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The smart grid is an evolving critical infrastructure, which combines renewable energy and the most
advanced information and communication technologies to provide more economic and secure power
supply services. To cope with the intermittency of ever-increasing renewable energy and ensure the secu-
rity of the smart grid, state estimation, which serves as a basic tool for understanding the true states of a
smart grid, should be performed with high frequency. More complete system state data are needed to
support high-frequency state estimation. The data completeness problem for smart grid state estimation
is therefore studied in this paper. The problem of improving data completeness by recovering high-
frequency data from low-frequency data is formulated as a super resolution perception (SRP) problem
in this paper. A novel machine-learning-based SRP approach is thereafter proposed. The proposed
method, namely the Super Resolution Perception Net for State Estimation (SRPNSE), consists of three
steps: feature extraction, information completion, and data reconstruction. Case studies have demon-
strated the effectiveness and value of the proposed SRPNSE approach in recovering high-frequency data
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from low-frequency data for the state estimation.
© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The smart grid is a critical infrastructure that continuously pro-
vides a secure and economic electricity supply to modern society.
State estimation in the smart grid plays a vital role in system
monitoring and control, which helps the system operator to per-
ceive the system’s operational states and make accurate control
decisions [1]. At present, the smart grid development poses new
requirements for state estimation. On the one hand, with the
fast-increasing penetration of renewable energy sources and new
power appliances—such as wind power, solar power, and electric
vehicles—much greater uncertainties are being introduced into
the smart grid [2]. In order to mitigate the adverse impacts of inter-
mittent renewable energy, the system operator needs to perceive
the system’s operational states more frequently and shorten the
dispatch interval, which requires the support of high-frequency
state estimation. On the other hand, with the rapid improvement
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of computational capability, big data technologies are being widely
applied to discover hidden knowledge by analyzing system mea-
surement data [3]. State estimation, which directly monitors volt-
age, current, and real and reactive power values, is a basic tool for
the perception of system working states. Therefore, more frequent
state estimation results are helpful for discovering more hidden
knowledge, which is beneficial for improved system security and
efficiency.

Performing high-frequency state estimation poses new practical
challenges and difficulties. First, the state estimation monitors sys-
tem states based on thousands of meters deployed on nodes,
generators, transmission lines, and so forth. In the existing super-
visory control and data acquisition (SCADA) system, the majority
of meters in a smart grid are traditional sensors that were deployed
years ago. Traditional meters collect measurements with a rela-
tively low frequency, such as every few minutes [4,5]. Second,
some high-frequency sampling meters, such as phasor measure-
ment units (PMUs), can gather measurement data at a much higher
frequency than traditional meters [6-8]. However, a single mea-
surement is insufficient for state estimation; at any specific time
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point, the input of the state estimation must be a vector of mea-
surements. PMUs are extremely expensive; it is financially imprac-
tical to replace all traditional meters with PMUs [7]. Third, even if
all traditional meters can be replaced by PMUs, the capability of
system state perception is very restricted by the capacity of com-
munication channels. The high-frequency sampling data collected
by PMUs cannot be transferred completely to the control center,
but are usually stored at remote locations temporarily [5]. There-
fore, PMUs’ high-frequency data cannot be truly utilized. In sum-
mary, due to technical restrictions, performing high-frequency
state estimation is still a difficult task.

Furthermore, both the data collected by traditional meters and
those collected by PMUs may be lost or manipulated due to com-
munication faults or cyber-attacks [9], such as false data injection
attacks (FDIAs) [10,11], cyber topology attacks [12-14], and cyber-
physical attacks [15,16]. Real-world cyber-attack events, such as
the Ukraine blackout in December 2015 [17] and the Venezuelan
power outage in March 2019 [18], indicate that cyber-attacks
can result in serious consequences. In the literature, many studies
have been conducted to detect abnormal data caused by cyber
attackers. For example, Ashok et al. [19] proposed the detection
of anomalies by describing a statistical characterization of the vari-
ation between SCADA-based state estimates and predicted system
states based on load forecast information, generation schedules,
and the synchro-phasor data. Esmalifalak et al. [20] utilized a dis-
tributed support vector machine (SVM)-based method to distin-
guish between attacked data and normal measurement data.
However, so far there is very limited research on effective
approaches to recover these manipulated data. Missing and tam-
pered data also introduce significant challenges to accurate state
estimation.

To tackle the challenges discussed above, novel methods are
needed to support the high-frequency perception of system opera-
tional states based on the existing metering infrastructure. In this
paper, we consider this problem as a data completeness improve-
ment problem. We consider the original measurements received in
the control center as incomplete data (i.e., low-frequency data),
and the data that the system operator is expected to use to make
high-frequency decisions as complete data (i.e., high-frequency
data). Therefore, this problem is equivalent to the question of
how to recover high-frequency data from low-frequency data in
order to achieve data completeness improvement. Approaches
may vary according to different research fields and different data
quality attributes; it is of utmost importance to explore appropri-
ate approaches to improve data completeness for smart grid state
estimation.

In this paper, we achieve this goal by applying super resolution
(SR) technology. SR is a technology that can recover high-
resolution data from low-resolution data from both temporal and
spatial perspectives [21,22]. Currently, the most effective methods
to obtain high-resolution data from low-resolution data are mainly
based on interpolation, reconstruction, and machine learning,
respectively [23]. The machine-learning-based SR, which attempts
to obtain a priori mapping between low-resolution and high-
resolution image blocks by given samples, has become a hot topic
in recent years due to its good performance [24]. For example,
Dong et al. [25] proposed a novel deep learning approach—namely,
a super-resolution convolutional neural network (SRCNN)—to
learn the end-to-end mapping between low-resolution and high-
resolution images; this approach shows superior performance in
restoring high-resolution images. Wang et al. [26] proposed an
enhanced super-resolution generative adversarial network (ESR-
GAN) to recover images, which achieves consistently better per-
ceptual quality than other SR methods.

