, the next ten years should become even more
exciting for biomedicine.
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Fig. 1. Trends in the cost of sequencing a human-sized genome, compared with
Moore’s law. The dotted line representing Moore’s law is drawn in a somewhat
arbitrary manner [19].

Fig. 2. The amazing growth of NGS data stored in a public database (Sequence Read
Archive (SRA) database at the National Center for Biotechnology Information
(NCBI), National Institutes of Health (NIH), USA). The y-axis shows the size of the
database in a logarithmic scale. The solid line shows the total bases, and the dotted
line shows the open-access bases (i.e., data downloadable without any restrictions).
As of June 2019, the SRA contains more than 2.9 � 1016 bases in total [27].

y Personal communication with Masaru Tomita.
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