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Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great
potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the
solidification mechanism, architecture resolution, post-treatment process, and functional application
are based on the materials to be printed. However, 3D printable materials are still quite limited for the
fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed.
Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to
develop complex and dynamic biological structures in the human body based on 4D printing hybrid cera-
mic precursor/ceramic materials that were previously developed by our group. With the development of
multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological
structures with 2D/3D/4D AM materials can be anticipated.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bioimplants are implants for medical or clinical therapy appli-
cations, such as porous bone implants, prosthetics, wearable
biosensors, and drug delivery systems. They are usually implanted
into the human body for a period of more than 30 days [1]. They
are designed to fix, support, reproduce, or improve the functions
of human tissues by integrating the human body, properties of
materials, and intactness of bioimplants. Recently, the demand
for bioimplants has grown tremendously due to an aging popula-
tion [2] and a shortage of donor organs in medical treatment [3].
With the study and expansion of the biomaterials field [4], various
bioimplants, such as brain/neural implants [5], bone/cartilage
implants [6], dental implants [7], and other structural implants,
have been developed. Proper selection of biomaterials, manufac-
turing method [8], surface treatment [9], and biological evaluations
[5–8] is the major challenge with bioimplants.
According to differences in the amounts of cellular components
in implants [3], bioimplants are categorized into biological
implants, biologized implants, and biofunctional implants [10].
Biological implants are prepared from natural biological materials
including cell proteins or others by bioprinting. They usually con-
tain two key components: a bioprinter containing living cells and
biodegradable scaffolds/matrices (hydrogels). Until now, biological
implants could not be used within the human body, although
bioprinting has been accepted as a robust potential technology.
Biologized implants are fabricated using cellular components and
biomaterials that are permanent and non-biodegradable. Bioinert
materials, including stainless steel (SS; 316L), tantalum, gold,
cobalt–chromium (Co–Cr) alloys, titanium (Ti), and nitinol, are
widely applied as biologized implants [11]. Biofunctional implants
are implants that have undergone a surface treatment by which
bioactive surfaces are prepared after implantation. The surface
treatments facilitate cell attachment and proliferation, which are
key preconditions for tissue engineering.

Additive manufacturing (AM) technologies, which are methods
that add materials onto the substrate rather than subtracting
materials as in traditional manufacturing [3], provide more possi-
bilities for the production of bioimplants with complex geometry
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or custom requirements with high efficiency. Recently, two inspir-
ing papers on the 3D bioprinting of tissues or organs were pub-
lished. Lee et al. [12] presented a method of printing human
heart components at various scales, based on suspended hydrogels.
Grigoryan et al. [13] established intravascular and multivascular
architectures of an alveolar model with photopolymerizable
hydrogels; this model was also used in a rodent model of chronic
liver injury. At present, fused deposition modeling (FDM), selective
laser melting (SLM), stereolithography (SLA), and other AM tech-
nologies [14] are being applied successfully to manufacture bioim-
plants, including cortical bone [15], skull [16], cartilage [17], and
surgical tools [18]. However, some drawbacks exist, including
additional processing, high cost, and limitations of printable mate-
rials [3]. Therefore, new printing methods and materials must be
developed to overcome these limitations.

In this paper, two-dimensional (2D) and three-dimensional
(3D) AM materials for bioimplants are reviewed. Furthermore,
with novel ceramic inks as four-dimensional (4D) AM materials,
both rigid and soft bioimplants have been developed, and the com-
bination of soft and rigid segments within one model has been suc-
cessfully achieved. These novel ceramic inks show great potential
in the manufacturing of bioimplants consisting of different seg-
ments with various mechanical modules, such as knee joints and
vertebral implants.
2. 2D AM materials for bioimplants

2D AM is regarded as a matter of applying materials to the sur-
face of an object, typically by coating or other surface-treatment
techniques. As shown in Fig. 1 [19–22], 2D AM materials are
widely applied in biomedical fields. Corrosion behavior, excellent
mechanical properties, and biocompatibility are vital preconditions
for the performance of bioimplants in the internal fluid environ-
ment of the human body [23]. Surface chemistry and physical
topography of the surface play a vital role [9]. Thus, various coating
and surface-treatment methods [8], including plasma spraying,
sputter coating, and ion-beam-assisted deposition, among others,
have been applied to optimize the mechanical properties, biofunc-
tionality, and biocompatibility of biomaterials such as bioceramics,
bioglasses, biopolymers, and metal alloys [5,8,9,23], and to
enhance the performance of bioimplants or other medical devices.
Biodegradable magnesium (Mg) [24] and Ti alloys [25,26] are
typical bioimplant materials due to their long-term structural and
mechanical durability [24–27]. Coatings on the abovementioned
metal-alloy biomaterials have been the subject of much study
recently, and include a pulse-potential coating of calcium phos-
phate on the surface of a Mg alloy (AZ91) [28] and an ultrathin film
coating of hydroxyapatite (HAp) on amagnesium–calcium (Mg–Ca)
alloy [29]. Both coatings have better performance than their
uncoated counterparts in a simulated internal body-fluid environ-
ment. In addition, films of Ti alloys have been fabricated onto com-
mercial purity (CP)-Ti substrates via the magnetron sputtering
method to enhance the corrosion-resistance properties [30].