The motivations for this paper are obvious. High-frequency per-
ception of the system’s operation status is of great importance for

the development of the smart grid. However, traditional meters’
low sampling frequency, PMUs’ high investment cost, the capacity
limitation on communication channels, and the abnormal statuses
caused by communication mistakes or cyber-attacks present
obstacles and challenges in practical situations. The purpose of this
paper, therefore, is to develop an super resolution perception (SRP)
approach to improve the data completeness for smart grid state
estimation. This paper makes the following two key contributions:

(1) We are among the first to study the data completeness prob-
lem for smart grid state estimation in this paper.

(2) We are among the first to propose an effective SRP approach
to recover high-frequency data from low-frequency data for state
estimation. This paper has proved the effectiveness and value of
the proposed Super Resolution Perception Net for State Estimation
(SRPNSE) approach.

This paper is organized as follows. Section 2 provides some
background information on smart grid state estimation and its data
completeness problem. Section 3 describes the SRP problem and
presents the network structure and solving framework of a novel
deep learning approach: SRPNSE. Section 4 demonstrates the effec-
tiveness of the proposed approach by simulations. Finally, Section 5
provides conclusions and future work discussions.

2. The data completeness problem for state estimation

In this section, we give a brief introduction to smart grid state
estimation and its data completeness problem.

2.1. Smart grid state estimation

In the smart grid, the key for the perception of system opera-
tional states is to obtain system measurements—that is, the vector
of the steady-state voltage (magnitude and angle) at each bus of
the network. Once the voltage information is grasped, all other sys-
tem state variables can be readily calculated using power flow
equations [4,5]. However, not all nodes’ voltage magnitudes and
phase angles can be easily telemetered. Other information, such
as the real and reactive power flows of some transmission lines,
or some real and reactive power injections, need to be monitored
so as to satisfy different control purposes (e.g., providing alerts
for emergency situations). In addition, not all telemetered data
are reliable, due to measurement errors caused by disturbances
or cyber-attacks. State estimation is a tool to estimate system state
variables from all available system measurements. Therefore, state
estimation in modern power systems plays a vital role in the online
monitoring, analysis, and control of smart grids.

Usually, state estimation is a module embedded in the energy
management system (EMS) of smart grids. In addition to necessary
communication networks, the overall state-estimation-related
modules contain three main components: sensors, a state estima-
tor, and a bad data detector. Sensors measure system states, such
as bus voltage magnitude, real and reactive power injections, real
and reactive power flow, and so forth, at a certain sampling fre-
quency [1]. The state estimator utilizes all collected data to esti-
mate system state variables in order to obtain a snapshot of the
power system in the steady state. The bad data detector thereafter
detects and eliminates obvious errors in measurements.

The state estimation process can be considered as a generalized
power flow calculation. As shown in the following model, z repre-
sents the vector of measurement data with size [m, 1]; x represents
the vector of system state variables with size [n, 1], and m > n; h(x)
represents the functional relationship between measurement
values and system state variables; and e represents the vector of
noises with size [m, 1].

z=h(x)+e (1)
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The goal is to calculate the X vector from the z vector, making
the estimated % as close as possible to the actual x based on certain
estimate criteria. A widely used method for estimating & is the
maximum likelihood (ML) estimation:

p(z, X) = max(p(z, )] 2)

where p(z) is the probability distribution density function of z.

Based on different distribution hypotheses of z, there are differ-
ent suitable estimators, such as the weighted least squares (WLS),
weighted minimum absolute value (WLAV), least median of
squares (LMS), least trimmed squares (LTS), and non-quadratic
estimators [5]. If the measurement noises follow the normal distri-
bution, WLS will be an optimal, unbiased, and consistent estimator.
The goal is to find the extremum of the objective function J(x),
shown as follows:

J@) =z = h@)]'R "'z - h(x)] (3)

where R is the diagonal matrix of the measurement error variances.
2.2. Data completeness for state estimation

Data quality is a critical problem for solving any industrial prob-
lems. Without high-quality data, the performance of both analyti-
cal and data-driven models will be seriously compromised. When
based on poor-quality data, model outcomes will encounter unpre-
dictable deviations that can cause substantial economic losses and
security risks. Most of the existing data quality studies focus on
database systems [27]. Data completeness is an important attri-
bute for assessing the quality of a dataset [27]. Completeness is
usually defined as whether there are any gaps in the data from
what was actually collected and what was expected to be col-
lected—that is, whether there are missing data, damaged data, or
manipulated data [28].

In this paper, the low-frequency measurements actually
received by the control center are considered as incomplete. The
control center perceives a big picture of the system state by pro-
cessing the measurement vector z. Let the discrete sequence z(-)
represent the value of the kth row of vector z; that is, z(-) is the
measurement value of the kth meter. The corresponding mathe-
matical expression can be represented by a time series, as shown
in Eq. (4).

{fk(t)v te {t], ty, }

zZi(t) =
KD 0, others

4)
where fi(t) represents the function of the measurement of the kth
meter at time t.

