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ABSTRACT The charging of electric vehicles (EVs) impacts 
the distribution grid, and its cost depends on the price of 
electricity when charging. An aggregator that is responsible 
for a large fleet of EVs can use a market-based control 
algorithm to coordinate the charging of these vehicles, in 
order to minimize the costs. In such an optimization, the 
operational parameters of the distribution grid, to which the 
EVs are connected, are not considered. This can lead to 
violations of the technical constraints of the grid (e.g., under-
voltage, phase unbalances); for example, because many 
vehicles start charging simultaneously when the price is low. 
An optimization that simultaneously takes the economic and 
technical aspects into account is complex, because it has to 
combine time-driven control at the market level with event-
driven control at the operational level. Diff erent case studies 
investigate under which circumstances the market-based 
control, which coordinates EV charging, conflicts with the 
operational constraints of the distribution grid. Especially in 
weak grids, phase unbalance and voltage issues arise with 
a high share of EVs. A low-level voltage droop controller at 
the charging point of the EV can be used to avoid many grid 
constraint violations, by reducing the charge power if the local 
voltage is too low. While this action implies a deviation from 
the cost-optimal operating point, it is shown that this has a 
very limited impact on the business case of an aggregator, 
and is able to comply with the technical distribution grid 
constraints, even in weak distribution grids with many EVs.

KEYWORDS electric vehicle charging, distribution grid, 
combining technical and economic objectives, distributed 
control

1 Introduction
In a smart grid, the contribution of the demand side is key to 
balancing the grid. Demand response (DR) allows adapting 

the electricity demand to a varying electricity supply from, 
for example, renewables. Energy service companies emerge 
that aggregate the demand of small appliances into volumes 
that can play a role in an electricity market. This study fo-
cuses on aggregators that utilize the flexibility of electric 
vehicles (EVs), which are charged from the distribution grid. 
To control its EVs, an aggregator typically determines a col-
lective charging schedule for the fl eet, based on the electricity 
energy prices (economic objective). However, when charging, 
the EVs are physically connected to a low-voltage distribution 
grid, which is inherently constrained by its infrastructure. To 
assure correct operation of the distribution grid, the distribu-
tion system operator (DSO) can enforce technical constraints 
by using grid congestion management mechanisms.

To integrate the objectives of both aggregator (economic 
objectives) and DSO (technical objectives) in the coordination 
of EV charging, two operation levels are identifi ed [1, 2].

• The market operation level entails actions with the ob-
jective of following previously traded volumes on the 
wholesale electricity markets, where trading takes place 
on a relatively long-term scale (months, seasons) and 
amounts are expressed as energy quantities—usually 
MW·h—in time slots of typically 15 min or 1 h. A time-
driven approach is well suited here.

• The real-time operation level entails actions to comply 
with instantaneous consumer preferences and to respect 
local grid constraints (such as voltage constraints). Be-
cause changes and control are relatively more instanta-
neous and dynamic at this level, real-time operation (or 
technical operation) is usually expressed in quantities of 
electrical power, such as kW. Granularity is in the range 
of minutes to seconds. At this level, fast response is im-
portant and the amount of communication needs to be 
limited. An event-driven approach is well suited here.

A large part of research on the integration of EVs is aimed 
at optimally coordinating the charging at the market op-
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eration level, facilitating larger shares of renewable energy 
sources or providing system-wide ancillary services, or mini-
mizing electricity costs for charging [3–5]. At the same time, 
a considerable amount of the work in literature has been 
carried out toward the use of EVs to avoid grid overloads or 
reduce grid losses [6–10], objectives that are situated in the 
technical operation level.

The interaction between the economic market operation 
and the technical real-time operation, when coordinating the 
charging of EVs, has not often been considered [2], except 
when considered in the same context as vehicle-to-grid en-
ergy transfer [11, 12]. However, the economic and technical 
levels can come into confl ict, which typically occurs when the 
distribution grid reaches its constraints (i.e., voltage, current, 
unbalance, etc.), at which point the technical objectives will 
intervene in the economic market objective(s). As market op-
eration is overruled, consumption can deviate from what is 
intended by the aggregator, impacting the aggregator’s busi-
ness case.