Research shows that Mg in bioimplants can promote osteogenic
differentiation and improve bone-fracture healing in rats [19].
Development of a supra-nanometer-sized dual-phase Mg alloy
using the magnetron sputtering method was reported; this alloy
exhibited near-ideal strength at ambient temperature [20]. This
supra-nanometer-sized Mg alloy offers great manufacturing
potential as a coating on biodegradable implants to improve wear
resistance and osteogenic differentiation ability.

Natural and synthetic polymers are widely used as scaffolds or
bioimplants in regeneration medicine and the field of tissue engi-
neering [31,32]. Polymer coatings can also promote the biocompati-
bility and biofunctionality of bioimplants. Tremendous advances
have been achieved in the polymer coating of implants. For example,
polymer-coated stents can slowly release anti-stenosis pharmaceuti-
cals [33]. Furthermore, biodegradable elastomeric polyurethanes
were reported as drug-eluting coatings for degradable vascular
stents based on Mg [21].

In addition to their performance on bioimplants, coatings have
great potential in the fields of tissue engineering and cell therapy
[34,35] as smart microrobots [36,37]. A porous microrobot fabri-
cated by photoresist SU-8 and coated with nickel (Ni) and Ti can
achieve motion control under an external magnetic field [22]. With
this microrobot, targeted cells delivery in vivo can be achieved suc-
cessfully under an external magnetic gradient field. A magnetically
driven micro-swimmer with a Ni coating was also reported [33],
and can potentially be used in medical diagnosis and treatment.
3. 3D AM materials for bioimplants

Although many biomaterials have been reported, not all are
available for the 3D printing of bioimplants. Materials for the
preparation of bioimplants should first have good biocompatibility
and low toxicity. Cells should be able to adhere to the surface easily
and proliferate well. As they will remain in the human body over
the long term, materials should not release toxic elements, and
should possess an appropriate degradation rate and wear resis-
tance. To meet the requirements of different locations within the
human body (e.g., bone [38], cartilage [39], blood vessel [40,41],
joint [42,43], and other focal zones), the application environment
should also be considered. Regarding the implants, a mismatch of
stiffness between tissue and implants can influence the load shar-
ing in the process of implant use. The materials for load-bearing
implants (e.g., bone implants [38,44]) should have high mechanical
strength. Therefore, metals and ceramics are good candidates for
load-bearing implants. Polymer materials must also be considered
due to their appropriate tensile strength and an elastic modulus
that is similar to that of host tissues.

To fabricate implants by 3D printing methods, the chemical and
physical properties of materials must also be considered. Several
materials that have been used in bioimplants or have potential
for bioimplant use in the near future are introduced in the follow-
ing discussion.
3.1. Polymers

Polymers that are commonly used to prepare scaffolds by 3D
printing include polyetheretherketone (PEEK), polycaprolactone
(PCL), poly(vinyl alcohol) (PVA), and poly(L-lactic acid) (PLLA) [3].

PEEK, which has been approved by the US Food and Drug
Administration (FDA), is a thermoplastic biomaterial with
mechanical properties that have been highlighted for use in
artificial bone implants, especially at human load-bearing sites.
The Young’s modulus and tensile strength of PEEK are 3.3 GPa
and 110 MPa, respectively, which are in close proximity to the
corresponding values of 3.75 GPa and 100 MPa for collagen [45].
Owing to its mechanical proximity with natural collagen, PEEK is
a suitable candidate for replacement of collagen in artificial bone
implants. Processability is a significant challenge for PEEK due to
its high glass-transition temperature and melting temperature, at
143 and 343 �C [46], respectively. In cranio-maxillofacial (CMF)
surgery, patient-specific implants have been fabricated by FDM
[47], with collection bed and print temperatures of 100 and
400 �C, respectively. Haleem and Javaid [46] also reviewed the
promising application of 3D-printed PEEK in dental implants.
Zhang et al. [48] developed a new method of designing
costal cartilage prostheses with wavy elastic structure by means
of FDM.