Due to the low sampling frequency of traditional meters, the
capacity limitation on communication channels, and communica-
tion mistakes or even cyber-attacks, some part of z,(t) will be miss-

ing. Similarly, let us define another time series z(t), in which its
time labels t differ from z(t), as shown in Eq. (5).

s s et

Z(t) (5)
0, others

where gi(t) represents the function of the measurement of the kth
meter at time .

The high-frequency time series are data that are expected to be
collected, and are considered complete. The aggregated time series

represented by Z(t), therefore, is Zy(t) = z,(t) + Ek(t), as shown in
Eq. (6).

Fut) +g(0), t e {tl, t, b, b, } tiEt;
0, others

Zi(t) = (6)

For example, the time series z(t) and zk(t) are shown in Figs.
1(a) and (b), respectively. The aggregated series is then shown in
Fig. 1(c).

Data completeness for state estimation in this paper mainly
refers to the completeness of the measurement vector z in the tem-
poral dimension. The data completeness improvement is to gener-
ate more data based on available information so that it is as close
as possible to the actual measurements—that is, to recover the

missing time series z,(t).
3. SRP model and the solving method

In this section, the SRP problem is first proposed. Second, the
problem of data completeness improvement for state estimation
is formulated. Third, due to the powerful feature extraction capa-
bility of deep neural networks, a deep learning approach—namely,
SRPNSE—is proposed. Finally, the optimization algorithms for esti-
mating the model parameters of SRPNSE are introduced.

3.1. SRP modeling

Regardless of the size of the system, the input of state estima-
tion is a vector of the measurements collected by many meters
at a specific time point. Given vector z, the data completeness
improvement problem aims to recover each meter’s missing data.
We can solve this problem one meter after another. Recovering
the missing data of each specific meter is equivalent to a SRP prob-
lem. The SRP problem can be expressed as follows:

L,=|H~+e (7)

where L; represents the low-frequency data actually collected by
meters; H represents the original high-frequency data; e represents
the vector of noises, where the noises here are caused by the
meters; and |; represents the down-sampling function, in which g
is the down-sampling factor. For example, suppose H is a measure-
ment vector sampled at 60 Hz; if § is equal to 10, then L; will be a
measurement vector based on H with a sampling rate of 6 Hz.

In this paper, the SRP problem is formulated as a maximum a
posteriori (MAP) estimation problem. Based on the MAP estima-
tion, the goal is to estimate an Hy to maximize the posterior
probability, shown as follows:

(L. Hy) = max|p(Ly. LH)p(1,H) ®)
10 40
— ° =
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Fig. 1. The relationship of discrete sequences for meter k. Time series (a) z(t) and
(b) zi(t); (c) aggregated series Zy(t).
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where p(Lg, |4H) is the likelihood function and p(|zH) is the prior
probability of |zH. In this situation, the prior probability mainly
relates to the original sampling error caused by meters. Since the
state estimation model assumes that the measurement noises fol-
low the normal distribution, in this paper, we assume that the prior
probability follows Gaussian distribution as well.

3.2. Problem formulation

The problem of improving data completeness for state estima-
tion is equivalent to the problem of generating high-frequency
data from low-frequency data. The high-frequency data is consid-
ered as complete data because it can recover the information lost
in the incomplete data. The SRP problem formulation is shown in
Fig. 2. Given a set of original data D, two down-sampling data sets
L, and Hj; are generated with down-sampling factors « and g. The
objective of SRP is to take the lower frequency data L, as the input

and generate a set of estimated higher frequency data H s that is as
close to the real down-sampling data Hy as possible. ¢,-norm can

be used to measure the difference between H; and H,;.

b= || Hg —Hy || 9)

3.3. SRPNSE framework

The network structure of the proposed SRPNSE method is
shown in Fig. 3. The SRPNSE network directly uses the low-
frequency data as the input, and then performs information
enhancement to output the estimated high-frequency data.
SRPNSE implements data quality improvement through the follow-
ing three steps: feature extraction, information completion, and
data reconstruction.

In the feature extraction stage, three one-dimensional (1D) con-
volutional layers [29] are used to extract features from low-
frequency historical data. After obtaining the abstract features,
the second part—the information completion stage—will supply
higher resolution of features, based on the knowledge learned from

D Low-frequency || SRP High-frequency
data L, data H,
Original data
D
;D High-frequency

data Hﬁ

Fig. 2. Diagram of the SRP problem.

Feature extraction

Information completion

the relationship between the low-frequency data and the high-
frequency data. The information completion stage consists of
several SRPNSE blocks that are implemented by a residual struc-
ture. The residual structure consists of a big global residual connec-
tion and a number of local residual blocks. The global residual
connection forces the network to learn the missing information
rather than form the signal itself, and the local residual blocks pro-
vide the possibility to train deeper networks [29]. For better per-
formance, this research used a total of 22 local residual blocks in
the information completion stage. Fig. 4. shows the structure of
the residual block used in this paper, where g represents the output
of the previous layer; the rectified linear unit (ReLU) function [29]
is used as the activation function; and identity represents the iden-
tity mapping. Then, the higher resolution features that contain
more details of the system patterns are used to reconstruct the tar-
geted high-frequency data in the third part—the data reconstruc-
tion stage—which is implemented by three 1D convolutional
layers. In this part, the feature vectors outputted by the informa-
tion completion are integrated into g sub-sequences with length
I. The p sub-sequences are then rearranged into the reconstructed
high-frequency sequence with length g x L

When training the proposed SRPNSE network, the mean
squared error (MSE) is chosen as the loss function, which is shown
as follows:

1 N . 2
MSE= 1) <H,»ﬁ - H,»/;) (10)

i=1

where Hj; and Hjg are the ith data of H,; and Hy, respectively. N is the
size of the vector.

