
Engineering 6 (2020) 835–846
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Smart Society—Article
Smart Society and Artificial Intelligence: Big Data Scheduling and the
Global Standard Method Applied to Smart Maintenance
https://doi.org/10.1016/j.eng.2019.11.014
2095-8099/� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: ruben.foresti@unipr.it (R. Foresti).
Ruben Foresti a,d,⇑, Stefano Rossi a, Matteo Magnani b, Corrado Guarino Lo Bianco c, Nicola Delmonte c

aDepartment of Medicine and Surgery, University of Parma, Parma 43126, Italy
b Sidel S.p.a., Parma 43126, Italy
cDepartment of Engineering and Architecture, University of Parma, Parma 43124, Italy
dCenter for Research in Toxicology (CERT), University of Parma, Parma 43126, Italy
a r t i c l e i n f o

Article history:
Received 5 July 2019
Revised 25 October 2019
Accepted 7 November 2019
Available online 29 January 2020

Keywords:
Smart maintenance
Smart society
Artificial intelligence
Human-centered management system
Big data scheduling
Global standard method
Society 5.0
Industry 4.0
a b s t r a c t

The implementation of artificial intelligence (AI) in a smart society, in which the analysis of human habits
is mandatory, requires automated data scheduling and analysis using smart applications, a smart infras-
tructure, smart systems, and a smart network. In this context, which is characterized by a large gap
between training and operative processes, a dedicated method is required to manage and extract the
massive amount of data and the related information mining. The method presented in this work aims
to reduce this gap with near-zero-failure advanced diagnostics (AD) for smart management, which is
exploitable in any context of Society 5.0, thus reducing the risk factors at all management levels and
ensuring quality and sustainability. We have also developed innovative applications for a human-
centered management system to support scheduling in the maintenance of operative processes, for
reducing training costs, for improving production yield, and for creating a human–machine cyberspace
for smart infrastructure design. The results obtained in 12 international companies demonstrate a possi-
ble global standardization of operative processes, leading to the design of a near-zero-failure intelligent
system that is able to learn and upgrade itself. Our new method provides guidance for selecting the new
generation of intelligent manufacturing and smart systems in order to optimize human–machine inter-
actions, with the related smart maintenance and education.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although Society 4.0 integrates the web technology used to
acquire and analyze data, without ontology [1] studies, a large
gap remains between information sharing and related knowledge.
Ontology studies are an essential part of Society 5.0, in which the
huge amount of data, merged with environmental and human bio-
logical analysis, increases with the raising complexity of the pro-
cesses required to assure a global sustainability. Moreover, real-
time decision-making using big data is becoming increasingly nec-
essary to improve companies’ competitive advantage [2], and the
literature demonstrates that artificial intelligence (AI) can be
applied to big data processing [3]. Big data analysis can be used
to provide guidance for predictive innovations with scheduled pro-
cesses [4–6].

The digital innovation results in a customer lifetime value
reduction [7] and this requires flexible manufacturing systems
with smart human–machine interaction technologies for non-‘‘digi
tal-native” (people who are not familiar with the digital systems)
human resources (HR) [8].

Although these problems have been known for some time [9],
many companies are not yet ready, even today, to manage big data
with smart analytical tools [10,11], especially in terms of informa-
tion technology (IT) systems for production lines, where the appli-
cation of business analytics may seem obvious.

One of the main difficulties in collecting information from auto-
mated processes lies in the innovation of production systems,
which must respond to market changes by being reconfigured
through the integration of new production machines or the adop-
tion of technologies developed by different manufacturers [12]. For
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Table 1
Terms and their related entities of society paradigms.

Terms Entities

Society 4.0 Society 5.0 Smart Society

Core Process AI Human
Scheduled

output
Process
parameters

Planned
processes

Socially
characterized AI

Standardization Cyberspace Physical space Global systems
Manufacturing Industry 4.0 Industry 5.0 Smart factories
Analysis Big data and

CPS
Process data
and HCPS

Predictive and
adaptive data

Machine
education

Advanced
diagnostics

Environment
and biology

Smart infrastructure
and applications

Human
assistance

Co-working and
zero failure

Smart systems
and network

Smart cities

CPS: cyber–physical system.
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example, to reduce the time between an order and the ensuing
product shipment [13], mass customization requires fast produc-
tion with high-quality standards and the implementation of smart
systems [6,14,15] between physical space and cyberspace. The
analysis of HR habits is mandatory in order to identify user-
friendly procedures to assure a quick machine reconfiguration.

In this paper, we propose a new method for managing the life-
cycles of highly customized products without specialized training
for non-digital-native HR [16–18]. Our method applies a standard
protocol to different maintenance activities [19] evaluating the
smart infrastructure design of human–cyber–physical systems
(HCPSs).

We applied our method to the production lines of 12 beverage
companies (where the production line was installed with an
advanced diagnostics (AD) system). These companies were chosen
because a change in bottle format does not require difficult soft-
ware (SW) customization, which reduced the variability and
allowed us to focus on the analysis of human activity. The main
question addressed in this work is: How can we develop a smart
system for the connection between cyberspace and physical space
that is not related to HR training and that is based on customized
scheduling in order to manage autonomously a huge amount of
data with smart infrastructure and applications, thus reducing fail-
ures and downtimes? We demonstrate herein that our method
makes it possible to reduce HR training and improve productivity.

2. Background

The information and communications technology applied in the
manufacturing industry is leading to highly automated, efficient,
flexible, and intelligent production systems [20]. These systems
require an effective organization of maintenance which can be
obtained with engineering approaches [21], designing cybernetic
systems with engineering tools and methods, e.g. those used for
digitalization, networking, and AI. More and more companies are
employing advanced production systems to maintain their com-
petitive advantage with the use of computer-integrated manufac-
turing [22]. With this advanced approach, which is used to
obtain excellent results in terms of low-cost automated production
with high-quality standards, it is possible to design an empirical
test for smart organizations.

