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Materials development has historically been driven by human needs and desires, and this is likely to con-
tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will
promote increasingly large demands for clean and high-efficiency energy, personalized consumer prod-
ucts, secure food supplies, and professional healthcare. New functional materials that are made and tai-
lored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally,
advanced materials are found empirically or through experimental trial-and-error approaches. As big
data generated by modern experimental and computational techniques is becoming more readily avail-
able, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and
rational design of materials. In this review article, we provide a brief introduction on various ML methods
and related software or tools. Main ideas and basic procedures for employing ML approaches in materials
research are highlighted. We then summarize recent important applications of ML for the large-scale
screening and optimal design of polymer and porous materials, catalytic materials, and energetic mate-
rials. Finally, concluding remarks and an outlook are provided.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many of the challenges in the 21st century, from personalized
healthcare to energy generation and storage, share a common
theme: Materials are at the core of the solution. Traditionally,
materials have been discovered by chance or through an empirical
process. A typical example is vulcanized rubber, which was pre-
pared in the 19th century based on the observation (from random
mixing of compounds) that heating with additives such as sulfur
can improve the durability of the rubber. With the great develop-
ment of first-principles computational methods and tools, as well
as the exponential increase of computer power, scientists and engi-
neers can now realistically simulate the properties and behaviors
of materials in specific applications and thereby avoid lengthy
cycles of formulation, synthesis, and testing. This field—known as
computational materials science—is one of the fastest growing
areas within the fields of chemistry and materials science. How-
ever, although enormous progress has been made in theoretical
methods and modeling tools, the size of the theoretical space of
all possible chemicals or materials is overwhelming. For example,
the number of pharmacologically relevant molecules is estimated
to be on the order of 1060 [1]. Therefore, it is impossible to find a
strategy to explore this vast structural space.

With the increase of experimental and computational data, the
field of materials informatics (MI) has grown quickly in recent
years [2]. One important task of MI is to use existing materials data
to predict properties for new materials by employing mathematics
and information science methods [3]. The key for achieving this is
to build a descriptor model that can predict the property of interest
based on a known set of input material-specific features. The quan-
titative structure–property relationship (QSPR) model is an impor-
tant descriptor model where the input variables are material
structural features. Complex relationships usually exist between
the inputs and the output of material properties, which are difficult
to handle using traditional linear and nonlinear correlation meth-
ods. Thanks to the development of machine learning (ML) methods
[4], these complex relationships can now be efficiently modeled.

ML is a branch of artificial intelligence (AI) that aims to build
models trained from past data and situations. It has started to play
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a significant role in materials science due to its ability to learn
behaviors and trends from available data without knowing the
underlying physical mechanisms. An established ML model can,
in turn, be used for materials discovery and design. Some examples
of successful applications of ML techniques for materials research
include the prediction of steel fatigue strength [5], physical and
mechanical properties of alloys [6], electronic bandgaps of
perovskite materials [7], catalytic activities [8], and acid dissocia-
tion constants [9], as well as the identification of promising porous
materials [10], polymer dielectrics [11], mixed oxide catalysts [12],
organic light-emitting diode (OLED) materials [13], superconduc-
tors [14], and photovoltaic materials [15].

A literature search, depicted in Fig. 1 [16], demonstrates that ML
is a rapidly growing area with an increasing number of applications
in materials research.

Given the increasing importance of data-driven or ML methods
in materials research, it is the goal of this review to highlight the
main ideas and basic procedures for employing ML approaches
for materials research, and to provide an overview on recent
important applications of ML for materials discovery and design.

2. Big data in materials science

As illustrated in Fig. 2 [17], for thousands of years, science con-
sisted of empirical observations of natural phenomena. A few cen-
turies ago, the paradigm of theoretical science then arose,
characterized by the formulation of various classical laws, theories,
and models. With the invention of computers a few decades ago, a
third paradigm of science—namely, computational science—
emerged, which allows for the simulation of complex real-world
Fig. 1. Number of published works on ‘‘machine learning” and ‘‘machi

Fig. 2. The four paradigms of science: empirical, theoretical, computational, and
problems based on the theories summarized in the second para-
digm. Representative examples in materials science are density
functional theory (DFT) and molecular dynamics (MD) simulations.
The large amount of data generated by experiments and simula-
tions has given rise to the fourth paradigm of science over the last
few years: (big) data-driven science, along with the popularization
of AI methods. The most important subfield of AI that has evolved
rapidly in recent years is ML.

There has been an absolute explosion in the amount of pub-
lished works on ‘‘big data” and ‘‘data-driven,” as depicted in
Fig. 3 [16].

Recently, the Materials Genome Initiative (MGI) and other
similar efforts around the world have been promoting the availabil-
ity and accessibility of big data in materials science. There are many
different kinds of materials property data (e.g., physical, chemical,
mechanical, electronic, thermodynamic, and structural), which can
be generated from first-principles computations (such as elastic
modulus) or experimental measurements (such as thermal conduc-
tivity). Such big data has offered great opportunities for the applica-
tion of data-driven techniques or ML methods to accelerate the
discovery and design of new advanced materials. Table 1, updated
from Ref. [18], lists many publicly available databases containing a
large number of material structures and properties.