In this paper, the infl uence of the technical, real-time opera-
tion level on the economic market operation level is analyzed 
by simulating both levels in a set of varying distribution grid 
scenarios. For the market operation level, an existing event-
driven market-based control (MBC) for coordinated EV charg-
ing is used. When there is a constraint from the real-time 
ope ration level, it will take precedence. In addition, a voltage 
droop controller can be used to mitigate local voltage limita-
tions. The quantitative effects of using droop control on the 
aggregator’s objective at the market level will be analyzed.

Section 2 discusses existing algorithms and models for 
both market and real-time operation levels. Section 3 details 
and motivates the choice of the algorithm for the market op-
eration level. Section 4 describes a set of relevant distribution 
grid scenarios, together with an explanation of the models 
and assumptions for the simulations. In Section 5, the chosen 
algorithms are simulated in these predefi ned scenarios, and 
the influence of real-time operation on market-level objec-
tives is thoroughly analyzed.

2 Background

2.1 Market-level operation
Research regarding the optimization and coordination of 
clusters of DR participants at the economic market level can 
roughly be divided according to the way in which the opti-
mization is performed, using centralized, distributed, and 
aggregate & dispatch algorithms (Figure 1).

For centralized algorithms, a central actor collects informa-
tion from the DR devices. This information can consist of in-
dividual constraints and deadlines or comfort settings. Using 
the collected knowledge, and possibly including additional 
information such as predictions, the central coordinator per-
forms a single optimization that returns an optimal schedule 
satisfying all the constraints at once. This process inherently 
makes centralized algorithms less scalable, as the optimiza-
tion process becomes very computation-intensive with an 
increasing number of participating devices. Furthermore, the 
communication to the central actor poses a potential bottle-
neck. Several solutions are proposed that help to overcome 
the tractability issue [11, 13].

Distributed algorithms, on the other hand, perform a sig-
nifi cant part of the optimization process at the participating 
devices themselves. This way, the computational complexity 
of finding a suitable solution is spread out over the cluster, 
typically using an iterative process in which information is 
communicated between the participants. This distributed 
aspect does not exclude the existence of an entity responsible 
for initiating or coordinating the convergence of the itera-
tions. A share of distributed algorithms in literature is based 
around distributed optimization techniques, in which a large 
optimization problem is divided into smaller parts that can 
be iteratively and independently solved [14–17]. In particu-
lar, the use of gradient ascent methods and their derivatives, 
such as dual decomposition, are common.

Aggregate & dispatch algorithms combine both approach-
es to some extent. They decouple the optimization of the 
objective from the dispatch of its outcome. An aggregate & 
dispatch mechanism allows information (such as constraints) 
from and to the central entity to be aggregated, reducing the 
complexity of the optimization and improving scalability, 
but carrying certain compromises or constraints regarding 
the optimality of the results. The work of Refs. [18–20] follows 
this idea.

While distributed and centralized algorithms can determine 
an optimal DR schedule given the appliances’ constraints or 
market data, they carry some disadvantages regarding compu-
tation times, complexity, or communication. Aggregate & dis-
patch mechanisms are a compromise allowing for a scalable 
and low-cost implementation with a limited loss of optimality 
[3]. In this study, MBC is chosen as a particular instantiation of 
an aggregate & dispatch algorithm (see Section 3).

2.2 Real-time level and grid congestion
As the electricity grid cannot get physically congested, the 
term “grid congestion” refers to a situation in which the de-
mand for active power exceeds the nominal power transfer 
capabilities of the grid [21]. Grid congestion can be mapped 
to the violation of one or more constraints at its connection 
points. In this paper, these violations will mainly be in the 
form of power quality problems in distribution grids, and 
can be attributed to the resistive and unbalanced nature of 
distribution grids.

2.2.1 Grid congestion metrics
The EN 50160 standard on Voltage characteristics of electricity 
supplied by public distribution systems describes, among others, 

Figure 1. An illustration of the three classes of algorithms and coordina-
tion for demand response (DR) at the market level.
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the following important specifi cations.
• Over- and under-voltage: The 10-minute mean RMS 

voltage deviation should not exceed ±10%, measured on 
a weekly basis. For under-voltages, a wider range is al-
lowed in the measurement procedure: –15% to –10% dur-
ing the maximum 5% of the week.

• Voltage dip: It allows 1000 voltage dips per year, during 
which the voltage drops at most to 85% of its nominal 
value, for a duration of less than 1 min. Interruptions, de-
fi ned as lasting less than 180 s, should occur fewer than 
500 times per year.