Fig. 1. 2D AM materials in biomedical applications. (a) Schematic showing diffusion of implant-derived Mg2+ contributing to osteogenic differentiation; (b) structure of
supra-nanometer-sized dual-phase glass-crystal; (c) scanning electron microscopy images of corrosion regions on stents with various coatings under a simulated body
environment; (d) fabrication process of microrobots including Ni/Ti deposition. DRG: dorsal root ganglion; CGRP: calcitonin gene-related peptide; TRPM7: transient receptor
potential-melastatin-like 7; MAGT1: magnesium transporter subtype 1; CALCRL: calcitonin receptor-like receptor; RAMP1: receptor activity modifying protein 1; PDSC:
periosteum-derived stem cell; cAMP: cathelicidin antimicrobial peptide; CREB: cAMP-regulated enhancer B. (a)–(d) Reproduced from Refs. [19–22] with permission of the
authors.
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PCL is the most commonly used thermoplastic polymer for
the 3D printing of bone scaffolds due to its prior FDA
approval, good biocompatibility, and slow biodegradation. Its
low melting temperature (60 �C) eases its fabrication by means
of benchtop FDM. Zamani et al. [49] prepared a PCL scaffold
with gradient mechanical properties by FDM for use as
potential mandibular bone implants. The PCL material lacks
osteo-inductivity, so functionalized mineral additives had to
be incorporated in the matrix, including tricalcium phosphates
(TCPs), HAp crystals, decellularized bone matrix (DCB) [50],
and trace elements (such as strontium (Sr), Mg, zinc (Zn),
silver (Ag), and silicon (Si)) in the human body [51]. PCL
scaffolds can also be used in the clinical application of
augmentation rhinoplasty [52].

Poly(lactic acid) (PLA) is a semi-crystalline polymer with
melting and glass-transition temperatures of 174 and 57 �C,
respectively. PLA has two different stereoisomers, PLLA and
poly-D-lactide (PLDA). PLLA degrades much slower than PLDA in
the human body, so PLLA is usually made into orthopedic implants.
PLA has been approved by the FDA for use as a human biomedical
material, and shows promising application for fixation devices
such as screws, pins, sutures, and arrows in orthopedics and den-
tistry due to its good biocompatibility and low toxicity. However,
it presents a problem similar to that encountered with PCL:
namely, its lack of mechanical strength and functionality limit its
further applications [47,53].

In addition to the aforementioned polymers, poly(methyl
methacrylate) (PMMA), PVA, and poly(lactic-co-glycolic acid)
(PLGA) are widely used in 3D-printed implants. The usage of
PMMA in cranioplasty can be dated back to the 1940s. Petersmann
et al. [54] prepared cranial implants using PMMA by means of
FDM. PVA shows excellent potential for cartilage repair.
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3.2. Ceramics

Ceramics are preferred for the preparation of bone implants,
because natural bone is composed of ceramic (HAp, ~80% wet
weight of bone) and collagen. Ideal bioceramics should be not only
biocompatible, but also osteoconductive and osteoinductive, with-
out releasing toxic elements during application. Initially, bioinert
bioceramics were represented by zirconia (ZrO2) [55] and alumina
(Al2O3) [56] for the production of femoral heads of total hip arthro-
plasty prostheses. Later, bioactive ceramic materials were devel-
oped, which can form strong chemical-force bone bonding to
host bone tissue without causing inflammation. Ca–P-based
ceramics are a well-known group including HAp [57], TCP [58],
and bioglass as bone-replacement materials. These bioactive
ceramics have a significantly lower mechanical strength compared
with ZrO2 and Al2O3, but show better biological response, produc-
tion of proteins, and cell adhesion (osteoconduction). Chen et al.
[59] reviewed the 3D printing technologies of ceramics in 2019,
including slurry-, powder-, and bulk solid-based methods

3.3. Metals

The 3D printing of metals or their alloys materials is usually
realized by SLM or electron beammelting (EBM) [60]. Several com-
mon metals and alloys (Ti-based, SS, and Co-based) and biodegrad-
able metals (Mg-based, Zn-based, and iron-based) for bioimplants
are introduced in the following subsections.

3.3.1. Titanium-based alloys
Ti alloys have been used as biomaterials due to their good bio-

compatibility, lowmodulus, and resistance to corrosion. Ti–6Al–4V
is used to fabricate clavicular implants, mandibular implants, in
foot osteotomy, as flanged acetabular cups, and in other focal zones
such as dental and hip implants [61]. However, Alzheimer’s, osteo-
malacia, and other neurological issues occur due to the release of
Al and V [62–64]. Currently, Ti–6Al–7Nb [65] and Ti–5Al–2.5Fe
[66] without V are fabricated and applied in femoral prosthesis
stems. Surface modifications and the addition of refractory metal
elements in Ti alloys are usually necessary for better wear
resistance.

3.3.2. Stainless steel
Austenitic 316L SS alloys (containing 2%–3%molybdenum (Mo))

are the most commonly used implant materials to fabricate inter-
nal fixation devices (stents, bone plates, and artificial joints)
[67,68]. Because 316L SS cannot promote new tissue growth, Hao
et al. [69] presented a combination material comprising 316L SS
and HAp bioceramic for manufacturing load-bearing and bioactive
composite implants by SLM. 317L SS alloys (containing 3%–4% Mo)
are better than 316L in terms of pitting and general corrosion resis-
tance [70]. To reduce bacterial infections of bone implants, Chai
et al. [70] studied the biocompatibility and antibacterial activity
of 317L SS–Cu in vitro and in vivo. Localized corrosion effect, caus-
ing 24% [71] of implant failures, is a major issue impairing the per-
formance of SS alloys as implant materials [72]. Surface
modification [73], coating, and surface texture modification (at
the nanoscale) [74,75] can be adopted to improve the corrosion
resistance of SS.