3. ML for materials discovery and design

Modern theoretical and computational tools enable the efficient
solving of a multitude of forward problems—that is, the prediction
of the properties or behaviors of particular materials under specific
conditions. Less well developed are methods and tools to handle
ne learning” + ‘‘material” (from January 1999 to September 2018).

data-driven. ANN: artificial neural network; SVM: support vector machine.



Table 1
Publicly accessible structure and property databases for molecules and solid materials.

Name Description

AFLOW Structure and property repository from high-throughput ab initio calculations of inorganic materials
American Mineralogist Crystal Structure Database Crystal structure database including structures published in the American Mineralogist, The Canadian

Mineralogist, European Journal of Mineralogy, etc.
Computer Coupling of Phase Diagrams and

Thermochemistry (CALPHAD)
A journal publishing the thermodynamic and kinetic properties of various materials

Cambridge Structural Database Repository for organic and metal–organic crystal structures
CatApp A web application for surface chemistry and heterogeneous catalysis
ChEMBL Bioactive molecules with drug-like properties
ChemSpider Royal Society of Chemistry’s structure database, featuring calculated and experimental properties from a

range of sources
Citrination Computed and experimental properties of materials
Computational Materials Repository Infrastructure to enable collection, storage, retrieval, and analysis of data from electronic-structure codes
CoRE MOF Solvent-free atomic coordinates and pore characteristics of over 4000 metal-organic framework materials
Crystallography Open Database Structures of organic, inorganic, and metal–organic compounds and minerals
Dark Reactions Project A database collecting information on unpublished failed reactions
GDB Database A database of hypothetical small organic molecules
Harvard Clean Energy Project Computed properties of candidate organic solar-absorber materials
The Inorganic Crystal Structure Database (ICSD) Inorganic crystal structure database
Materials Project Computed properties of known and hypothetical materials
MatNavi Multiple databases targeting properties such as superconductivity and thermal conductance
MatWeb Datasheets for various engineering materials, including thermoplastics, semi-conductors, and fibers
Mindat.org Open database of minerals, rocks, and meteorites, and the localities they come from
NanoHUB Largest nanotechnology online resource
Nanomaterials Registry An authoritative, web-based nanomaterial database
Nanoporous Materials Explorer A database containing computational properties of thousands of nanoporous materials
National Institute of Standards and Technology (NIST)

Chemistry WebBook
Gas-phase thermochemistry and spectroscopic data

NIST Materials Data Repository Repository to upload materials data associated with specific publications
NIST Interatomic Potentials Repository Repository for interatomic potentials (force fields)
NIST Standard Reference Data General material property data
The Novel Materials Discovery (NOMAD) Laboratory Repository for input and output files of all important computational materials science computer programs
National Renewable Energy Laboratory (NREL)

Materials Database
Computed properties of materials for renewable-energy applications

Open Quantum Materials Database Computed properties of mostly hypothetical materials
PubChem A database of chemical molecules and their biological activities
The Thermoelectrics Design Laboratory (TEDesignLab) Experimental and computational properties to support the design of new thermoelectric materials
University of California, Santa Barbara (UCSB)

thermoelectric database
A large database of thermoelectric materials

ZINC Commercially available organic molecules in two-dimensional (2D) and three-dimensional (3D) formats

Fig. 3. Number of published works on ‘‘big data” and ‘‘data-driven” methods (from January 1999 to September 2018).
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inverse problems—that is, to design or engineer new materials
with particular desirable properties. Recently, the computer-
aided molecular design (CAMD) method [19,20] has been proposed
and significantly developed, with the aim of rationally selecting or
designing molecules that possess pre-specified desirable proper-
ties. Since its emergence, the CAMD method has been used for
designing solvents, pharmaceutical and consumer products, work-
ing fluids, polymers, refrigerants, and transition metal catalysts
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[21–31]. Similar to the CAMD problem, a typical material design
task can be defined as follows: Given a {materials? property}
dataset obtained from experiments and/or first-principles compu-
tations, what are the best material structure and composition that
possess the most desirable properties?

For material design, the most crucial step is to build a correla-
tion model that can accurately describe the relationship between
the input material-specific features (typically structural character-
istics) and the property of interest based on a given {materials?
property} dataset. The construction of classical models relies
heavily on physical insight and mechanisms, for example, the use
of conservation laws and thermodynamics to derive mathematical
formulas with parameters regressed (usually linear or slightly non-
linear) from existing reference data. ML takes a different route:
Instead of relying on principles or physical insights, it trains a
model with a flexible and usually highly nonlinear form solely
from existing available data. In materials science, complex rela-
tionships usually exist between a material’s structure and the
property of interest; these relationships are difficult to handle
using traditional correlation methods. For this reason, ML methods
have emerged as an important tool for predicting the properties of
materials and for materials screening and optimal design.