In this paper, we consider both the mean absolute percentage
error (MAPE) [30] and the signal-to-noise ratio (SNR) [31] as
evaluation metrics. The MAPE represents the degree of average
absolute error compared with the actual value. A higher MAPE
value means a larger difference between the actual value and the
test one. The MAPE can be calculated as follows:

100% - [Hy; — Hig

N = Hig

MAPE =

(11)

In the signal processing field, the SNR represents the ratio of the
average power of the signal to the average power of the noise. A
higher SNR value indicates a smaller noise that the test value
contains. The SNR can be calculated as follows:

N
His

SNR=— =t

= . (12)
HM—HO

.MZ
/N

Data reconstruction

1
4 N\ 7
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Fig. 3. Network structure of the proposed SRPNSE framework.
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3.4. Optimization method

In this paper, a novel neural network, SRPNSE, is proposed to
solve the SRP problem. As a deep neural network, it consists of
multiple residual blocks and has strong expressive power. That
is, given a specific nonlinear function, the neural network can
asymptotically approximate this function by appropriately adjust-
ing its parameters. However, due to the existence of activation
functions and multiple hidden layers in the network, the function
underlying SRPNSE is highly nonlinear and nonconvex. The nonlin-
earity and nonconvexity of SRPNSE makes its parameter optimiza-
tion problem extremely difficult. In this paper, we investigate
efficient optimization algorithms for estimating the parameters
of SRPNSE.

In the existing literature, gradient-based algorithms (as shown
in Algorithm 1) remain the mainstream methods for the parame-
ter estimation of deep neural networks. Typical examples are the
batch gradient descent (BGD), stochastic gradient descent (SGD),
and mini-batch gradient descent (Mini-BGD) algorithms [32]. In
these algorithms, parameter updating is performed according to
the following formulas:

W:=W — oydW (13)
b:=b-odb (14)
where W represents the weights; b is the bias; o is the learning

rate; and dW and db are the partial derivatives of cost function with
respect to variables W and b, respectively.

Algorithm 1. The pseudo-code for gradient-based algorithms.

Require: f{0) Objective function with parameters 0
Require: o Learning rate
Require: 0y = 0, t = 0 Initial parameters
While {not converged} do:
1. Calculate the gradient of the objective function with
respect to the current parameter:
g = Vflo,)
2. Calculate the descending gradient at the current
moment:
Ne = —008c
3. Update based on the descending gradient:
Ori1 = 0c + 1,
t=t+1
End
Return 0.,

The main difference between these gradient-based algorithms
is that when updating parameters in one iteration, BGD trains
the network based on all batches of training data and SGD stochas-
tically selects only one batch for training, while Mini-BGD selects
only a portion of the batches. The biggest drawback of BGD is that
the convergence speed is slow, especially when the number of
batches is large, because it solves the gradient by calculating all
batches. On the other hand, since SGD’s and Mini-BGD’s updating
of the gradient direction is dependent on one or only a few data
batches, their convergence trajectories are very unstable, resulting
in continuous oscillation and local optima. Considering the draw-
backs of traditional methods, based on Egs. (13) and (14), many
other methods such as Momentum [32], the adaptive gradient
algorithm (Adagrad) [32], the root mean square prop (RMSProp)
[32,33], and the adaptive moment estimation (ADAM) [32,34] have
been proposed for improving the training process. In this paper, we
will investigate the effectiveness of two new algorithms—RMSProp
and ADAM—for estimating the parameters of SRPNSE.

3.4.1. Root mean square prop

One main disadvantage of the dominant gradient descent meth-
ods is that the learning rate o is a fixed value. Choosing a proper
learning rate can be difficult. If it is too small, the convergence
speed will be very slow, whereas if it is too large, the loss function
will oscillate or even deviate significantly from the minimum
value. RMSProp (as shown in Algorithm 2) is a variant of the dom-
inant gradient descent methods that overcomes this shortcoming.
Compared with Eqgs. (13) and (14), RMSProp achieves an excellent
adaptation of the learning rate by adding a moving average of the
squared gradient over adjacent mini-batches [34]. For each itera-
tion, as shown in Egs. (17) and (18), the given learning rate v is
dynamically adjusted by the root mean square. The root mean
square is actually the root of the exponential moving averages of
squared past gradients. According to Egs. (15) and (16), RMSProp
limits the reliance of the update to only the past few gradients
[34]. The root mean square in RMSProp aims to balance the oscil-
lation amplitude of different dimensions. When the parameter
space is relatively flat, the partial derivation is small; then, the
exponential moving average is small and the learning rate speeds
up as a result. When the parameter space is relatively steep, the
partial derivation is large; then, the exponential moving average
is large and the learning rate slows down as a result.

Algorithm 2. The pseudo-code for the RMSProp algorithm.