3.3.3. Cobalt-based alloys
Co–Cr alloys, consisting of Co, Cr, Ni, and Mo, are commonly

used biomaterials for orthopedic implants. Compared with SS,
Co-based alloys have better biocompatibility, abrasion resistance,
corrosion resistance, and mechanical strength [72]. Co–Cr alloys
have two basic types: Co–Cr–Mo alloys and Co–Ni–Cr–Mo alloys.
Co–Cr–Mo alloys have been used in dental implants and artificial
joints, with element contents of 27%–30% Co, 2.5% Ni, and 5%–7%
Mo [76]. Co–Ni–Cr–Mo alloys have been used for heavy load-
bearing joints (hip and knee joints) [77], composed of 19%–21%
Cr, 33%–37% Ni, and 9%–11% Mo [76]. Xiang et al. [78] manufac-
tured a Co–Cr–Mo alloy with an anisotropy microstructure and
mechanical properties by means of EBM. Biocorrosion is one of
the major problems for Co-based alloys due to the release of posi-
tively charged metal ions in the process of binding to proteins or
cells in the human body [79].

3.3.4. Magnesium-based alloys
Pure Mg has a similar density to natural bone, at slightly less

than 1.74 g�cm�3 in comparison with 1.8–2.1 g�cm�3 [80].
However, its application for implants in the human body is
restricted by its rapid corrosion, which causes quick degradation.
If researchers can control the corrosion rate of Mg, it could be an
appropriate candidate for bone implants, as its elastic modulus
(45 GPa) is similar to that of cortical bone. This would allow the
stress-shielding effect to be avoided effectively. Mg alloys
(Mg–Zn- [81], Mg–Ca- [82], Mg–Si- [83], and Mg–Sr-based alloys)
[84] provide good solutions to control the corrosion of pure Mg,
and have shown great potential in the tissue engineering,
orthopedic, and cardiovascular fields. In bioimplants, Al and
rare-earth elements cannot be alloyed with Mg, because these
two components result in neurotoxicity and hepatotoxicity,
respectively, although the mechanical strength is increased. In
addition, hydrogen formation is usually a common challenge in
research on Mg alloys [5,85]. As an alternative material, Mg glasses
can be applied as implants without the formation of hydrogen [86].

3.3.5. Zinc-based alloys
Zn-based alloys hold tremendous potential as tissue implant

materials due to their good biodegradability and biocompatibility
[87]. In 2013, Bowen et al. [88] reported Zn as a superior applicant
material for the fabrication of stents. Pure Zn has an ultimate ten-
sile strength of 20 MPa by casting and 120 MPa by wrought oper-
ation [89,90]. However, it is not strong enough for application in
stents (i.e., 300 MPa is required for a vascular stent). Thus, Zn needs
to be combined with other metals to form alloys for biomedical
applications. Zn–Mg, Zn–Ca/Sr, Zn–Al, Zn–Li, Zn–Ag, Zn–Cu, and
Zn–Mn alloy systems have been reviewed in some papers
[87,91]. Zn–Cu alloys show potential application in craniomaxillo-
facial osteosynthesis implants [92]. Interfacial Zn–P provides a key
controlling biocompatibility for Zn implants, and can be used as a
promising coating material with stable chemical properties for
other biomedical applications [93].

3.3.6. Iron-based alloys
Iron and its alloys, which do not promote hydrogen evolution

and which have better mechanical properties than Mg-based
alloys, are another type of biodegradable metal that can be used
as cardiovascular stent or bone implants [94] due to their low
hemolysis ratio and excellent anticoagulant property [95,96]. The
elastic modulus of pure Fe (211.4 GPa) is higher than that of pure
Mg (41 GPa) or 316L SS (190 GPa) [97]. Mn, carbon (C), Si, and pal-
ladium (Pd) elements are commonly alloyed with Fe in order to
enhance the degradation rate of pure Fe material (0.16 mm�a�1

[97] in an osteogenic environment) and reduce its magnetic sus-
ceptibility in clinical application. When an open cell structure is
designed for Fe-based alloys, they can show mechanical properties
close to those of natural bone [98]. Li et al. [99] fabricated Fe scaf-
folds by direct metal printing with an ordered porous structure,
and studied their biodegradation behaviors and mechanical prop-
erties. Hong et al. [100] fabricated Fe–Mn and Fe–Mn–Ca-based
constructs by 3D printing, and found that Ca addition could
enhance the degradation rate of Fe. Usually, modification needs
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to be done to improve the surface bioactivity by stimulating bone
formation. Yang et al. [101] presented a HAp coating method based
on a hydrothermal procedure to improve 3D-printed Fe scaffolds,
and demonstrated potential application in bone engineering.
3.3.7. Bulk metallic glasses
Bulk metallic glasses (BMGs) are a kind of metallic material

with a strength, elasticity, and Young’s modulus of ~2 GPa, ~2%,
and 50–100 GPa, respectively [102]. They have high wear- and
corrosion-resistance ability due to their unique disordering atomic
structure. Therefore, BMGs can be used as novel implant materials
with better biocompatibility than their crystalline bulk.
Zr44Ti11Cu10Ni10Be25 BMG exhibits better cell growth and
attachment support ability [103]. Pt57.5Cu14.7Ni5.3P22.5 BMG
with micro-/nano-patterns surface shows enhanced angiogenic
performance [104].
3.4. 3D AM technologies for bioimplants