Fig. 4 shows a general workflow for materials discovery and
design based on ML. Three major steps are involved—namely,
descriptor generation and dimension reduction, model construc-
tion and validation, and material prediction and experimental
verification. The first step is to represent materials in the dataset
numerically by a set of descriptors or features. This step requires
specific domain knowledge about the materials’ class and applica-
tions. The second step is to establish a mapping model between the
descriptors and the target properties based on known data for a set
of reference materials. Various ML methods ranging from simple
linear and nonlinear regressions to highly sophisticated kernel
ridge regression and neural networks can be used to establish this
mapping. In the last step, inverse design is performed to find new
materials with desired properties based on the established ML
models. The most promising candidates can then be synthesized
and their real properties or performances can be verified
experimentally.

3.1. Descriptor generation and dimension reduction

In general, each material property depends on a set of specific
factors such as crystal structure and bond strength. For this reason,
the identification of key features or descriptors that are strongly
correlated with the material property of interest is always a crucial
Fig. 4. Generic workflow for materials
step before applying the ML process. A good material descriptor
should at least meet the following three criteria: It should be
① a unique characterization of the material, ② sensitive to the
target property, and ③ easy to obtain. Depending on the problem
or property being studied, the descriptor can be defined at different
levels of complexity [32]. Taking molecular design as an example, if
the boiling point or volatility of nonpolar organic compounds is
being studied, the descriptor may be defined at a gross level, such
as the total molecular weight. If the goal is to predict the dielectric
constant, the descriptor may have to include atomic-level or at
least group-level information. If catalytic activities are being inves-
tigated, the descriptor must incorporate details of the electronic-
level information.

Curtarolo et al. [33] summarized several important material
descriptors that have been previously developed. The simplest
descriptors are one-dimensional (1D) parameters, such as the
molecular volume, weight and surface area, number of electrons,
and polarities. These descriptors carry little or no information about
the actual structures of the materials or molecules. As indicated
before, when predicting certain properties, descriptors that repre-
sent the two-dimensional (2D) or even three-dimensional (3D)
structures are preferable. Topological descriptors consider the 2D
graphic structure of the molecule or material and thus reflect fea-
tures such as symmetry, branching, and atom connectivity
[34,35]. The most commonly used topological descriptors are the
adjacency matrix [36] and the connectivity index [37]. The
limitation of these descriptors is that they do not contain any
stereochemistry information. An important 3Dmaterials descriptor
is the Radial Distribution Function (RDF). The RDF, which is usually
denoted by g(r), defines the probability of finding a particle or atom
at a distance r from another tagged particle or atom [38]. This type
of descriptor can be obtained from both experimental measure-
ments such as X-ray measurements and ab initio calculations.

A substantial number of databases (see Table 1) contain a large
amount of material structure and property data. However, it
should be noted that the available materials data are often highly
correlated to each other. Therefore, it is necessary in many cases
to pre-process the high-dimensional datasets with dimension
reduction tools prior to the construction of ML models. Several
algorithms [39] such as principal component analysis (PCA), multi-
dimensional scaling (MDS), and linear discriminant analysis (LDA)
are available to reduce the dimension of the feature space and help
identify the most relevant descriptors (or key features) for ML. For
example, PCA converts a set of correlated variables into a reduced
set of uncorrelated new variables or principal components (PCs)
using orthogonal transformation [40]. Each PC is chosen so that it
discovery and design based on ML.
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lies along the direction of largest variance while being uncorrelated
to other PCs. The PCs constitute a reduced dimensional space that
can represent the original data with a limited loss of information.
Zhou et al. [41] employed PCA to reduce a 12-dimensional solvent
descriptor space to a four-dimensional space. The four new
descriptors were then successfully used to correlate and predict
solvent effects on reaction rates.

3.2. Model construction and validation

ML algorithms can be broadly classified into two categories:
supervised and unsupervised learning algorithms. Supervised
learning may be further classified into regression and classifica-
tion. In materials design, supervised learning attempts to identify
a function that is able to predict the properties for new materials
based on a set of knownmaterials and their properties. If the target
property is a continuous quantity (e.g., glass transition tempera-
ture), the process is known as regression. Typical regression algo-
rithms are Kriging or Gaussian process regression [42], artificial
neural networks (ANNs) [43], and support vector machines (SVMs)
[44]. If the outputs are discrete targets (e.g., whether toxic or not,
which type of crystal), the process of searching for the prediction
function is then known as classification. The decision tree [45]
and random forest [46] algorithms are the two most commonly
used classification algorithms.