Require: f(W, b) Objective function with parameters W, b
Require: o, Learning rate
Require: 3, Exponentially decaying average of squared
gradients
Require: Wy, bg, So(dW), So(db) Initial parameters
For each epoch t, while {not converged} do:
1. Calculate the gradient of the objective function with
respect to the current parameter:
dw, db = VAW, b)
2. Calculate biased the second moment estimate from
historical gradients:
Saw 1= B2Saw + (1-B2)([AW)?, Sap := BaSap + (1—p2)(db)?
3. Calculate the descending gradient at the current

moment:

dw db
= —oy—W_ y = -«
w 1 foawte’ b 1 S te

4. Update based on the descending gradient:
W:=W+ny, b:=b+n,
End
Return w, b
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Saw = BySaw + (1 = Bo)(dW)? (15)
Sab = B5Sab + (1 — fo)(db)? (16)
dw
W:=Ww- "= (17)
db
b = b - alm (18)

where (dW)? and (db)? are the square of the gradient; §, represents
the exponential decay rate, which is usually set as 0.9 or 0.999; Sqw
and Sy, represent the exponential moving averages of squared past
gradients; and ¢ is a very small number, say 108, to prevent the
denominator from being 0.

3.4.2. Adaptive moment estimation

The other disadvantage of the dominant gradient descent meth-
ods is that the current gradient is the only factor to determine the
descent direction. Once the current gradient is pointing in the
opposite direction of the previous gradient, the loss function will
oscillate or even deviate from the minimum value. Momentum
[32] is a variant of the dominant gradient descent methods that
overcomes this shortcoming. Compared with Eqgs. (13) and (14),
Momentum achieves the stability for faster learning by adding
the accumulation of the exponential moving average of past gradi-
ents and then moving in that direction [32].

The ADAM algorithm (as shown in Algorithm 3) combines the
ideas of both the Momentum and RMSProp algorithms. As shown
in Egs. (19) and (20), the exponentially decaying average of the
gradients is calculated, which is the Momentum and is called the
“first-order moment estimation” in ADAM; as shown in Egs. (21)
and (22), the exponentially decaying average of the squared gradi-
ents is calculated, which is the RMSProp and is called the “second-
order moment estimation” in ADAM. In addition, as shown in Egs.
(23) and (24), ADAM computes a bias-corrected first-order
moment estimate and second-order moment estimate to offset
the deviation caused by the initialized zero vectors. As shown in

Algorithm 3. The pseudo-code for the ADAM algorithm.

Require: f{(W, b) Objective function with parameters W, b
Require: o, Learning rate
Require: g, 8, Exponentially decaying average of squared
gradients
Require: Wy, bg, So(dW), So(db), vo(dW), ve(db) Initial
parameters
For each epoch t, while {not converged} do:
1. Calculate the gradient of the objective function with
respect to the current parameter:
dw, db = VAW, b)
2. Calculate biased first and second moment estimate from
historical gradients:
Vaw = f1Vaw + (1 — 1)dW, vgp == B1vap + (1 — p1)db
Saw = B2Saw + (1= B2) (AW)?, Sap = B2Sap + (1 — o) (db)°
3. Update the bias-corrected of first and second order
moment estimate:

C . Vaw  C ._ Vap . Saw <€ ._ Sap
Vaw = 1 Ve = 1 Saw = 1 San = g

4. Update based on the descending gradient:

v

e
W .= W*OC[\/S%JN‘:J) =b— OC[\/S%JFS

End

Return W, b

Egs. (25) and (26), ADAM not only updates the descent direction
by an exponentially decaying average of gradients, but also divides
the learning rate by an exponentially decaying average of squared
gradients. As a result, faster convergence and reduced oscillation
are gained [34].

Vaw = B10aw + (1 — p1)dW (19)
Vap := P1Vap + (1 — py)db (20)
Saw = BaSaw + (1= Bp) (W)’ (1)
Sap = B2Sav + (1 = B)(db)? (22)
Vaw Udp
sy = 05, = 23
dw 1_ g db 1— ﬁ; ( )
c S c S
Saw = 1 ng »Sap = 1 _dbﬁg (24)
Vaw
Wi=W—og—=W (25)
Sqw + €
bimb— o0 (26)
Sqp + €

where 8, represents the exponential decay rate for the Momentum,
which is usually set as 0.9; vy, VS, Sqw. and Sg, are the bias-
corrected estimates; and ] and ), are defined as p; and f, to the
power of the current timestep t.

4. Case studies

In this section, we conduct case studies based on a 9-bus system
[35]. As shown in Fig. 5, three meters are deployed on nodes 5, 7,
and 9 to record the real power loads; three meters are deployed
on nodes 1, 2, and 3 to measure the real and reactive power
outputs of the generators; five meters are deployed on the
“from-end” of branches 1-4, 5-6, 6-7, 8-2, and 9-4 (e.g., the
“from-end” of branch 1-4 is bus 1) to measure the real and reactive
power flows; and four meters are deployed on the “to-end” of
branches 4-5, 3-6, 7-8 and 8-9 (e.g., the “to-end” of branch 4-5
is bus 5) to measure the real and reactive power flows.

In order to better simulate the state estimation scenarios, the
input values of state estimation in this paper are assumed to be
some of the results of optimal power flow (OPF) calculations based
on measured loads. As shown in Fig. 5, the first three meters, pro-
viding three real powers of loads, are considered as the input val-
ues of OPF; the remaining 12 meters, providing overall 24 real and
reactive powers, are the input values of the state estimation for the
system; and the values of the 12 meters come from the results of
OPF.