Several representative 3D AM technologies that are commonly
used for bioimplant manufacturing are summarized in Table 1
[14–17,105–113], along with their advantages, limitations, and
current applications.
3.4.1. Fused deposition modeling
FDM is an AM process in which a thin filament of polymer is

formed after melting and extrusion [114]. Thermoplastic polymers
are usually used, such as polycarbonate (PC), acrylonitrile buta-
diene styrene (ABS), PCL, polyamide (PA), and PLA. Zeng et al.
[115] built an artificial human ear using FDM technology, in which
polyurethane was adopted to prepare the auricular framework,
due to its good flexibility and biocompatibility. This experiment
indicated an efficient way to achieve macrotia reconstruction and
mitigate other cartilage defects in orthopedic surgery. Gronet
et al. [116] fabricated acrylic cranial implants for two patients that
facilitated the restoration of large or complicated cranial defects.
Tan et al. [16] produced patient-specific acrylic cranioplasty
implants. The advantages of these implants included no required
chemical post-treatment and cost efficiency, while their main
Table 1
Several representative 3D AM technologies for bioimplant manufacturing.

3D AM
technology

Materials Basic principle Advantages

FDM [14] Thermoplastic
filaments,
including ABS,
PLA, PC, and PA

Selectively depositing melted
material in a pre-determined
path layer-by-layer

Cost-effective
of materials

DIW [105] Hydrogel, HAp,
polymer
nanocomposites,
sol–gel, ceramic
inks

Liquid-phase ‘‘ink” is dispensed
out under controlled pressure
and deposited layer-by-layer

Bulk with high
porous scaffol

SLA [14] Photo-reactive
resin

Using light processing to
crosslink monomers and form
parts layer-by-layer

High speed; h
resolution; sm
surface

SLM [14] Mg, Ti, Al alloys, Ti
alloys, SS

Using a laser to scan and
selectively fuse the metal powder
particles, bonding them to build
model layer-by-layer

Complex geom
lightweight st
good mechani
performance

EBM [112] Co–Cr–Mo alloy,
Ti–6Al–4V, Ni–Ti
alloy

Components are built within a
powder bed by selectively
melting the powder with a high
power electron beam

Extremely hig
under vacuum
high working
temperature;
stress
limitation was the inferiority of the mechanical properties of the
products [117].

3.4.2. Direct ink writing
Direct ink writing (DIW) is an AM process in which the suspen-

sion or melts of the material are extruded from the machine as
filaments [105]. There are abundant sources of materials for DIW,
including hydrogels, ceramic/metal powder suspensions in poly-
mer solution, and thermoplastic polymer melts. Recently, a melt-
electrospinning-based DIW method [118] was developed that
allowed high resolution to be obtained due to the melt’s stretching
under a high-voltage electric field. Similar to FDM, the printing
resolution is subject to, for example, the pressure, moving velocity
of the stage, and diameter of printing nozzles. For ceramic and
metal parts, post-treatment is required to remove the polymer
composition in the printing inks by sintering or other methods.
The DIW method has been applied in developing bioimplants,
including in cartilage [17], bone tissue [106], and vascularization
[107].

3.4.3. Stereolithography
SLA, one of the earliest AM methods, was developed in 1986

[119]. It uses ultraviolet (UV) light to initiate polymerization on a
thin layer of photosensitive resin or monomer solution. An acrylic
or epoxy group is usually contained in the monomers, which can
be activated to polymerize and form long-chain polymers. Bone
[15] and dental implants [108] have been developed using the
SLA method. To prepare ceramic-based implants, ceramic powders
can be dispersed in the photosensitive resin, and the polymers are
removed by subsequent sintering. Winder and Bibb [120] summa-
rized the potential applications of SLA in maxillofacial prosthodon-
tics, including auricular and nasal prosthesis, obturators, and
surgical tents. Post-treatments sometimes include, for example,
polishing, painting, and sanding. The advantage of SLA is the pro-
duction of implants with a high resolution of 10 lm [119], while
its disadvantages are a high cost and limited material resources.