While supervised learning aims to find a function mapping a set
of input data to a corresponding output property, unsupervised
learning attempts to identify the relationship among the input data
themselves. Clustering, as a typical unsupervised learning method,
is the process of partitioning a dataset into different categories or
regions, such that the data points in the same group or cluster
are more similar to each other than to those in other clusters. Clus-
tering is very useful for extracting physical insights from data and
for finding new promising materials based on comparative studies
[47]. The most popular clustering algorithms are k-means [48],
hierarchical clustering [49], and hidden Markov modeling [50].

A list of important ML methods is summarized in Table 2, and a
detailed introduction to each method can be found in Ref. [51].
Since each method or algorithm has its own suitability and appli-
cation scope, the selection of an appropriate ML algorithm is cru-
cial for its successful implementation. Several algorithms, such as
least-squares regression, kernel ridge regression, neural networks,
and decision trees, are able to create property prediction models.
However, while some algorithms (mainly regression-based ones)
Table 2
A list of important ML methods.

Method Category Brief description

Least-squares regression Regression Least-squares fit of the
Kernel ridge regression Regression Combines ridge regress
Logistic regression Regression Explains the relationshi
Kriging or Gaussian process

regression
Regression An interpolation metho

ANN Regression,
classification

Uses hidden layer(s) of

SVM Regression,
classification

Builds a model that pre

Decision tree Classification Creates a model to pred
features

Random forest Classification An ensemble of multipl
k-nearest neighbors Classification Uses a database where

new samples
Naive Bayes Classification A probabilistic classifier

features
k-means clustering Clustering Aims to partition n obs
Hierarchical cluster analysis Clustering A method of cluster ana
Hidden Markov model Clustering The modeled system is
provide the actual predictive functions, others (e.g., decision trees)
do not. Moreover, the amount of available data can also dictate the
selection of learning algorithms. For example, tens to thousands of
data points may be properly handled with regression methods
such as Kriging and kernel ridge regression. However, when the
dataset is much larger, more sophisticated learning methods such
as deep neural networks should be applied [32].

In recent years, many open-source software programs or tools
such as scikit-learn, TensorFlow, and Chainer have been developed,
making it possible for non-specialists to implement ML methods
within their own research. Scikit-learn is a Python package that
integrates a wide range of state-of-the-art ML algorithms, both
supervised and unsupervised. TensorFlow is a software library for
high-performance numerical computation. Originally developed
by researchers and engineers from Google’s AI department,
TensorFlow now provides strong support for ML and deep learning.
Chainer is a powerful tool for constructing neural networks, which
aims to bridge the gap between algorithms and implementations.
The commercial software MATLAB also incorporates many ML
algorithms in toolboxes such as Statistics.

A data-driven model can, in principle, memorize every data
point in the training set and thus result in extremely high accuracy
regarding these data. For this reason, ML models must be evaluated
on data that have not been used for training. The simplest way is to
perform cross validation, where the model is built on only part of
the data and the remaining data is used for evaluation or valida-
tion. There are several cross-validation strategies, among which
the k-fold cross-validation method [52] is very popular. In this
strategy, a dataset is randomly partitioned into k subgroups with
the same size; the (k � 1) subsamples are used for training and
the remaining one subsample is used for validation. This cross-
validation process is repeated k times, with each of the k subsam-
ples used exactly once as validation data. Kohavi [53] demon-
strated that for real-world datasets, the best method for model
validation is ten-fold cross-validation, even though computational
power permits the use of more folds. Another widely used method
for validating ML models is the bootstrap method [54]. Here, a
‘‘bootstrap training set” with the same size as the original dataset
is constructed by extracting samples from the original dataset one
at a time and returning them back to the dataset after they have
been chosen. As a result, some data points may appear more than
once in a bootstrap training set, while others may not appear at all.
The data points that have not been used in the training set are then
used for model validation. The above procedure can be repeated
output data with respect to the input features
ion with the kernel trick
p between one dependent binary variable and one or more independent variables
d for which the interpolated values are modeled by a Gaussian process

neurons to connect inputs and outputs

dicts whether a new example falls into one category or the other

ict the value of a target variable by learning decision rules inferred from the data

e decision trees
the data points are separated into several classes to predict the classification of

based on Bayes’ theorem with strong independence assumptions between the

ervations into k clusters
lysis that seeks to build a hierarchy of clusters
assumed to be a Markov process with unobserved (hidden) states
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several times, and the averaged prediction error is used as an indi-
cator of the model performance. An advantage of the bootstrap
method is that the result can be presented with confidence inter-
vals or uncertainties—a feature not readily available with other
validation methods.

3.3. Material prediction and experimental verification

As indicated in Fig. 4, after the ML model is established, inverse
design can be performed to find materials with desired properties
based on the model. This can be done by using either large-scale
screening or mathematical optimization.

The basic idea of the large-scale screening method is to first
generate all possible material candidates in the design space, and
then test them one by one using the learned model [15]. Typically,
the generation of materials must consider several constraints on
the representation of the material, which is normally in the form
of a structure and/or composition-based function. For this reason,
a systematic procedure is required to identify all the materials
(or as many as possible) in the design space. Once the candidates
are generated, the evaluation of their properties is simple and
straightforward with the trained model.