In this context, it is possible to implement a complete proce-
dure that defines the process parameters based on HR experience
and statistical data, in which empirical cases enable node identifi-
cation in the implemented artificial neural network (common vari-
ables related with different processes), defining the cyberspace
region of interest (ROI) as an effective option to scale up to Indus-
try 4.0 [14]. Considering a generic process, information utilized to
develop new training lessons for HR to face not normal operating
condition (e.g. a machine fault in a manufacturing process) need
to be updated with data related to the restoration intervention,
as well as analyzed and elaborated by AI algorithm to ensure a con-
tinuous improvement of the system.

Our proposed approach is based on the following five
postulates:

(1) A smart society evaluates human needs through AI to imple-
ment the best automated operational processes, taking into
account problems and stimuli in a humane way, with a structure
that can collect and learn people’s habits in the modern digital
context.

(2) The automated procedure applied in a specific manufactur-
ing process must improve itself by acquiring empirical information
(from real cases), in order to prevent any errors resulting from
interactions between humans and machines, to ensure the safety
of the provided facilities and to merge operative processes with
the smart factory and with global needs.
(3) The analysis of the big data chain can be carried out with a
scalable approach to adapt it to different organizations processes
with AD techniques.

(4) Smart infrastructure and applications can be used to
automate all management processes up to decision-making and
collaborative robot design, thanks to the advancements in AI.

(5) Processes can be autonomously managed by smart self-
learning systems, with a human–cyberspace connection through
digital applications (SW equipped with a user interface).

Table 1 summarizes the terminology typically used in the vari-
ous paradigms of society. Depending on the paradigm, a noun
corresponds to different entities. The following three subsections
provide an explanation of the postulates related to different
societies.

2.1. Society 4.0

In Society 4.0, cross-sectional sharing of knowledge and infor-
mation is difficult, and people access a cloud service (databases)
in cyberspace via the Internet to retrieve and analyze data. The goal
of Industry 4.0, which is based on the concepts and technologies of
cyber–physical systems (CPS), the Internet of Things (IoT), and the
Internet of Services [23], is to reduce the gap between humans and
machines, thus making it possible to easily implement digital
frameworks for human needs (e.g. a networked health system)
with uniformly distributed components [24]. In the presented con-
text, human–machine cooperation has reflected a wide range of
changes with broad implications in communication, coordination,
and collaboration [25], particularly in regards to the implementa-
tion of collaborative robots that must respond in a very short time
with flexible configuration and adaptation in any operative
process.

2.2. Society 5.0

In Society 5.0, AI accumulates information acquired from
physical space in cyberspace, making the future analysis of process
data possible, thanks to the use of HCPSs [20]. HCPSs, which are the
new generation of AI, are based on ontology [1] and take into
consideration every human–machine interaction. Moreover, this
process brings new data to industry and society considering also
environmental and human biological aspects, something that was
previously impossible. The aim of Society 5.0 is to balance eco-
nomic advancement with social problem-solving [26], which
requires scientists to mimic the structures and processes that can
be identified in the biological evolution. While Industry 4.0 focuses
on adopting different digital/web-based technologies to acquire
and monitor data, Industry 5.0 focuses on the geostrategic shift
generated from synthetic biology [27]. The idea is to have dynamic
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cities that are designed around the environmental conditions, and
that use bio-based products, energy, and services with the purpose
of realizing zero-failure processes for AI integration in smart cities.
The aim is to fit manufacturing processes perfectly with the envi-
ronment and the human needs, and to continuously upgrade the
process data, services, and products, along with the smart systems
and correlated infrastructures [28]. Moreover, the data scheduling
presented herein enables to set up artificial neural networks for
decision-making, based on experience from Society 4.0 and vali-
dated parameters in the related physical space.

2.3. Smart society

Smart cities represent a conceptual model of urban develop-
ment that is based on human, collective, and technological capital
exploitation [29]. The notion of smart cities [30] can be extended to
smart society; in fact, Society 5.0, along with AI, is able to use stan-
dardized processes to evaluate human needs. Thus, a digitally
enabled and knowledge-based society must work toward social,
environmental, and economic sustainability [14]. Human and
social capital is at the heart of developments in smart cities and
smart society and requires innovative methods for predictive and
adaptive processes. The aim is to design a knowledge-based
economy with digital infrastructure that can work together and
can enable dynamic real-time interactions between various smart
city subsystems [31]. At present, the literature contains dozens of
descriptions of what a smart or intelligent city is, although there
is no overall agreement [32–35]. At any rate, it can be stated that
smart cities are human-centric societies, in which AI selects pro-
cesses with the goal of obtaining the best conditions for quality
of life using smart factories equipped with smart devices (sen-
sors/actuators), programmable logic controllers (PLCs), process
management and manufacturing execution systems, enterprise
resource planning SW, and HCPS. The idea is that an order can be
made anywhere in the network, and the manufacturing processes
can be remotely controlled [36] and reorganized with plug-and-
produce technology, based on smart infrastructure and ontologies.
This will allow the integration, exchange, or replacement of
production equipment without specialized HR support for
system reconfiguration. In fact, plug-and-produce technology
allows the smart reconfiguration and interaction of smart devices
connected with the PLC, which enables smart cooperation with
other devices [37].