3.4.4. Selective laser melting
During SLM processes, the laser fuses the powder, which lies

loosely in the bed, at a specific location for each layer to form
Disadvantages Application in
bioimplants

; wide range Lowest-dimensional resolution Skull [16], vertebrae

density;
d

Limited selection of ink with
rheological properties; post-
processing needed to remove polymer
composition for ceramic and metal
printing

Cartilage [17], bone tis-
sue [106], vasculariza-
tion [107]

igh
ooth

High cost; brittle; post-processing
needed to remove supporting part

Bone implants [15],
dental implants [108]

etries;
ructure;
cal

High cost; small manufacturing size Locking plate [18],
acetabular cups [109],
spinal surgery template
[110], dental alloys
[111]

h velocities
condition;

low residual

Restricted to conductive materials
(metals and alloys)

Orthopedic implants
[78], dental implants
[113]
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designed structures. Pure metal powders and laser beams
(generally neodymium-doped yttrium aluminum garnet,
1.064 lm) with a higher absorptivity to metals or fiber lasers
(1.09 lm) with a shorter wavelength are commonly used in the
SLM process. Researchers produced the first patient-specific
Ti–6Al–4V jaw implant using SLM technology [121]. The
advantages of SLM include a wide range of materials to use and
the recyclability of unused particles. Its disadvantages are that
the printing accuracy depends on particle size and the printing
environment is inert gas, preventing the oxidation of particles.
Applications of SLM in bioimplants include the development of
locking plates [18], acetabular cups [109], spinal surgery templates
[110], and dental alloys [111].

3.4.5. Electron beam melting
EBM, which was developed by Arcam AB Corporation (Sweden)

in 1997, is a powder-bed-based AM technology [112]. It is similar
to the SLM process. However, an electron beam is the heat source
in EBM instead of a laser beam. Moreover, EBM is only applied for
the preparation of metals and alloys, while SLM is used for
polymers, metals, and ceramics. EBM can operate at extremely
high velocities (up to 105 m�s�1) under vacuum conditions [112].
Co–Cr–Mo alloys [78], Ti–6Al–4V [113,122,123], and Ni–Ti alloys
[124] have been reported to be fabricated by EBM as orthopedic
and dental implants. A noteworthy advantage of EBM is that the
level of residual stresses in the parts made by EBM is much lower
than that in those made by SLM.

3.4.6. 3D bioprinting
Unlike other 3D printing technologies, 3D bioprinting uses

bioinks as printing materials. Bioinks consist of biological materi-
als, biochemicals, and living cells. The central challenge in 3D bio-
printing is recapitulating biological function based on the
production of structures [125]. Based on the work principles, 3D
bioprinting methods can be classified as inkjet-based [126],
microextrusion-based [127], and laser-assisted bioprinting [128].
An ideal bioink is important for bioprinting; it should meet
requirements such as an adequate mechanical strength, adjustable
gelation process, biocompatibility, and so on. Researchers can refer
to some reviews [129–132] on bioinks for 3D bioprinting. Kang
et al. [133] invented an integrated tissue–organ printer system,
which was used for the potential reconstruction of mandible bone,
calvarial bone, ear cartilage, and skeletal muscle. Lee et al. [12] pre-
sented a new 3D bioprinting method with freeform reversible
embedding of suspended hydrogels as a supporting printing
medium, and printed a human heart at various scales. Grigoryan
et al. [13] established intravascular and multivascular structures
with photopolymerizable hydrogels by means of SLA. 3D bioprint-
ing technology has shown a flourishing foreground, although it has
not been used for real application in clinics.
4. 4D AM materials for bioimplants

In 4D printing, a 3D-printed material autonomously and pro-
grammably changes its configuration or function in response to
environmental stimuli, such as stress, light, liquids, temperature
changes, magnetic fields, gas pressure, embedded circuitry, or a
combination of these stimuli. The first demonstration of 4D print-
ing was a multi-material strand folded into the letter ‘‘MIT” in 2014
[134]. Thus far, many materials, including polymers [135–143],
metals [143–145], and ceramics [146], have been developed for
4D AM. The shape-morphing capabilities of 4D AM materials
[147] can be applied in dynamic and versatile human environ-
ments, such as for drug delivery [148] and stent insertion [149].
However, the response speed and mechanical robustness of
shape-morphing materials are usually critical limitations in devel-
oping practical applications.

Gladman et al. [135] reported a biomimetic 4D printing system
made of hydrogel composite materials, in which the orientation of
embedded non-swelling cellulose fibers was precisely patterned
for anisotropic swelling behavior. Complex-shaped overall archi-
tectures with mixed Gaussian curvature were designed and
achieved with this system. Another kind of widely used 4D AM
polymer is shape memory polymers (SMPs) and their composites,
which have many advantages, including large deformation,
multi-stimuli response, biocompatibility, light weight, and low
cost [150]. Ge et al. [136] developed printed active composite
materials with multi-material printing technology. The printed
SMP fibers in an elastomer matrix could drive the shape-
morphing behavior of the composite materials, resulting in the
thermo-mechanical programming of origami patterns [137]. Ding
et al. [138] designed a direct 4D printing method that integrated
the programming steps into the 3D printing process, resulting in
permanent programmed shapes. Lin et al. [139] introduced mag-
netic powders into an SMP matrix to achieve remote control of
4D-printed biomedical devices. Huang et al. [140] proposed a kind
of novel 4D AM polymer made from hydrogel and SMPs; the ultra-
fast digital printing that was used for this polymer overcame the
limitations in AM speed by avoiding layer-by-layer printing in
the vertical dimension and line-by-line printing in the planar
dimension. Furthermore, some works on the 3D printing of shape
memory alloys (SMAs) suggest potential for developing 4D AM
metallic materials [143], including Ni–Mn–Ga SMAs using the bin-
der jetting printing method [144] and NiTi alloys using SLM meth-
ods [145]. In these works, 3D-printed SMAs exhibit shape memory
behavior resulting from martensitic transformation with tempera-
ture changes.