It is assumed that on each load node, 1 MW electricity is set to
supply approximately 200 households. Each household contains 11
types of appliances, such as air conditioners, heaters, washing
machines, microwaves, and so on; each appliance’s waveform
comes from the plug load appliance identification dataset (PLAID)
[36]. The PLAID samples 11 different types of appliances at
3 x 10* Hz, which is down-sampled to 100 Hz in this paper.
In this paper, we simulate 900, 1000, and 1250 households, with
100 times magnification for the load on nodes 5, 7, and 9,
respectively. The super resolution perception state estimation
dataset (SRPSED) was designed for testing the proposed
SRPNSE; it has been released and can be found at
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Fig. 5. Topology structure of the 9-bus system. G: generator.

https://www.zhaojunhua.org/SRP/SRPSE/dataset/. In generating
this dataset, the user behavior of a normal office worker was
adopted for each household; the user behavior has also been
released with the dataset. The SRPSED contains a total of 60 d of
high-frequency data at a frequency of 100 Hz, in which the first
45 d are used for training and validation, and the last 15 d are used
for testing. Since the data completeness improvement problem for
every single meter is independent in this paper, the proposed
SRPNSE approach can be applied to larger systems in a similar
manner.

As shown in Table 1, we conducted four case studies with a total

of 16 different scenarios in this paper. f(L,) and f(?l,;) represent

the sampling rate in Hz, in which f(l%,) = nf(L,), and # is the

times. The down-sampling criterion is based on the interval values
instead of average values. The case study programs are imple-
mented in PyTorch 0.4.1 and executed on a GPU cluster with four
GTX-1080Ti, a 16-core CPU, and 64 gigabytes RAM.

4.1. Performance of SRPNSE in state estimation

Interpolation [37] is a popular way to fill vacancies and replace
wrong data in many areas. In this paper, linear interpolation and
cubic interpolation are applied as comparisons to the proposed
SRPNSE approach. State estimation calculates the 9-bus system’s
state—that is, the voltage magnitude and angle—based on the given
measurements. In this paper, we execute the state estimation
based on the real down-sampled data, SRPNSE data, linear interpo-
lation data, and cubic interpolation data, respectively. Four case

studies with a total of 16 scenarios were conducted. For each sce-
nario, we calculated the MAPE and SNR of the voltage magnitude
and angle.

4.1.1. Performance evaluated with MAPE

The MAPE values for both voltage magnitude and angle for all
scenarios under SRPNSE, linear interpolation, and cubic interpola-
tion are shown in Appendix A Tables S1 and S2, respectively (also
see Figs. 6 and 7). It should be noticed that each subfigure contains
four scenarios. For example, Fig. 6(a) represents scenarios of
recovering data from 1/60, 1/300, 1/600, and 1/900 Hz with
n = 5, respectively.

4.1.2. Performance evaluated with SNR

The SNR values for both voltage magnitude and angle for all
scenarios under SRPNSE, linear interpolation, and cubic inter-
polation are shown in Appendix A Tables S3 and S4, respectively
(also see Figs. 8 and 9).
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Fig. 6. MAPE comparisons among SRPNSE, linear interpolation, and cubic interpo-
lation about the voltage magnitude. (a) 7 = 5; (b) # = 10; (c) # = 50; (d) = 100.
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Fig. 7. MAPE comparisons among SRPNSE, linear interpolation, and cubic interpo-
lation about the voltage angle. (a) n = 5; (b) # = 10; (c) n = 50; (d) n = 100.

Table 1
The down-sampling factors and SR factors used in this paper.
Case o fiLy) f("/f)> n=>5 f(H/;), =10 f(H/‘?)’ n=>50 f(H/f)> 1 =100
1 6 000 1/60 1/12 1/6 5/6 5/3
2 30000 1/300 1/60 1/30 1/6 13
3 60 000 1/600 1/120 1/60 1/12 1/6
4 90 000 1/900 1/180 1/90 1/18 1/9



https://www.zhaojunhua.org/SRP/SRPSE/dataset/

796 G. Liang et al./Engineering 6 (2020) 789-800

4.2. Performances of the SRPNSE on load nodes

4.2.1. Performance evaluated with MAPE

The MAPE values in load nodes 5, 7, and 9 for all scenarios under
SRPNSE, linear interpolation, and cubic interpolation are shown in
Appendix A Tables S5, S6, and S7, respectively. Here, we take the
scenarios on node 5 as a representative (Fig. 10).

4.2.2. Performance evaluated with SNR

The SNR values in load nodes 5, 7, and 9 for all scenarios under
SRPNSE, linear interpolation, and cubic interpolation are shown in
Appendix A Tables S8, S9, and S10, respectively. Here, we take the
scenarios on node 5 as a representative (Fig. 11).
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Fig. 8. SNR comparisons among SRPNSE, linear interpolation, and cubic interpola-
tion about the voltage magnitude. (a) # = 5; (b) = 10; (c) n = 50; (d) = 100.
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Fig. 9. SNR comparisons among SRPNSE, linear interpolation, and cubic interpola-
tion about the voltage angle. (a) n = 5; (b) = 10; (c) n = 50; (d) n = 100.
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Fig. 10. MAPE comparisons among SRPNSE, linear interpolation, and cubic inter-
polation on load node 5. (a) n = 5; (b) # = 10; (c) n = 50; (d) = 100.
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Fig. 11. SNR comparisons among SRPNSE, linear interpolation, and cubic interpo-
lation on load node 5. (a) 1 = 5; (b) # = 10; (c) n = 50; (d) n = 100.

4.3. Visualized comparison of state estimation

The 9-bus system has a total of three generators, nine nodes,
and nine branches. Four case studies with the state estimation
for a total of 16 scenarios were conducted; here, we randomly
selected case 4, node 3, and branch 5-6 to show visualized com-
parisons of the state estimation results in more detail, as a repre-
sentative. Specifically, we randomly chose a time period to show
the fluctuation of voltage magnitude on node 3, voltage angle on
node 3, power flow on branch 5-6, and generator output on node
3 withy =5, =10, =50, and # = 100, respectively. In each fig-
ure, the true data, SRPNSE data, linear interpolation data, and cubic
interpolation data are visualized for comparison.