3. Theory and method

3.1. Smart maintenance

Typical maintenance methods include corrective, preventive,
predictive, and proactive methods [38]. Corrective methods are
unplanned and undertake correction when a random failure
occurs. The other three methods are planned and evaluate the data
from preventive and/or predictive analysis. Preventive mainte-
nance, which increases the exploitation of components, evaluates
statistical studies and equipment manuals with the aim of support-
ing the replacement procedure before faults occur. Predictive
maintenance uses sensors for components analysis, data collection,
and manufacturing process analysis, using historical trends to
progressively reduce problems, thereby increasing the production
efficiency. Proactive maintenance, which is based on an under-
standing of the problem and its causes, evaluates all relations
between the components and fluids or lubricant, schedules each
possible problem, and implements continuous improvement.

The ‘‘smart maintenance” proposed herein is a human-centric
approach that evaluates the relation between new machines/
components and HR, taking into consideration human habits and
the related knowledge level. The aim is the improvement of proac-
tive maintenance, by implementing a new human–machine train-
ing approach with autonomous systems (cf. HCPSs) for AD and
with zero-failure analysis progressively upgrading the cyberspace
supporting the facility management.

3.2. The proposed global standard method

Human habits and operational activities can differ for each
manufacturing system (depending on environmental conditions,
available resources, network, infrastructure, devices, etc.); accord-
ingly, the ROI in each human–machine interaction and a proposal
of the operational activity with a high potential for success in
terms of quality, sustainability, and efficiency must be defined.

The global standard method for Society 5.0 (GSM5) proposed
herein (Fig. 1) is able to improve itself over time and can optimize
the operation and maintenance (O&M) process using predictive
analysis.

The aim of the GSM5 is the development of production and sup-
port processes [39] to enable a multicore circular system that pro-
vides the right information at all operational management levels
[40], thus ensuring complete scheduling for AI [16,41]. Dedicated
smart systems, networks [42], and applications [43] provide the
basis for innovative education, and analysis of the environment
of a typical smart factory within Society 5.0 [44,45] is mandatory
in order to enable contextualized mass customization [13].

The systems for training and scheduling (i.e., smart mainte-
nance) are structured through the big data chain, and a process
design enables the continuous improvement of a typical smart city
within Society 5.0 along with cross-company activity for autono-
mous adaptation. The data obtained from the installed machines
(i.e., from machines in collaboration with humans), are used by
humans in innovative education (i.e., humans educated by
humans) to predict and plan the future maintenance activity.
Nowadays, the environmental problems and human needs require
more and more sustainable processes and this define the available
resources and manufacturing limitations (i.e., machines educated
by humans), in order to ensure the global scaling (i.e., machines
educated by machines) and reduce both the time spent and
wasted.

The data scheduling [46] with smart applications, which starts
from a new operative process implementation, evaluates the inter-
actions between humans and machines in the related macro areas:
zero failure, big data chain, AD, and new generation of intelligent
manufacturing (NGIM). The structured cyberspace supports the
mass customization processes with the NGIM and their zero-
failure integration in the selected environment with the available
biological resources. The information is shared with the smart sys-
tems and network in real time, enabling innovative education and
the related data analysis and AD.

Thus, starting from future outcomes contextualized in the
specific environment to obtain simple, validated, and scalable
demo procedures from cyberspace to the physical space, all opera-
tive processes need a complete big data analysis for setting up and
developing procedures to reduce both failures and waste.

Space is the boundless three-dimensional extent in which
objects and events have relative position and direction. The
human–cyber–physical space analyze both HCPS (objects and
events) and the operative processes (position and direction).

The connection between cyberspace and physical space
requires hardware (HW) and SW that can digitalize and elaborate,
by means of HCPS through ontologies, the interaction between
humans and machines. The creation of an autonomous cyberspace
with the related data scheduling management process enables a
simulation of the NGIM operative processes based on the parame-
ters of Society 5.0.



Fig. 1. The GSM5 and the operative management approach for human–cyber–physical space. Brown box: physical space in Society 5.0: environmental resources, smart
systems and networks for coherent timing definition, innovative education for operational effectiveness the roles, and mass customization targets. Blue box: smart
maintenance scheduling and HCPS information data flow. Yellow box: macro areas for cyberspace scheduling of operative management.
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The automated predictive innovation is based on the schematic
diagram in Fig. 2, which shows how this goal can be achieved. The
operative processes, which support the facility management,
define: goal, resources, rules, and timing with the available HW
(ROI).

The operative processes require human customization through
the implementation of empirical demo cases, in order to point
out inefficiencies or changes that should be made in the human–
machine interaction. Starting from an evaluation of the operational
processes, which can reduce the number of problems, and ensure
efficiency, high quality, and sustainability, the whole big data chain
must be explored for any specific environment and related
resources (e.g., the e-business is sustainable and reduces waste,
but the internet has to be available). Thus, it is necessary to cus-
tomize the functional AD and the smart applications that are used
to provide feedback for feasibility and zero failure, merging human
habits with the production performance data, and identifying the
available choices in terms of the probability of the mission’s suc-
cess (e.g., waste reduction, increase of production). Moreover, the
circulating system must be able to improve autonomously, by
identifying the actions that must be taken into account in order
for predictive innovation to occur. This is done by using the digital
structure of the cyberspace, where the big data outputs enable the
AD, while the zero-failure tracking enables the feasibility analysis.
The corporate governance generate feedback that is useful for
Fig. 2. A predictive innovation diagram for the operative processes. Operative proce
localization. Long-term sustainability: added values and the relation between bene
management directive. New: there is a problem, and the possible solution (technolo
improvement data flow (yellow and red arrows): Yes: the new process improves the sta
respect the guidelines.
pursuing process quality, and the potential for global scaling and
the sustainability are evaluated from economic, environmental,
and social perspectives. At each step, the target can be missed,
and a revision of the operative processes may be needed to
improve the system and restore the desired loop. Management
levels (strategic, tactical, and operational) that implement contin-
uous improvement will analyze and store the empirical results,
making it possible to create operative tutorials for fixing machine
failures. Moreover, the machine history is needed to allow the arti-
ficial neural network (nodes) to obtain increasingly accurate pre-
dictions of failures and to plan maintenance, in order to reduce
interventions and unexpected/unwanted downtimes as much as
possible (i.e., ideally, to reduce interventions to near zero), aside
from the annual planned maintenance. Thus, the smart mainte-
nance system proposes appropriate service, and the feedback of
the product management generates a customized AD algorithm.
The efficiency of this approach is continuously updated with
near-zero-failure advanced diagnostic (nZ-FAD) processes that
ensure continuous improvement.