Alternatively, reverse materials design can be formulated as a
mathematical optimization problem, where the target property is
optimized subjected to the structural and composition constraints
[55,56]. The optimization-based method attempts to identify
promising materials without testing all the candidates in the
design space. This feature makes the method much less limited
by the combinatorial complexity. Either deterministic [57] or
stochastic algorithms [58] can be employed to solve the formu-
lated optimization problem for which the optimal materials are
identified.

After the best materials are identified, they can be synthesized
and their actual properties can be experimentally verified. If the
experimental results agree well with the predicted ones, the mate-
rials are confirmed to have the highest performance. If not, the
designed materials and corresponding experimental results are
added to the training set and the ML model is retrained.
4. Application examples

ML has accelerated the development of several different kinds
of materials. In this review article, we have chosen to focus on
three classes of materials: polymer and porous materials, catalytic
materials, and energetic materials. Recent applications of ML
methods for the discovery and optimal design of these materials
are highlighted in the following sections.

4.1. Polymer and porous materials

Polymer materials have many desirable properties such as a
high strength-to-weight ratio, resistance to corrosion, being easy
to shape, and having a low manufacturing cost. Due to these
advantages, polymer materials are finding increasing applications
in many engineering areas, from traditional packaging and con-
sumer products to electrochemical and biomedical engineering.
Based on the large quantity of existing polymeric structural and
property data, the data-driven or ML method can play an impor-
tant role in polymer discovery and design.

Breneman et al. [59] developed a materials genomics approach
for the optimal design of spherical nanoparticle-filled polymers
based on the prediction of their thermomechanical properties.
Experimental studies were used to validate the design results.
Venkatraman and Alsberg [60] proposed an ML model to rapidly
discover new polymer materials with multiple desirable properties
including a high refractive index. The obtained results were suc-
cessfully verified by means of DFT calculations. To facilitate the
development of new polymer materials, Wu et al. [61] established
statistical models to predict the dielectric constant, band gap,
dielectric loss tangent, and glass transition temperature for organic
polymers. A new set of features called infinite chain descriptors
was developed to characterize organic polymers, and was used as
inputs for ML to predict the aforementioned properties. It was
found that all the obtained ML models showed good performance
in polymer property predictions. Sukumar et al. [62] demonstrated
how to build ML models for the optimal design of polymers with
specific electronic properties. Model validation confirmed that
the established models were able to make reliable predictions on
polymers outside of the training set.

Dielectric materials are traditionally made from inorganic
materials such as porcelain, mica, and quartz. However, when used
as dielectric materials, polymers provide the advantages of excel-
lent chemical resistance, flexibility, cheapness, and tunability for
specific applications. Sharma et al. [11] proposed a hierarchical
ML-based method to accelerate the identification of polymer
dielectrics that outperform standard materials. The measured
dielectric properties for some of the designed polymers strongly
support the efficacy of the proposed approach for optimal polymer
dielectrics design. Mannodi-Kanakkithodi et al. [56] performed
polymer dielectrics design by building statistical learning models
based on data generated from first-principles computations. The
polymers were fingerprinted as simple numerical representations,
which were then mapped to the properties of interest using an ML
algorithm. Moreover, a genetic algorithm was used to optimize
polymer constituent blocks in an evolutionary manner, thus
directly leading to the design of polymers with the target proper-
ties. Through the development of a polymer genome, Mannodi-
Kanakkithodi et al. [63] also presented an essential roadmap for
the design of polymer dielectrics, along with future directions for
expansions to other polymer classes and properties.

Metal–organic frameworks (MOFs), as an important porous
material, possess great potential for many applications, and
particularly for gas storage and separation. Furthermore, the struc-
tural building blocks of MOFs can be combined to synthesize a
nearly infinite number of materials. This makes computational
methods very useful for the large-scale screening and optimal
design of MOF materials.

Fernandez et al. [64] reported the first QSPR analysis of MOFs
for methane (CH4) storage. These scholars investigated the effect
of geometrical features—namely, pore size, surface area, and void
fraction—as well as the framework density on the simulated CH4

storage capacities of about 1.3 � 105 hypothetical MOFs at 1, 35,
and 100 bar (1 bar = 100 kPa). Based on these data, several ML
models including multi-linear regression models, decision trees,
and nonlinear SVMs were developed to predict the CH4 storage
capacities of MOFs. In each case, 1 � 104 MOFs were used to train
the model, and the accuracy of the model was validated on a test
set of about 1.2 � 105 MOFs. It was found that for CH4 storage at
35 bar, desirable MOFs should have densities greater than
0.43 g�cm�3 and void fractions greater than 0.52; for CH4 storage
at 100 bar, MOFs should have densities greater than 0.33 g�cm�3

and void fractions greater than 0.62. Based on the response surface
analyses of the SVM model, the researchers identified new materi-
als that might lead to extremely high CH4 storage capacities. In
order to accurately predict carbon dioxide (CO2) uptakes in MOFs,
Fernandez et al. [65] introduced the atomic property-weighted RDF
(AP-RDF) descriptor, which captures the chemical features of a
periodic material in addition to its geometric features. Nonlinear
SVM models based on the AP-RDF descriptors yielded good predic-
tions on CO2 equilibrium loadings at both 0.15 and 1 bar. This
result suggests that MOFs with more compact frameworks and