4.3.1. Case 4 with n = 5: Voltage magnitude on node 3

In this scenario o = 90 000 and # = 5; that is, the low-frequency
data received in the control center is 1/900 Hz, and the goal is to
restore 1/180 Hz data from the 1/900 Hz data. Based on the recov-
ered data, state estimation is executed. Here, the voltage magni-
tude on node 3 is drawn. A comparison of the voltage magnitude
after state estimation between the real down-sampled data and
the estimated ones by SRPNSE, linear interpolation, and cubic
interpolation is shown in Fig. 12.

4.3.2. Case 4 with n = 10: Voltage angle on node 3

In this scenario, o« =90000 and #x = 10; that is, the low-
frequency data received in the control center is 1/900 Hz, and
the goal is to restore 1/90 Hz data from the 1/900 Hz data. Based
on the recovered data, state estimation is executed. Here, the
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Fig. 12. Voltage magnitude (Mag) on node 3 after state estimation, recovering data
from 1/900 to 1/180 Hz. (a) True data; (b) SRPNSE; (c) linear interpolation; (d) cubic
interpolation. p.u.: per unit.
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voltage angle on node 3 is drawn. A comparison of the voltage
angle after state estimation between the real down-sampled data
and the estimated ones by SRPNSE, linear interpolation, and cubic
interpolation is shown in Fig. 13.

4.3.3. Case 4 with n = 50: Power flow on branch 5-6

In this scenario, oo =90000 and # = 50; that is, the low-
frequency data received in the control center is 1/900 Hz, and
the goal is to restore 1/18 Hz data from the 1/900 Hz data. Based
on the recovered data, state estimation is executed. Here, the
power flow on branch 5-6 is drawn. A comparison of the power
flow on branch 5-6 after state estimation between the real
down-sampled data and the estimated ones by SRPNSE, linear
interpolation, and cubic interpolation is shown in Fig. 14.

4.3.4. Case 4 with n = 100: Generator output on node 3

In this scenario, o« =90000 and #n = 100; that is, the low-
frequency data received in the control center is 1/900 Hz, and
the goal is to restore 1/9 Hz data from the 1/900 Hz data. Based
on the recovered data, state estimation is executed. Here, the gen-
erator output on node 3 is drawn. A comparison of the generator
output on node 3 after state estimation between the real down-
sampled data and the estimated ones by SRPNSE, linear interpola-
tion, and cubic interpolation is shown in Fig. 15.

4.4. Visualized comparison of load nodes

Four case studies with a total of 16 scenarios were conducted.
Here, we randomly selected case 1 on load node 5 and case 4 on
load node 9 and discussed them in greater detail. In each figure,
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Fig. 13. Voltage angle (Ang) on node 3 after state estimation, recovering data from
1/900 to 1/90 Hz. (a) True data; (b) SRPNSE; (c) linear interpolation; (d) cubic
interpolation.
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Fig. 14. Power flow on branch 5-6 after state estimation, recovering data from
1/900 to 1/18 Hz. (a) True data; (b) SRPNSE; (c) linear interpolation; (d) cubic
interpolation.

the true data, SRPNSE data, linear interpolation data, and cubic
interpolation data are visualized for comparison.

4.4.1. Load node 5: Data completeness improvement from 1/60 Hz

In this case, & = 6000 and # =5, n = 10, n = 50, and 1 = 100;
that is, the low-frequency data received in the control center is
1/60 Hz, and the goal is to restore 1/12, 1/6, 5/6, and 5/3 Hz data
from the 1/60 Hz data, respectively. Here, we randomly chose a
time period. Comparisons between the real 1/12, 1/6, 5/6, and 5/3
Hz down-sampled data and the estimated ones by SRPNSE, linear
interpolation, and cubic interpolation are shown in Figs. 16-19.

4.4.2. Load node 9: Data completeness improvement from 1/900 Hz

In this case, o« =90 000 and 1 = 5, n = 10, = 50, and 1 = 100;
that is, the low-frequency data received in the control center is
1/900 Hz, and the goal is to restore 1/180, 1/90, 1/18, and 1/9 Hz
data from the 1/900 Hz data, respectively. Here, we randomly
chose a time period. Comparisons between the real 1/180, 1/90,
1/18, and 1/9 Hz down-sampled data and the estimated ones by
SRPNSE, linear interpolation, and cubic interpolation are shown
in Figs. 20-23.

4.5. Comparison of the SGD, RMSProp, and ADAM algorithms for
solving the SRPNSE framework

Tables S11 and S12 in Appendix A provide comparisons of the
MAPE and SNR values using the ADAM and RMSProp algorithms
compared with the SGD algorithm for solving the proposed SRPNSE
framework. Here, the MAPE values on load node 5 for three
algorithms are shown as a representative (Fig. 24).
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Fig. 15. Generator output on node 3 after state estimation, recovering data from
1/900 to 1/9 Hz. (a) True data; (b) SRPNSE; (c) linear interpolation; (d) cubic
interpolation.
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Fig. 16. Load measurements, recovering data from 1/60 to 1/12 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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Fig. 18. Load measurements, recovering data from 1/60 to 5/6 Hz. (a) True data;

(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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Fig. 19. Load measurements, recovering data from 1/60 to 5/3 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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Fig. 20. Load measurements, recovering data from 1/900 to 1/180 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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Fig. 21. Load measurements, recovering data from 1/900 to 1/90 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.
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Fig. 22. Load measurements, recovering data from 1/900 to 1/18 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.