Our goal is to obtain an automatic self-restoring process. There-
fore, we take the example of building information modeling (BIM)
processes, in order to design a ‘‘smart” protocol for smart factories,
Society 5.0, Industry 5.0, and smart cities. This allows us to explore
some empirical cases that can provide efficiency feedback for AI
raw data and scheduling design.
sses: deep learning and ideas. Quality and global scaling: applicability and geo-
fits and costs. Governance and inter-operative efficiency: real applicability and
gy, scheduling phases, and cyberspace scheduling) has to be tested. Continuous
te of the art; Feedback: cyberspace scheduling; No: the proposed solution does not
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4. Information data flow: Management and operative processes

In this study, in order to collect the data in a smart way, we
decided to refer to a logical model that is commonly used for big
data processing and management [47], which integrates all the
aforementioned technologies. Data analysis highlights the result
of previous experiences in combination with the simulation meth-
ods [48]. The structure aims to correlate the long-term algorithms,
identifies the enabling factors, and evaluates their impact on costs,
risks, and operative processes (Fig. 3). The cyber–physical space
and the related scheduling (Fig. 4) must be updated to ensure effi-
ciency, quality, and sustainability through a user-friendly system
[49]; information and notifications must be continually available,
confidential, and complete.

The target is to achieve continual automated innovation of
the operational processes, which will establish a basis for appro-
priate supply chain management [50] with predictive algorithms
[51]. This case study will make it possible to explore the concept
of BIM, which involves the creation of a digital representation of
the physical and functional characteristics of a structure. BIM
involves the generation and management of digital representa-
tions of the physical and functional characteristics of areas in
several dimensions [52]. In this context, Industry 4.0 provides
all the required technology to support human–machine interac-
tion, with the functional aim of reducing costs and increasing
the control of automated processes. At this point, it is essential
to identify the operative macro areas for scheduling and corre-
lated phases.

The operators and agents in the functional area customizes
the AD in order to acquire sufficient data volume and quality
to ensure zero failure and zero waste. The part of the AI system
that deals with informatics must ensure feasibility by providing
all the necessary data for the prediction and simulation of the
operative processes. Specialists define the global area directives,
which start from the operative processes, describing the quality,
sustainability, and feasibility, which are scalable in any global
context, for future AI training and data scheduling. After that,
Fig. 3. Functional process managemen
it is possible to connect the physical space with the cyberspace
to acquire the data process.

4.1. Dataset and alert/alarm messages

Optimized maintenance is essential to improve performance
[53–56]; in the manufacturing systems, alert and/or alarm mes-
sages are used to connect the cyberspace and physical space and
to show what is needed to improve the AD (Fig. 5).

After simulating an enormous number of real-life contexts
(ACT), the AD system records the protocol number, type of failure,
and its duration (PLAN), alerting the systems to undertake materi-
als recovery and operative management. These smart systems
become very useful in testing different types of smart applications
(DO), and supervisor can control and evaluate the HR in real time,
in order to enable continuous improvement and zero-failure proce-
dures (CHECK). Thus, we called the proposed system nZ-FAD, shift-
ing from ‘‘fail-and-fix” practices to a ‘‘predict-and-prevent”
methodology.

The proactive maintenance approach makes it possible to detect
any direct or indirect faults before they occur (i.e., prediction).
When a failure trend is identified, an analysis taking care of HR
habits and focusing on the interaction between humans and
machines to enhance safety and comfort (i.e., ergonomics) results
in the proposal of documentation and devices that are dedicated
to quickly restore the normal activity of the automated manufac-
turing system in order to reduce or avoid forced downtimes (i.e.,
prevention).

In this context, a list of the following four types of machine
alarms was classified for criticality control analysis (CCA): warning,
inspector, operator, and supervisor alarms. For the zero-failure
process, the system identifies the alarm according to the critical
problem, and sends out notifications or pictures (of the as-left or
as-found component) to inform the HR about the condition of
the machine. Once the parts involved in the failure have been iden-
tified, the actuator can be downgraded to a normal level, as can the
sensor that gave the failure alarm.
t and its operative flow diagram.



Fig. 4. Operative macro areas in cyber–physical space (functional, informatics, and global) and system information scheduling for automated predictive innovation. Orange:
BIM; green: Industry 4.0 technology; black: scheduling phases; yellow: cyberspace scheduling.

Fig. 5. Continuous improvement (yellow box and red arrow) data scheduling design (blue box) for zero-failure operative processes and cross-sectional analysis (brown box).
CHECK: mobile application for the zero-failure data management. ACT: digital library and devices for problems and the display and analysis of downtime events. PLAN: cloud-
based structure for product/service long-term management and real-time digital assistance. DO: automated production lines with digital assistance and operative processes
validation. Violet bullets: micro-functional areas. Green bullet: smart maintenance operative processes.
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4.2. Process data flow: Functionalization and customization

The schematic diagram in Fig. 6 shows the architecture of the IT
system applied to the proposed method. The informatics systems
are based on a Windows application that stores and processes data
from the production line, monitored by sensors connected to a PLC.