T. Zhou et al. / Engineering 5 (2019) 1017–1026 1023
interatomic distances in the range from 6 to 9 Å exhibit a higher
affinity for CO2 at both pressures. Ohno and Mukae [66] applied
Gaussian process regression to correlate and predict the equilib-
rium CH4 loading of MOFs. Based on the established model, opti-
mal MOFs that could outperform all the materials in the model
training set were successfully identified.

Aghaji et al. [10] employed decision tree and SVM methods to
predict the CO2 uptake capacity and CO2/CH4 separation selectivity
of MOFs by using geometrical descriptors of the materials as the
ML input variables. It was found that pore size, void fraction, and
surface area were the most important factors for designing optimal
MOFs for separating CO2 from CH4. Simon et al. [67] used the ran-
dom forest method to discover new porous materials with great
potential for xenon and krypton separation. Two high-performing
materials were identified: an aluminophosphate zeolite analogue
and a calcium-based coordination network. Both materials have
been synthesized, but they have not yet been tested for xenon
and krypton separation. Fernandez and Barnard [68] developed
ML models for predicting the CO2 and nitrogen (N2) uptake
capacities of MOFs. Many different ML techniques, including the
decision tree, k-nearest neighbor, SVM, ANN, and random forest
methods, were investigated. It was found that the random forest
method yielded the most accurate predictions on both CO2 and
N2 uptake capacities. Based on the established models, the most
promising MOFs for efficient CO2/N2 separations were identified.
Qiao et al. [69] applied the decision tree method to study the rela-
tionship between the geometrical descriptors of MOFs and the
MOF-membrane performance for separating a ternary gas mixture
(CO2/N2/CH4) at 298 K and 10 bar. The seven best MOF membranes
were finally identified.
4.2. Catalytic materials

Catalysts are used in many industrial processes. Traditionally,
the optimal design of catalysts has been empirical or has mostly
depended on experimentation. Quantum chemical calculations
provide the possibility for first-principles catalyst design. However,
the large computational cost limits their application to relatively
simple reactions and to a small number of catalyst candidates.
With the rapidly increasing amount of available experimental
and computational data, as well as the development of catalysis
informatics, catalyst structure and activity relationships can now
be well described using ML models, which are very useful for
catalyst development.

One of the first attempts to use ML methods for catalyst design
was carried out by Huang et al. [70], who developed an ANN model
to describe the relation between catalyst components and catalytic
performance. A hybrid genetic algorithmwas proposed and used to
find the optimal multicomponent catalysts based on a trained ANN
model. The catalyst design strategy was successfully applied to the
CH4 oxidative coupling reaction. A few high-performance catalysts
were found, and the C2 hydrocarbon yield of the best catalyst
reached 27.78%, which was higher than the yields of previously
reported catalysts. Baumes et al. [71] employed ANN models to
predict catalyst performance for the water gas shift reaction. It
has been shown that compared with traditional computational
and experimental trial-and-error approaches, ML methods possess
great potential for accelerating the discovery of high-performance
heterogeneous catalysts. Baumes et al. [72] introduced linear SVM
models to optimize olefin epoxidation catalysts. Later, a nonlinear
SVM model was trained for a second catalytic reaction—that is,
light paraffin isomerization. Based on these two application exam-
ples, the researchers discussed the advantages of SVM for catalyst
research in comparison with other ML techniques such as neural
networks and decision trees.
Thornton et al. [73] developed an ML model for the computa-
tional screening of over 3 � 105 zeolite catalysts for CO2 reduction.
It was found that an optimal cavity size of around 6 Å is required to
maximize the change in entropy–enthalpy upon adsorption with a
maximum void space greater than 30% to promote product forma-
tion. Corma et al. [74] described how spectral characterization
descriptors can be used in combination with conventional struc-
tural and composition descriptors for the construction of catalyst
performance prediction models. PCA was first employed to extract
the desired spectral descriptors from the X-ray diffraction (XRD)
characterization of the catalyst. Performance prediction models
were then obtained by using ANN and decision tree modeling tech-
niques. Through the application to an epoxidation reaction based
on mesoporous titanium (Ti)-silicate catalysts, it was demon-
strated that the use of spectral descriptors can remarkably increase
the prediction accuracy of the ML model and thus improve the reli-
ability of the catalyst design results. Mixed metal oxides are robust
materials that are often used as industrial catalysts. However, pre-
dicting their catalytic performance a priori is difficult. Using the
oxidative dehydrogenation of butane to 1,3-butadiene as a model
reaction, Madaan et al. [12] experimentally synthesized and tested
15 mixed bimetallic oxides supported on alumina. Based on the
experimental results, a descriptor model was built and used to pre-
dict the performance of a set of 1711 mixed-metal oxide catalysts.
Six new promising bimetallic oxide catalysts were identified and
experimentally verified.