• Voltage unbalance factor (VUF): The 10-minute mean 
RMS value of the VUF should be below 2% for 95% of the 
time, measured on a weekly basis.

2.2.2 Congestion mitigation
A DSO, faced with grid congestion problems, can opt for a 
number of mitigating strategies.

• Reactive power and voltage control to increase the (local) 
transfer capacity: This strategy is already used in wind 
generators connected to the medium-voltage network. 
In distribution grids, reactive power and voltage control 
can be achieved through the use of tap changers and ca-
pacitor banks, and their switching is planned using load 
forecasts. In practice, automated and remotely control-
lable on-load tap changers are required, but their use in 
distribution grids is still reserved to a few test cases, due 
to costs.

• Coordinating the power fl ow [21] via shifting or curtail-
ing demand: This strategy is possible through the imple-
mentation of DR, or through the mandated implementa-
tion of mechanisms such as voltage droop control.

• Increasing the transfer capacity of the local grid by re-
placing or upgrading equipment (adding or replacing 
cables, installing a bigger transformer, etc.): While this 
option is attractive because it limits the involvement of 
the DSO (retaining a passive role with no forecasts, etc.), 
the cost of this option can be substantial and thus it is 
only considered when other solutions are exhausted or 
deemed infeasible.

In this paper, congestion management is considered ac-
cording to the second option: the coordination of active 
power demand at congested grid locations via voltage droop 
control.

2.2.3 Voltage droop control
Distribution lines behave resistively rather than inductively. 
This characteristic causes voltage deviations along the line 
when large amounts of active power are drawn from the grid. 
The voltage deviations can be influenced, as charging rates 
of EVs can be varied and shifted arbitrarily in time. Thus, in 
addition to the coordination at the market level, a fast-acting 
grid-supportive behavior can be implemented inside a char-
ger [22, 23]; this implementation can reduce the charging rate 
in the case of under-voltage situations (or increase it for over-
voltage situations). Such a droop control scheme is robust 
and easy to implement because it only requires the local volt-
age measurement and a way to adjust local active or reactive 
power settings. No communication is needed. Figure 2 shows 

Figure 2. An example of voltage droop control characteristic for electric 
vehicle (EV) chargers.

an example of a voltage droop curve for an EV charger. When 
the voltage at its connection point drops below 0.9 per unit 
(pu), power is linearly reduced until 0.85 pu, at which point 
charging is completely halted.

On the downside, the activation of the droop at the techni-
cal operational level will affect and influence the economic 
market-level coordination [24]. For example, at some point the 
aggregator will send its optimal power set points or an equi-
librium priority to the vehicle agents, but due to local grid 
problems, the charger may be forced to reduce power; this 
situation can result in a deviation from the optimal market-
level energy plan, and a potential penalty for the aggregator.

3 Market-level operation: MBC for EVs
The concept of MBC is rooted in microeconomics, wherein 
economic activity is modeled as an interaction of individual 
parties pursuing their private interests [25]. The market 
mechanisms that apply provide a way to incentivize the par-
ties, referred to as economic agents, to behave in a certain 
way. In Ref. [26], appliances in a DR cluster are represented 
by software agents in a multi-agent system (MAS). They have 
control over one or more local processes (e.g., heating water 
or charging an EV’s battery), but they compete for resources 
(electric power) on an equilibrium market with other agents.

3.1 Architecture
The MBC system has been used in a number of fi eld tests and 
is commercially known as PowerMatcher. The clearing of the 
market in Refs. [26, 27] is operated on a periodic basis (e.g., a 
time-slot length of 15 min) or using events, and is implement-
ed in a hierarchical, tree-like manner [25].

At the top of the hierarchy is an auctioneer agent that is 
directly connected to a number of concentrator agents. The 
auctioneer agent is a special type of concentrator agent and is 
responsible for the price-setting process, just as in Walrasian 
auctions. The concentrator agents lower in the hierarchy ag-
gregate the demand functions of their child agents. Because 
a uniform interface is used between the levels, an unlimited 
number of such aggregation levels can be used. Eventually, at 
the bottom of the hierarchy, the device agents themselves are 
found.