When an alarm occurs, the applications gather the information
from the machine’s PLC, through human–machine interface (HMI)-
encrypted notifications (.txt format), and provide them to the user.
The information transferred by the notifications is summarized in
the alert/alarm message through a functional protocol named:
hardware-component identification protocol (H-CIP) which
reports the human–machine interaction [57], the time between
the fault and the intervention, and the identification of the possible
risks. The data available on the HMI are stored in a dedicated cloud
[58], which shares the information (e.g., HW nodes configuration,
node or component, and module) with the IT system (e.g., mobile
application for maintenance, management SW, etc.).

The operation center defines the targets and the resources with
the aim of developing the nZ-FAD based on long-term data analysis
for advanced product/service control. The selected parameters will
determine the NGIM performance and the related roles and timing,
based on the mission and the typical use of the delocalized auto-
mated machine. To meet the requirements for O&M optimization,
two ad hoc Android applications (supervisor application (SVA)
and maintainer application (MNA)) were developed using the
MIT App Inventor 2 SW; this allowed the quick and reliable devel-
opment of human interface applications without needing to pay for
the installation and/or a distribution service on the HW (e.g.,
smartphones and tablets). The database collects all components
and the related criticality analysis data from the delocalized
machine and the management levels, working bilaterally with
the support system to define the operative procedure that is useful
in the SW design. Thus, all type of problems and procedures are
analyzed with the aim of implementing the functional HR
directive.

The Industry 5.0 context allows easier and more effective cus-
tomization of the digital systems dedicated to data gathering,
management, and tools for assisted decisions. Once the Android
application for the supervisor, which is named SVA, receives an



Fig. 6. System architecture for the O&M optimization of production with HCPS. Green box: global target identification; blue box: available resources for the informatics
improvement activity; brown box: roles; yellow box: improvement phases for timing and cyberspace scheduling.
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alarm, it asks to take a picture of the machine or part that is
failing, and records notes describing the state of the machine
and the environment (e.g., workplace safety hazards), providing
a point of view based on its previews experiences. The informa-
tion acquired by the supervisor at this stage is processed by the
application to evaluate how the machine can be repaired, follow-
ing the instructions called one-point lessons (OPLs). The OPLs
merge the component information elaborated from the operator
via the related identification protocol with the analysis per-
formed by the inspector alarm, in order to try to reduce the fail-
ure risks involved in implementing the continuous improvement
between the sensors and actuators. When a fault occurs, the AD
algorithm displays the alert on the MNA and supports the main-
tenance activity step by step with the OPL in order to reduce
outsource support. Moreover, the AD takes into account the nec-
essary skills (i.e., mechanical, electrical, electronic, SW, etc.) to
organize the collaborators, with ranks assigned based on avail-
ability and some significant parameters (e.g., the time for the
repair and the guaranteed quality). The AD also considers human
experience and runs an artificial neural routine (a trend analysis
based on the historical data of real cases to obtain mission suc-
cess probability) to choose the maintainers (i.e., the best suited
specialized technicians from the list of those available in the
company) to whom the repair will be assigned. A supervisor
manages the restoration activities, and the system support
assists him during these phases.

When the supervisor ends this description and selection step, a
request with photos and notes is sent to the chosen maintainer,
who carries out the maintenance while having access to the alarms
stored in the cloud using the MNA Android application. Once the
correct number of validated operative processes is acquired, the
collaborative robots can be progressively improved for automated
maintenance activity.

5. Data evaluation approach (big data value chain)

In order to implement the nZ-FAD for automatic O&M, a
preliminary analysis was carried out following the well-known big
data value chain analysis [59].

5.1. Data acquisition

The implementation of flexible and modular systems requires
the data scheduling standardization. Our aim was to provide a data
structure (library) related to the machine messages of interest,
which must be defined in order to better explain the data collec-
tion for the next uses. The HMI recording and display related to
the production line components were developed for two macro
areas: H-CIP and CCA.

The database was developed by analyzing each HW and SW
device, digitalizing the related functional code (cf. H-CIP) based
on the typical questions addressed in the maintenance: ‘‘What
has happened?” and ‘‘What/How to do?”. The H-CIP shows ‘‘What
has happened?” on the production line, answering to: ‘‘Where is
the problem?” for a fast geo-localization, ‘‘Why has it happened?”
considering factors related to the HW and its related risks, and
‘‘Who can restore it?” with all additional information on the func-
tional use of the device and its replacement. In order to provide
the necessary digital support, based on previous experiences and
the CCA, skilled HR carry out a tutorial for fast component
replacement. The CCA enables a quick problem evaluation, by pro-
viding the necessary information about ‘‘What to do?”, and by
identifying three sub-records: the means description ‘‘Which
devices and tools to use?”, the priorities ‘‘When to do it?”, and
the operating activities that are necessary in order to better
repair, improve, and eventually recycle the component ‘‘How to
do it Well?”. In this case, the analysis focused on a suitable layout
record for artificial neural networks, resulting in a model for data
analysis in which a unique identity document (ID) was related to
each micro-functional area linked to the related operative
processes (Table 2).

Thus, we implemented a scheduling based on some basic and
circumstantial human questions that, since ancient times, are very
important for the development of any kind of hypotheses and
demonstrations, and therefore for the problem-solving stages
(finding, shaping, and solving).