Bimetallic and multi-metallic catalysts exhibit high activities for
a wide range of thermal and electrochemical reactions. However,
modeling the many diverse active sites is a significant challenge. Li
et al. [75] developed ML models for the rapid screening of
transition-metal catalysts using easily accessible catalyst descrip-
tors as the model inputs. The descriptors include the local elec-
tronegativity and effective coordination number of an adsorption
site, as well as intrinsic properties of active metal atoms, such as
the ionic potential and electron affinity. The trained models were
used to screen multi-metallic alloys for electrochemical CO2 reduc-
tion. Several promising catalyst candidates were identified. Li et al.
[76] presented an ANN-based framework for the rapid screening of
bimetallic catalysts using methanol electro-oxidation as the model
reaction. A catalyst database containing the adsorption energies of
*CO and *OH on {111}-terminated model alloy surfaces and finger-
print features of active sites from DFT calculations was established
and used to optimize the structural and weight parameters of the
ANN. The fingerprint descriptors include the sp-band and d-band
characteristics of an adsorption site together with tabulated proper-
ties of host-metal atoms. It was demonstrated that an ANN model
trained with the existing dataset of about 1000 idealized alloy sur-
faces could capture the complex adsorbate/metal interactions, and
showed high predictive power in exploring the large chemical space
of bimetallic catalysts. Ulissi et al. [77] proposed another framework
for designing bimetallic catalysts. Active sites for every stable low-
index facet of a bimetallic crystal were enumerated and cataloged,
yielding hundreds of possible active sites. The activities of these sites
were predicted in parallel using an ANN-based surrogate model.
Siteswithhigh activitieswere found,whichprovided targets for sub-
sequent DFT calculations. The design framework was applied to the
electrochemical reduction of CO2 on nickel gallium bimetallics.

Nanomaterial-based catalysts are usually heterogeneous cata-
lysts broken up into metal nanoparticles. Metal nanoparticles have
larger surface areas than their bulk counterparts, so their use
results in increased catalytic activity [78]. Fernandez et al. [79]
developed decision tree and ANN models to predict the catalytic
activities of platinum nanoparticles from their structural descrip-
tors such as particle diameter, surface area, and sphericity based
on a dataset derived from DFT calculations. It was demonstrated
that ML techniques can be used to rapidly estimate the catalytic
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properties of nanomaterials at a resolution that is inaccessible to
both experimental and ab initio methods. Principles or rules for
guiding the rational design of nanocatalysts in the near future were
identified. As is widely known, catalytic activities are normally
dominated by a few specific surface sites. Therefore, designing
active sites is the key to the realization of high-performance
heterogeneous catalysts. Alloy nanoparticles have a distribution
of active sites that may differ from those on single-crystal surfaces.
This makes the optimal design of alloy nanoparticles very challeng-
ing. Jinnouchi and Asahi [8] proposed an ML scheme using a local
similarity kernel, which makes it possible to understand and
approximate the catalytic activities of alloy nanoparticles based
on local atomic configurations. This method has been successfully
applied to the direct NO decomposition reaction on Rh-Au alloy
nanoparticles.

Data-driven modeling is not only important for heterogeneous
catalyst design, but also for homogenous catalysis. Maldonado
and Rothenberg [80] summarized why, when, and how predictive
modeling should be used for homogenous catalyst design. Transi-
tion metal complexes, which are a type of important homogeneous
catalyst, have very complex electronic structures, and direct DFT
simulation of these materials is very computationally expensive.
Janet and Kulik [81] used ANN methods to predict the electronic
properties for transition metal complexes including spin-state
ordering and specific bond lengths. It was shown that the ANN out-
performed other ML methods, including SVM and kernel ridge
regression. The developed ANN model provides a good basis for
the large-scale screening of transition metal complex catalysts.

4.3. Energetic materials

ML plays an important role in accelerating the discovery of
high-performance energetic materials, including battery and
superconductor materials, electroceramic and thermoelectric
materials, and photovoltaic and perovskite materials.