4D AM techniques are developed with the shape-morphing
capability of the relevant 4D AM materials. Various materials and
technologies provide tremendous possibilities for designing and
fabricating 4D smart structural materials such as soft robots, con-
trolled grippers, programmable shape change patterns, and more.
Heat is the most common and readily accessible stimulus for 4D
printing, and a large number of heat-responsive 4D materials have
been reported, including hydrogels [135], SMAs [151], and SMPs
[138]. However, the relatively slow response speed of heat-
driven 4D printing technologies is a major limitation in their broad
application.

Light-driven 4D technology has attracted a great deal of atten-
tion due to advantages such as a fast response, wireless control,
accurate focusing, and sustainable properties [152–154]. Graphene
and carbon nanotube-based composites [155–157], liquid crystal
elastomer-based composites [158–160], SMPs [161], and hydrogels
[162] are commonly used in light-triggered 4D systems. A light-
sensitive printed micro-swimmer [163] was reported. Humidity
has also been used to drive the deformation of 4D printed actua-
tors. Mao et al. [142] demonstrated a hydrophilic/hydrophobic
bilayer under a humidity stimulus, which showed potential appli-
cation in soft actuators. Magnetic fields are another important
strategy for 4D material development, as their delicate control
and excellent biocompatibility for living organisms meet the pre-
conditions for their biomedical and therapy use. 4D magnetic but-
terfly structures [164,165] and a 4D flower-like magnetic actuator
[166] were printed by DIW. Various biomimetic 4D structures con-
trolled by a magnetic field were also reported, including spirulina
cells [167], caterpillars [168,169], starfish [170], and jelly fish
[171]. Besides these technologies, stress- [146], electricity- [172],
and gas-driven [173] 4D printing technologies have also been stud-
ied. These 4D-driven technologies have progressed a great deal
recently; however, most existing smart 4D structures are only
responsive to one stimulus, which limits their interaction capacity
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with the surroundings and their adaptability under multiple envi-
ronmental stimuli [174]. The development of multi-responsive
materials and technologies has promoted a new generation of
4D-printed structures, including light-thermal dual-responsive
hydrogels, electrothermal and electrochemical actuation materials
[175], magnetic-photo/thermal dual stimuli actuators [176–180],
temperature-pH sensitive fluorescence bilayer actuators [181],
and humidity–temperature–light triple-responsive hydrogels
[174]. A biomimetic shape–color double-responsive 4D composite
based on SMPs and thermochromic pigments was printed by
Fig. 2. A ceramic 4D printing system. (a) DIW-morphing-heat treatment method. (b) Prin
right). (c) Printed ceramic precursors can be stretched to 200% strain. (d) Strength–scala
Ref. [146] with permission of the authors.
means of FDM [182]. Meanwhile, some problems for 4D AM tech-
niques still remain to be overcome; for example, the wavelength
limitation and biological toxicity of light, reactive nature concerns,
and frequency control of a magnetic field.

The first ceramic 4D printing system was previously developed
by our group. In this system, elastic ceramic precursors were
printed, deformed, and then transformed into rigid ceramic struc-
tures, as shown in Fig. 2 [146]. The shape-morphing process can be
achieved by releasing the elastic energy stored in the pre-strained
ceramic precursors, which can be stretched to over 200% strain.
ted micro-lattice of ceramic precursors and two types of corresponding EDCs (left to
bility synergy is achieved. Scale bars, 1 cm. NCs: nanocomposites. Reproduced from
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Moreover, strength-scalability synergy is achieved in 4D printed
elastomer-derived ceramics (EDCs). Hierarchical EDCs with printed
architectures from 200 lm to tens of centimeters, as well as a com-
pressive strength of 547 MPa at 1.6 g�cm�3, can be prepared by this
method [146].