In fact, human brain can be considered a processor that, once
stimuli have been received (alert/alarm), finds meaning ‘‘What
has happened?”, the possible causes ‘‘Why has it happened?”, the
related context ‘‘Where is the problem?” and, finally, gives the
solution. The same approach (identification of the problem, of its
causes and location, and of the person, who can implement the
solution) was used for the smart maintenance operative processes
to provide the basic operative instructions ‘‘What to do?” and
‘‘How to do it well?” to restore normal activity, given the type of
subject and its functionality ‘‘Which devices and tools to use?”
and the importance of the problem ‘‘When to do it?”.

5.2. Data analysis

The objective was to make the acquired raw data amenable for
use in decision-making or for other specific usages (e.g., literature



Table 2
The ‘‘8 Ws” (or ‘‘7 Ws 1H”) for the process areas partition of the near-zero-failure
process: What has happened? Where is the problem? Why has it happened? Who can
restore it? What to do? Which devices and tools to use? When to do it? How to do it
Well?

Name and
operations

Question Micro-
functional
area

Operative process

H-CIP and
MESSAGES
(What has
happened?)

Where is the
problem?

Area of
interest

Activity and
processes

Why has it
happened?

Risks Materials

Who can
restore it?

Production
data

Technical schema and
storage area
identification

CCA and
MAINTENANCE
(What to do?)

Which devices
and tools to
use?

ID
component;
sources
component;
impact
typology

H-CIP;
functional
description;
from 1 to 10

When to do
it?

Criticality
level;
impact
area;
diseases
validation
activity

High, medium, or
low;
quality, safety and
business;
system phenomena;
risks and alarms OPL

How to do it
Well?

Operative
procedures;
zero-failure
activities;
disposal
process

Maintenance;
analysis and
algorithms;
finalized recovery
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references, qualitative impacts, phenomenological analysis of
symptoms, risk prevention, recommended renovation activities,
operating impacts, and preferential disposal processes). Each
error string was matched with a unique ID, and a dedicated file
was created containing the instructions necessary to solve the fault
that caused the alarm. The main goal was to provide—at the oper-
ator level—a method to restart each inactive machine in failure
without special interventions requiring dedicated HR. This will
reduce plant downtimes, the expenses of unsold products, and
the expenses for human activities (which have variable durations
that are difficult to determine). For these reasons, a guide for each
problem was created. In other words, the data analysis leads to the
writing of an OPL for each kind of fault, in such a way that the oper-
ators working on the machine can use it efficiently when the fault
occurs.

With the aim of functionalizing the method in a specific
environment, considering that people have different types of
habits [60], high inter-operative efficiency scheduling is manda-
tory. An example of data analysis implementation is shown in
Table 3.
Table 3
Data analysis diagram for high interoperability efficiency and related phases.

Process Macro Operative process

Target Functional segmentation Total quality segmentation and structured
personalization

Resources Operative costs and
statistics

Operative supply system and finalization

Roles Customization and
dimension

Best time allocation and its validation

Timing Feasibility study Real case and structural validation of the sy
The process is progressively structured through a dedicated
macro, starting from the definition of the target and the evaluation
of the available resources, up to the identification of the key roles
and the correct timing. In this way, it will be possible to start the
simulation and test phases (Phases 1 and 2, respectively), in order
to plan the automation of the operational process (Phase 3).

5.3. Data curation, storage, and usage

The data mainly need to be processed to avoid duplications, in
addition to other actions such as selection, classification, and vali-
dation [61]. All of these actions ensure that the data are trustwor-
thy, discoverable, accessible, reusable, and appropriate for the
purpose. However, access to all data at different industrial levels
typically remains environmentally dependent [62].

The solution adopted here is ready to use and involves a public
cloud computing platform that ensures interoperability, scalabil-
ity, and flexibility [63]. This choice has been made because a
shared public cloud can lower its cost, even if an expensive
redundant storage system is needed to ensure a reliable service
designed also for disaster recovery (i.e., a service capable to avoid
manmade and natural catastrophic failures from causing expen-
sive disruptions of the system). This study aims to establish a
basis for future implementations that can manage all types of
alarms without the intervention of external HR [64], thereby
reducing downtimes.

Cloud computing and storage technologies have been increas-
ingly developed over recent years [10]. According to the National
Institute of Standards and Technology, a cloud computing system
is defined as containing five essential features: on-demand self-
service, wide access to the network, the pooling of resources, rapid
elasticity, and measured service. A service provider of this network
can store large amounts of data and can perform computing effi-
ciently using the data [65]. When a stand-alone system is com-
bined with cloud technology, even with limited computing
resources and a small storage capacity, the performance and capa-
bilities are significantly expanded, creating a network that pro-
vides a shared service for multiple users. The first step in
controlling product quality and equipment through a combination
of cloud capacity, the IoT, middleware, and big data [66] is to
define the data storage technology of the machines connected to
the network. In this work, we take advantage of an external cloud
storage, which can communicate with the machines present in the
industrial testing case and/or with the different IT components
(i.e., HMI, personal computers, tablets, local hard disks, etc.).
Whenever a failure occurs, the PLC sends an alarm message to
the HMI, which sends a text file to a dedicated cloud in order to
enrich a historical database. The AD records all the data that have
been recorded by sensors or computed in a local hard disk with a
dedicated function called ‘‘Alarms Historical Management,” and
saves the alarms on the cloud to ensure data protection. The alarms
can also be sent via e-mail to all operators involved in maintenance
activities.
Phase 1 Phase 2 Phase 3

Preventive Consumptive Automatic report

Statistical incidence Criticality
quantification

Adaptation to the real
case

Customized rotation Scheduling Sustainability
validation

stem Real available
resources

Requirements
satisfaction

Inter-operative
efficiency
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The final database is utilized by the industrial machines for
optimal management. The collected data can also be used by orga-
nizations for business activities and/or to improve the effective-
ness of their actions with measurement models typically
developed by data analytics [11,67]. With a smart automated
decision-making process, companies’ competitiveness can be
strengthened in terms of cost reduction, value added, or any other
measurable parameter [68]. Implementation of the AD combines
the operator alarms with operator alarms with troubleshooting
that adopts the OPL format and the near-zero failure model. It is
functionalized for industrial environments, restores the supervi-
sion procedure, and improves the images and text that are sent
to the involved HR.