The device agents assemble demand functions represent-
ing their willingness to pay and consume electricity, taking 
into account the specifi c constraints of the controlled device. 
Demand functions are sent upwards and an auctioneer agent 
performs a matching process with producing agents. An 
equilibrium price is communicated back to the agents, which 
start consuming or producing at the equilibrium level. This 
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process is illustrated in Figure 3.
If equilibrium prices are regarded as a pure control signal, 

so that there is no direct link to the cost of energy, the MAS 
MBC mechanism can be viewed as a dispatching method for 
the aggregator’s business case. In such a scenario, the demand 
function data is regarded as input for a scheduling algorithm, 
and the equilibrium price (or better, the equilibrium priority) 
is regarded as a signal to steer the cluster toward its outcome.

3.1.1 Demand functions for EV device agents
Representative demand functions can be built using vari-
ous means, but in the case of EVs, a straightforward way is 
by combining each agent i’s requested energy iEreq, time till 
departure i∆tdep, and maximum charging power iPmax to cre-
ate a sloped curve iPdem (Eq. (1)), as is shown below each EV 
in Figure 3(a) and (b). In case there is not enough time left to 
receive the requested energy (i.e., tcritical occurs before the cur-
rent time), an infl exible demand function can be used, so that 
charging happens at maximum power regardless of the con-
trol signal (Eq. (2)).

                            ( )dem req dep max, ,i i i iP f E t P= ∆   (1)

                             critical req max dep
i i i it t E P t= = ∆   (2)

A detailed description of building demand functions for 
EVs in this context can be found in Refs. [2, 3].

3.1.2 Concentrator agents and aggregation
At the level of the concentrator agents, the individual de-
mand functions of n agents are aggregated into a single curve 
P g(Eq. (3)), shown in Figure 3(c). At the auctioneer agent, 
this aggregated curve is used to fi nd the equilibrium priority 
pequi that corresponds to a desired power setting Pctrl for the 
DR cluster (Eq. (4)).
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The value for Pctrl is determined by the business agent.

3.2 MAS MBC advantages and drawbacks
Using a MAS MBC system for DR, as exemplifi ed by the Pow-
erMatcher, offers several benefi ts.

• Scalability: In a centralized system, the central entity has 
to deal with all incoming and outgoing messages, O(n), 
quickly creating a communication bottleneck. Because of 
the aggregation on multiple levels in the PowerMatcher, 
the quantity of messages that must be dealt with per 
agent can be reduced to O(log n).

• Low complexity: The construction of demand function 
data and the matching process itself is straightforward, 
and is not based on any model. Determining a demand 
function for a device can be done during its development.

• Openness: Any kind of device can be integrated in the 
cluster, since operation only depends on the exchange of 
demand functions and price. Devices without fl exibility 
are represented by an inelastic demand function.

• Privacy: Since demand functions are aggregated, there 
is no central entity that collects all information. Further-
more, the physical processes of devices, bidding strategy, 
and motives of users are all abstracted through their de-
mand functions.

However, a more significant shortcoming of the original 
PowerMatcher approach is the lack of look-ahead functionality.

3.3 Addition of scheduling functionality and control objectives
For loads that can store electric energy, such as EVs, an en-
ergy constraints graph can be used to capture the available 
flexibility over a certain time horizon. This graph is intro-
duced in the work of Ref. [3]. For each EV i, two vectors iEmax 
and iEmin are added to the information iPdem sent from device 
agents to the auctioneer agent (Eq. (5)).
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Figure 3. (a) An overview of the control structure in MAS MBC; (b) demand functions iPdem, as sent upwards by device agents from charging EVs; (c) after 
aggregation of the individual demand functions, equilibrium priority pequi is determined and sent back to the agents.
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The vector iEmax is the energy path of an EV agent i, if it must start charging im-
mediately at maximum power and then (at tidle) stay idle until its departure time 
tdep. On the other hand, iEmin represents a case in which charging is postponed for 
as long as possible (up to tcritical). These situations are expressed in Eq. (5) and illus-
trated in Figure 4(a). All of the area between iEmax and iEmin represents the fl exibility 
of the charging process.

      ( )

( )

horizon

opt
0

arg min  

with

t

t

t t t

t
C E

C E p E
=

=

=

∑
E

E    
(7) 

  
Because this is a linear objective, 
an on-off control behavior of the 
EVs can be expected.