— 60
s
= 40
5 40
S W
g
20 20
0 500 1000 0 500 1000
(a) (b)

= 40
s 40
=3
— 30 /\/l/\/l/\/\ 30
[]
3
a 20 20

0 500 1000 0 500 1000

Sampling point Sampling point
(c) (d)

Fig. 23. Load measurements, recovering data from 1/900 to 1/9 Hz. (a) True data;
(b) SRPNSE; (c) linear interpolation; (d) cubic interpolation.

We also compared the loss function in iterations using the
RMSProp and ADAM algorithms compared with the SGD algorithm.
Here, the MSE value for the scenario of case 4 with # =100 is
selected as a representative (Fig. 25(a)). Fig. 25(b) provides magni-
fied views of the first 80 iterations and the iterations from 300 to
380, respectively.

4.6. Result analysis

Tables S1-S4, Figs. 6-9, and Figs. 12-15 provide comparisons
focused on the state estimation results. Tables S5-S10, Figs. 10
and 11, and Figs. 16-23 provide comparisons focused on the
measurements of load nodes. It should be noted that the latter
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Fig. 24. MAPE comparisons using RMSProp and ADAM algorithm compared with
SGD. (a) # = 5; (b) # = 10; (c) n = 50; (d) n = 100.

comparisons are SR results of the meters’ measurements, while the
former comparisons illustrate the state estimation results, which
are based on the SR results of the meters’ measurements.

First, it is clear from Tables S1-S4 and Tables S5-S10 that the
proposed SRPNSE significantly outperforms the linear and cubic
interpolation methods. This indicates that the data supplemented
by the SRPNSE approach can achieve a more accurate estimate of
the actual situation, and thus helps to achieve a more accurate
state estimation result. More importantly, the differences between
using the SRPNSE, linear interpolation, and cubic interpolation
methods on the state estimation are obvious. As shown in Tables
S1-S4 and Figs. 6-9, the value differences are as high as one or
two orders of magnitude. This indicates that the linear and cubic
interpolations are weak in recovering lost information from rela-
tively low-frequency data, while the proposed SRPNSE approach
performs well.

Second, it is obvious from Tables S5-S7 that, no matter what the
SR factor is, the MAPE values of the SRPNSE and interpolation
methods keep increasing when the sampling frequency drops;
and, more importantly, the lower the frequency is, the higher the
MAPE difference between the SRPNSE and interpolation methods
is. The reason for the small MAPE differences between the SRPNSE
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and interpolation methods, as in case 1, is that relatively high-
frequency data already contains enough information, which helps
to improve the accuracy of the interpolations.

Third, by comparing the scenarios of different SR factors for a
specific case, such as case 3 with =5, # =10, n =50, and
n =100, it is clear from Tables S5-S7 and Tables S8-S10 that a
smaller SR factor will usually lead to better performance for both
the SRPNSE and the interpolation methods.

Fourth, from Fig. 24 and Tables S11 and S12, it is clear that most
MAPE values based on the ADAM algorithm are lower than those
based on the RMSProp and SGD algorithms. As shown in
Fig. 25(a), the SGD algorithm achieves a slow convergence speed
and encounters continuous oscillation; as shown in Fig. 25(b),
compared with RMSProp, the ADAM algorithm is slightly slow in
convergence speed, but its stability is outstanding. The result is
consistent with Section 3.4: The ADAM algorithm not only uses a
dynamically adjusted learning rate to speed up convergence, but
also uses an accumulated momentum to stay stable. Therefore,
the ADAM algorithm performs better than the RMSProp and SGD
algorithms in solving the proposed SRPNSE framework.

5. Conclusions and future works

In this article, we proposed a novel machine-learning-based SRP
approach to improve data completeness for smart grid state esti-
mation. The case studies demonstrated the effectiveness and value
of the proposed approach.

Concerning the applicability of the SRPSNE approach in a larger
system, please note that the SRPNSE is an algorithm that recovers
high-frequency data for a single meter. In other words, when solv-
ing the SRP problem, the SRPNSE approach is applied to recover
one meter after another, without using any information from
neighboring meters. Therefore, when the SRPNSE approach is
applied to a larger system, it is still possible to solve each meter
one by one. Although we used the 9-bus system for the case study,
the load data generated by this test system is big. The training data
size of the 9-bus system used in the current case study is almost
ten gigabytes. Adding a larger testing system into the case study
would require substantial computational resources, which would
need further investment in the hardware (including GPUs and
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Fig. 25. Loss function comparisons using the RMSProp and ADAM algorithms compared with the SGD algorithm for case 4 with 7 = 100. MSE value in interations (a) [1, 500];
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larger memory). We would therefore like to leave this as our future
work.

Furthermore, we will also perform trials on relatively higher
frequency data in the future, such as recovering data from 100,
10, or 1 Hz. In fact, the SRPNSE approach can not only be applied
in state estimation, but also in many other important modules in
smart grids. The SRPNSE approach can help to improve data quality
and thus overcome the obstacles and challenges caused by
deployed meters, communication channels, and abnormal data
intrusion. By applying the SRPNSE approach, the efficiency and
security of existing industrial systems may be improved based on
poor-quality data in practical situations without further invest-
ment and upgrading.
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