We have developed the Mobile Application for Maintenance
Tracking and Monitoring (MAM-TAM) for Android devices, which
has direct access to the cloud through the authentication and dis-
play of text files, images, and PDF documents of the OPL linked to
an alarm code, and can be used to retrieve data from both external
and local memories. A similar application for Windows rugged
tablets has been implemented for industrial applications. Through
the MAM-TAM, the system is monitored in real time. In this way,
each dedicated HR can perform supervision, and can alert other
operators about the presence of different risk conditions. The capa-
bility to collect real-time information at all levels, without chang-
ing the management mechanism of the automated production
process, makes it possible to keep the security level unchanged
[10], without requiring the use of the HMI memory.

6. Results

The method presented here has been applied in 12 companies
during the last four years. The obtained improvements have been
evaluated, with a focus on the reduction of downtimes, training
activities, failures, and outsource support, and the increase of pro-
duction. As previously described, we selected the production lines
of 12 beverage companies because changes in bottle format do not
require difficult SW customization. Thus, this choice reduced the
variability and allowed us to focus on human activity analysis.
Moreover, they represented different sites around the world and
had different turnovers (three are among the ten largest food and
beverage companies worldwide). We applied dedicated OPL for
smart assistance in all of the enterprises, taking into consideration
incorrect operations implemented by humans and machines.
Table 4 shows the results obtained over the period (from 12 to
38 months) of nZ-FAD adoption.

The smart assistant, which included well-written OPLs, reduced
the downtimes by (23 ± 6)%, no temporal correlation was
Table 4
nZ-FAD application time and obtained results in 12 different global companies, with a focu
increase of production, and the number of downtime events after the application of the im

Company Country nZ-FAD application
time (month)

Downtime
reduction

Reduction
in failures

#1 United States 12 23% 13%
#2 France 12 32% 12%
#3 Peru 16 25% 10%
#4 United States 19 20% 10%
#5 South Africa 25 21% 9%
#6 France 26 23% 8%
#7 Cambodia 28 30% 10%
#8 Belgium 30 16% 5%
#9 Belgium 30 13% 5%
#10 Thailand 31 30% 10%
#11 Italy 32 17% 10%
#12 France 38 20% 5%
Average 25 23% 9%
measured (R2 = 0.163), and displayed a reduction in failures of
(9 ± 3)%, compared with the same number of months before the
implementation of the proposed method.

We also noticed a reduction in training costs for internal per-
sonnel of (36 ± 16)%, in comparison with the same time interval
before and after the machine purchase. Both failure and training
cost reductions were not correlated to the time of the protocol
application (R2 = 0.552 and R2 = 0.071, respectively). In order to
determine whether the digital assistance system worked correctly,
we also evaluated whether requests for outsource services were
reduced. In fact, the measured value was not related to the nZ-
FAD application time (R2 = 0.400), even though there was a reduc-
tion of (35 ± 13)%. This finding demonstrates that the reduction in
failures and downtimes was not related to HR training. The pro-
duction increased by (19 ± 3)%, although there was no historical
correlation (R2 = 0.144), while the number of downtime events
decreased by 3504 ± 1250 events and displayed a linear correlation
with the nZ-FAD application time (R2 = 0.927). Normally, careful
planning results in a positive linear relationship between months
and the number of interventions, or the number of interventions
generally tends to increase with the age of the machine. The con-
tinuous improvement system must interact with the progressive
reduction of maintenance for all degrees of severity. The relation-
ship between the number of downtime events and the time of
nZ-FAD application, over a period of 12–38 months, was a logarith-
mic curve, which tended toward a potential average of 100 inter-
ventions per month after six years (Fig. 7).

In summary, the presented smart system supports human
activities; reduces downtimes, failures, and training costs; and
increases productivity. The smart maintenance reduces the amount
of after-sales assistance and causes outsource maintenance activi-
ties to tend toward a near-zero value through the continuous
improvement of the digital platform, thanks to a global manage-
ment approach to the connection between cyberspace and physical
space, big data analysis, and smart applications design.

7. Discussion

The adoption of the describedmethods generates a self-learning
process, in which it will no longer be necessary to train personnel;
rather, it will be enough to follow the OPLs when needed. In fact, it
was demonstrated in the experimental results that the reduction of
failures, downtimes events, and related costs were not related to
the dedicated HR training, but came from the scheduling and
machine learning.

This method was inspired by the vision of Society 5.0, which
relates physical space to cyberspace [69]. In Society 5.0, the
s on the reduction of downtimes, failures, training costs, and outsource services, the
plemented method.