Fujimura et al. [82] used ML methods to predict the
conductivity of different compositions of lithium (Li)-conducting
oxides as Li-ion materials at 373 K based on experimental and
computational data. Rational design of superior Li-ion conductors
was performed by optimizing the materials’ compositions based
on the established ML models. Crystal structures have a great
impact on the physical and chemical properties of Li-ion silicate
cathodes and thus greatly influence their battery applications.
Three major crystal types (i.e., monoclinic, orthorhombic, and tri-
clinic) of silicate-based cathodes were predicted by Shandiz and
Gauvin [83] using different classification algorithms. It was
demonstrated that the random forest method yielded the highest
prediction accuracy in comparison with other classification meth-
ods. Sendek et al. [84] presented a large-scale computational
screening approach for identifying promising candidate materials
for solid-state electrolytes for Li-ion batteries. The authors first
screened 12831 Li-containing crystalline solids with high struc-
tural and chemical stability, low electronic conductivity, and low
cost. They then developed a data-driven ionic conductivity classifi-
cation model using logistic regression to further select candidate
structures that exhibit fast Li conduction. The number of candidate
materials was reduced from 12831 to 21, a few of which have been
examined experimentally. Stanev et al. [14] used several ML
schemes to develop different models to predict the critical
temperatures of more than 1.2 � 104 superconductors. To improve
the accuracy and interpretability of these models, new descriptors
were incorporated using materials data from the AFLOW Online
Repositories. Finally, the regression and classification models were
combined into a single pipeline, which was employed to search the
entire Inorganic Crystal Structure Database (ICSD) to find potential
new superconductors with desirable critical temperatures. More
than 30 non-cuprate and non-iron-based oxides were successfully
identified.

Scott et al. [85] used ANN methods to design electroceramic
materials based on a recently established database containing com-
position and property information for a wide range of ceramic com-
pounds. A stochastic optimization algorithm was employed to
search for optimal materials considering the properties of high
relative permittivity and low overall charge. It was found that in
some cases, the identifiedmaterials were similar to those contained
in the database; in other cases, completely new materials were
found. Based on available knowledge on 2.5 � 104 knownmaterials,
Gaultois et al. [86] developed an open-source ML-based engine for
the evaluation of the performance of thermoelectric materials. It
was demonstrated that this engine can identify promising thermo-
electric materials that are different from known ones.

The growth in energy demands coupled with the need for clean
energy is likely to make solar cells an important energy supplier.
Photovoltaic and perovskite materials are two of the main materi-
als for the storage and utilization of solar energy. Nagasawa et al.
[87] screened conjugated molecules for organic photovoltaic appli-
cations by using ANN and random forest modeling. Parameters
including the molecular weight, electronic property, and power
conversion efficiency were collected from the literature and sub-
jected to ML. It was demonstrated that the random forest model
yielded higher prediction accuracy than the ANN-based model.
Olivares-Amaya et al. [15] used ML techniques to develop models
for predicting important current-voltage and efficiency properties
of potential organic photovoltaic molecules. The obtained models
were used to quickly screen promising photovoltaic materials from
2.6 million candidate compounds. The results revealed that the
benzothiadiazole and thienopyrrole homologues are currently the
most promising set of molecules for photovoltaic applications.
Yosipof et al. [88] proposed a data mining and ML workflow, and
applied it to the analysis of two recently developed solar cell
libraries based on Ti and copper oxides. The results demonstrated
that the ML model built from the k-nearest neighbor algorithm can
yield good predictions for multiple solar cell properties. This model
is therefore suitable for designing better photovoltaic solar cells
based on new promising metal oxides.

A perovskite solar cell is another type of solar cell that includes
a perovskite-structured compound—most commonly a hybrid
organic–inorganic lead or tin halide-based material—as the light-
harvesting active layer [89]. Accurate prediction of the bandgaps
of double perovskites is significant for their solar cell applications.
While quantum mechanical computations for quantifying band-
gaps are very computationally expensive, data-driven ML
approaches are promising alternatives. Pilania et al. [7] developed
a robust ML framework for the efficient and accurate prediction of
the electronic bandgaps of double perovskites. The established
learning models were validated and used to design promising per-
ovskite materials for solar cell applications. Curie temperature (Tc),
the second-order phase-transition temperature, is another impor-
tant physical property for perovskite materials. Zhai et al. [55]
employed the SVM, relevance vector machine, and random forest
methods to establish prediction models for Tc. According to the
k-fold cross-validation, the SVM model shows better prediction
performance than the other two models. Potential perovskite
materials with high Tc were found based on the SVM model using
a genetic-algorithm-guided search strategy.
5. Conclusion

Data-driven science, the fourth paradigm of science, has given
rise to the MGI and to materials informatics. The progress of the
MGI and materials informatics has totally changed the philosophy
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of materials research and development. Instead of relying on
experimental trial-and-error or high-throughput ab initio calcula-
tions, data-driven or ML methods are now playing significant roles
in predicting the properties of various materials and guiding exper-
imentalists to discover and develop new high-performance materi-
als. This review article provided a brief introduction on different
classes of ML algorithms as well as related software and tools.
The basic steps for applying ML methods for materials discovery
and design were summarized. Recent applications on the large-
scale screening and rational design of polymer and porous materi-
als, catalytic materials, and energetic materials were highlighted.
Despite a substantial number of successful applications, this excit-
ing topic is still largely in its nascent stage and it is believed that
ML will play an increasingly important role in accelerating the
development of various kinds of functional materials in the fore-
seeable future.
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