Compared with other 4D AM polymeric and metallic materials,
the abovementioned ceramic 4D AM system has advantages for
high-temperature structural applications, since polymer-derived
ceramics exhibit remarkable thermal, chemical, and mechanical
stability [183]. The DIW and heat treatment process of the ceramic
precursors is more cost-effective than other high-melting-point
material 4D AM systems, because it does not require expensive
laser energy for the 3D printing process, or sintering of high-
melting-point material powders for post-processing. Moreover,
the ceramic 4D AM system can be extended to develop various
material and shape-morphing systems, due to its open-end feed-
stock system for ink materials. The disadvantages of the current
ceramic 4D AM system include its deformation control accuracy,
because the shape-morphing system relies on a homemade bi-
axial stretch device. With the involvement of a new deformation
mechanism and high-accuracy machining technologies, improve-
ment is expected in the shape-morphing programming accuracy.
Fig. 3. Development of representative bioimplants with 4D printing hybrid ceramic pre
(c) acetabular cup, and (d) bone plate. Printed soft ceramic precursor-made (e) extern
adhesives to fuse printed rigid and soft bioimplants together. (j) Printed Yin/Yang symbol fo
soft/rigid hybrid biological structures in the human body. (k) Comparison of printed ceram
The above-described ceramic 4D printing work could drive
innovation in the AM of bioimplants. With the printability of both
ceramics and ceramic precursors, the AM of rigid bioimplants with
ceramics, including crowns, locking plates, acetabular cups, and
bone plates (as shown in Figs. 3(a)–(d)), as well as soft ones with
ceramic precursors, including ears, tracheas, meniscuses, and
ligaments (as shown in Figs. 3(e)–(h)), can be anticipated.
Moreover, bioimplants with simultaneously soft and rigid parts
can be printed, since the ‘‘ceramic inks” used for printing ceramic
precursors and ceramics can fuse these parts together, resulting
in a homologous sandwich structure (as shown in Fig. 3(i)). The
inks for these results were prepared by mixing liquid PDMS
(SE1700 clear, Dow Corning Co., USA) with 10 wt% ZrO2

nanoparticles (Tong Li Tech Co. Ltd., China). The 3D printing of
the ceramic precursors was conducted with a DIW-based 3D prin-
ter. After ink deposition, the formed structures were post-cured at
150 �C for 30 min. Ceramics were generated by heating the ceramic
precursors to 1300 �C for 1 h under argon (Ar) flow.

Furthermore, these printed ceramics can achieve a compressive
strength of 34–547 MPa and a tensile strain of 200% [146]. Accord-
ing to a related report, the ultimate tensile strains for tendons/
ligaments and articular cartilage are 10%–15% and 60%–120%
cursor/ceramic materials. Printed rigid ceramic-made (a) crown, (b) locking plate,
al ear, (f) trachea, (g) meniscus, and (h) ligaments. (i) Printable ‘‘ceramic inks” as
r Tai Chi with white/black hybrid ceramic precursor/ceramic materials demonstrating
ic lattice structure without (left) or with (right) polishing. Scale bars, 1 cm.
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[184], respectively, while the compressive strengths of cortical
bone tissue and dental tissue are 88–164 and 295 MPa,
respectively [185]. All these parameters are within the mechanical
properties range of this material, which indicates its potential use
in bioimplants of various tissues, especially parts with both soft
and rigid segments.

Similar to the philosophical relationship between the two fun-
damental elements Yin and Yang in Tai Chi, soft and rigid biological
structures in the human body fuse and function together, resulting
in a comprehensive balance in the form of soft/rigid hybrid
biological components such as knee joints and vertebrae (Fig. 4).
A Yin/Yang symbol for Tai Chi with white/black hybrid ceramic
precursor/ceramic materials demonstrating soft/rigid hybrid
biological structures in the human body was printed (Fig. 3(j)).
Soft/rigid hybrid structural materials based on AM techniques will
be desirable for a diversity of fields, including bio-inspired tough or
otherwise superior materials [186–189], as well as actuators
[190–192].

Post-treatment of printed structures can be applied to obtain
good mechanical properties or biocompatibility. For example,
post-treatment with surface mechanical attrition treatment [193]
of 3D-printed components in Ti alloys can introduce a nanostruc-
tured layer to the metal surface [194] and drastically enhance fati-
gue resistance [195]. Furthermore, printed ceramic structures with
good polishing can be prepared with an average surface roughness
(Ra) on the polished samples of 0.06 lm (Fig. 3(k)).
5. Conclusions

The present soft/rigid hybrid 4D AM concept that is achieved by
the 4D printing of hybrid ceramic precursor/ceramic materials can
be extended to other binary and multiple-component systems.
Assisted by other technologies, such as multi-material printing
and local ceramization, more kinds of soft/rigid hybrid structures
with functional gradient interfaces can be additively manufac-
tured. More innovations in the development of bioimplants for
complex and dynamic biological environments in the human body
could be generated together with a combination of 2D/3D/4D AM
materials.

In future research, multi-material printing would include mate-
rial combinations among not only printing host materials but also
printing support materials and printing medium materials. With
the development of multi-modulus ink material systems, AM of
bio-inspired tough hybrid systems could be applied in structural
materials to overcome the strength-toughness tradeoff. Multidi-
mensional AM will drive the printing dimension to increase from
Fig. 4. Soft and rigid biological structures in the human body fuse and function
together, resulting in a comprehensive balance like the Yin and Yang symbols in Tai
Chi.
2D/3D/4D to even higher dimensions and the printing strategy to
change from dot-by-dot/line-by-line/sheet-by-sheet/volume-by-
volume AM to AM with even higher dimensional elements, result-
ing in a high level of structural freedom and printing efficiency.
Furthermore, the involvement of other manufacturing strategies
such as subtractive manufacturing, together with the pre-
programming, real-time treatment, or post-processing of printed
materials for various functional applications, will offer promising
research and industrial opportunities for future study on AMmate-
rials and technologies.
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