Reduction in
training
costs

Reduction in
outsource
services

Increase in
production

Number of downtimes

50% 50% 18% 1770
45% 50% 20% 1450
30% 30% 15% 1900
40% 60% 15% 2900
20% 20% 22% 3400
15% 25% 20% 3950
30% 30% 25% 3950
60% 40% 20% 4300
60% 40% 19% 4500
40% 30% 18% 4930
20% 28% 22% 3800
18% 20% 19% 5200
36% 35% 19% 3504



Fig. 7. Downtime events trend over a period of 12–38 months.
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environment defines the global ROI for maximum efficiency using
smart systems [70], and innovative approaches are used to manage
mass customization [71]. Applying the advanced computing tech-
nology to the statistical analysis with extensive data collection
the system became able to reduce the standard deviation of the
customization and the restoring activities. The presented approach
addresses the paradigm shift in modernmaintenance systems from
‘‘predict-and-prevent” practices to an ‘‘analyze the root cause and
be proactive” methodology.

To develop the proposed continuous improvement system in a
smart society, it is necessary to:

� Define the human–cyber–physical space for a human-centric
society;

� Implement an inter-operative structure for self-learning;
� Functionalize the Industry 4.0 structure;
� Design the network with smart systems in line with the aim of
continuous improvement;

� Design the operative and HW structures for physical space
and cyberspace management;

� Establish functional scheduling for the customization of pro-
cesses and the future implementation of AIs.

In this framework, automatic data collection is mandatory in
order to define the big data chain using all available tools, and to
identify the HR needed in the process. Using highly efficient per-
sonalized devices, which can self-improve over time through nZ-
FAD systems, the proposed method can be considered as a general
management approach for any type of organization.

The GSM5 method automates part of the decision-making pro-
cesses and increases the interoperability efficiency, providing func-
tional analysis of processes, which leads to the development of SW
tools for custom AD. The processes are connected, resulting in a
cycle with automatic continuous improvement at all levels, while
always keeping humans in the core position. Thus, the operators
accomplish their activities and perform their functions without
necessarily being ‘‘digital natives” [18] or experts in IT components
(e.g., using OPLs). In this way, the development of smart factories
and smart organizations can be made more sustainable. Once all
processes have been explored (including processes within the bio-
logical and green sectors, such as those related to environmental
impact and toxicology) it will be possible to transfer activity to
AI. All these described steps make the implementation of Industry
5.0 possible.
8. Future direction and limitations

By implementing the proposed method, it is possible to reduce
the training time and costs in a technological upgrade to Industry
4.0 with the aim of improving productivity. To achieve continuous
improvement of the operative process under standardization for
global scaling, we started from data collection, which allowed
the definition and reorganization of the SW structure; next, we
customized the operative processes reducing risks and improving
the throughput at the same time.

We tested the presented containment risk method to identify
the appropriate questions in the maintenance approach for every
change in the digital age, designing the scheduling for the imple-
mentation of AIs.

For all these reasons, we assume that, through neural networks
trained to consider the human habits (character), it is possible to
maximize the performance of smart systems and maintain high
standards of quality, sustainability, and interoperability. Once a
satisfactory amount of data has been acquired from real cases, it
will be possible to implement automatic decisions with a ‘‘charac-
terized AI” that, like a growing child, utilizes its senses to interact
with systems, even when there is a reduced capacity for action.
Depending on the sensors, the ‘‘characterized AI” neural network
may generate messages related to different problems, very similar
to the studied humans, helping HR to restore the original condi-
tions with automated actions, albeit limited by the automatisms
connected with the CPS.

Many HW implants are needed to confirm the resulted trend (at
least 70 months are needed, see Fig. 7) to determine the actual
number of maintenance activities and its closeness to the imple-
mented predictive analysis.

9. Conclusions

This work is important for the renewal of diagnostic systems,
supporting companies in aligning with Industry 5.0 through the
study and scheduling of the interaction between human and tech-
nology. Within this framework, it is of great interest to establish a
direct relationship between producers and machine programmers
with a flexible, customizable, and easily scalable management
system.

The GSM5 can be considered as a universal method for the auto-
mated management of smart maintenance activities and smart
application design. The dedicated SW structure reduces failures
to close to zero, interacts with maintenance and management
teams for continual quality improvement, and manages the alarms
of automated lines without specific training for HR. Continual
access is available to operational activities through a user-
friendly interface, and the digital data collection of feedback from
the monitoring activities can be customized.

The results are used as input for the integrated maintenance
plan management, in order to reduce spare parts, storage costs,
and downtimes, as well as maintaining high product quality, in
all contexts of a smart factory.

The system, which includes real-time evaluation and regulation,
permits optimization of the artificial logic network and interactive
updating of the processes of the organization.

The scheduling and the functionalized use of alarms as a con-
nection between cyberspace and physical space have demon-
strated their potential to reduce delay time and costs. These
processes make this technology particularly suitable for alignment
with the concepts of continuous improvement and multi-sectorial
integration, on which Industry 4.0 is based.

The human–machine interaction activities are developed and
customized ad hoc for the context under analysis, and are
improved through effective scheduling, thus ensuring a reduction
of deviations, no longer in line with the ideas of globalization
and waste elimination.

It is essential to apply a method that is able to ensure HR teach-
ing activity in the shortest possible time in order to reduce the risk
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of failures, because the most important problems do not lie in the
change itself, but the rapid achievement of sustainability and well-
ness objectives.

As a preliminary assessment, this paper may be useful in estab-
lishing a global standard method and continuous improvement
operative processes for zero failure and waste. The empirical
results presented herein are relevant to the environmental func-
tionalization based on Industry 4.0 technology, and can be taken
as an example of future impacts due to the introduction of new
processes. With this Industry 4.0 technological upgrade, which
requires a high level of digital training, it is possible to reduce both
training time and costs in order to improve productivity, thus tak-
ing a significant step toward the factory of the future (i.e., the
smart factory).

This paper can provide guidance for managers and policy mak-
ers in selecting the optimal operative procedure for the implemen-
tation of smart systems and for maintenance with the best human–
machine interactions possible.
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