• Portfolio balancing, in which the 
goal of the aggregator is to use the 
EV flexibility to limit its portfo-
lio’s wind generation exposure to 
the imbalance markets. This goal 
means finding an optimal energy 
trajectory for the EVs, EEV, over a 
horizon, such that the difference 
between the short-term prediction 
Ewind of wind energy and its day-
ahead nomination Enomin is mini-
mized (Eq. (8)):
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In this specific case, the day-ahead 
nominations are required to be supplied 
on an hourly basis, while the short-term 
wind power predictions are known on a 
quarterly basis (15 min  ahead), and with 
a horizon of 24 h, as shown in Figure 5. 
The control variables of the EVs can be 
on an arbitrary time basis.

Thus, as more accurate wind power 
predictions become available after the 
nomination, the optimization will try 
to use the EVs to limit the difference, 
and, due to the quadratic term, will fa-
vor spreading out the remaining imbal-
ance over the period of time until the 
considered time horizon.

4.2 Models for EV, wind power, and loads
The model of the (plug-in) EVs in the 
simulations consists of two main parts: 
a battery model and a usage or driving 
profi le.

Figure 4. (a) An energy constraints graph for a single vehicle i ; (b) an aggregated energy constraints graph 
and some scheduled path E through it.

To represent the battery constraints of an entire EV fl eet of n vehicles, the individ-
ual constraints are aggregated into collective battery constraints aggreg

maxE  and aggreg
minE , 

at the intermediate agents and at the auctioneer agent. The auctioneer agent can 
now use the collective energy constraints to determine an optimal path Eopt over 
the horizon thorizon, according to some objective function C (Eq. (6)): 
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where Et is the collective energy of the cluster at time t; and Pt is the power con-
sumed by the cluster during time t to ∆t. Any objective C(E) can be used to deter-
mine a path for the EV cluster; Section 4.1 discusses two such objectives.

4 Simulation objectives and models
A situation was investigated in which an aggregator coordinates a cluster of EVs 
based on market-level objectives, but a large part or all of the vehicles are situated 
inside a weak and constrained distribution grid. Different questions arise, such as

• How effective is the use of a voltage droop controller in eliminating or reduc-
ing grid congestion problems? 

• To what degree do such technical objectives impact the aggregator’s business 
case? 

To answer these questions, a simulation framework was developed. A Java-based 
part of the framework allowed the interaction between the agents to be modeled, 
while the market-level optimization was performed in Matlab using CPLEX. To 
simulate the effects on the voltages in a distribution grid, a Matlab-based back-
ward-forward sweep load fl ow solver was integrated into the framework. In addi-
tion to a framework, several models and datasets were required in order to prop-
erly represent the actors and their behavior.

4.1 Aggregator market-level objectives
Two market-level objectives for the auctioneer agent were considered.

• Time-of-Use (ToU), in which the aggregator’s goal is to minimize the cost of 
charging a cluster of vehicles, based on a time-varying tariff pt, and using a 
linear program (LP) optimization (Eq. (7)):

Figure 5. An illustration of the balancing obj-
ective.
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• All EV instances are equipped with the same usable 
battery content of 20 kW· h. This content corresponds, 
for example, to the 10% and 90% state-of-charge of a 
25 kW· h battery. It is assumed that vehicles want their 
usable battery content fully charged by the time of de-
parture.

• Charging takes place at a variable power level between 0 
and 3.3 kW from a single-phase connection of the distri-
bution grid.

• Data about the state of the vehicle during the day (i.e., 
idle at home, driving, unavailable, etc.) and the energy 
consumption while driving is taken from Ref. [28].

• Data for renewable energy production from wind tur-
bines is based on Ref. [29] and adapted to a 2.5 MWp tur-
bine.

To be able to simulate their effects on voltage quality in a 
distribution grid, realistic household consumption profiles 
are required. Profi les from the “Linear” smart grid project [30] 
were used, which are based on measurements at 100 house-
holds for one year, with a resolution of 15 min.

4.3 Weak grid topology and agent architecture
When investigating the effects of coordinated charging on 
the state of the distribution grid and vice versa, it makes 
sense to focus on weak grid confi gurations, for which prob-
lems are more likely to occur.

Figure 6 shows the base topology used in the simulations. 
A 400 kVA transformer supplies several parallel feeders. Each 
feeder then supplies a number of household loads, bringing 
the equivalent transformer load up to 191 households. One of 
the feeders, Feeder 0, is linked to a line-segment supplying 
38 single-phase household connections. These connections 

are alternatingly attached to phases 1 to 3 and spaced apart 
by distance D2. The distance from the transformer to the fi rst 
household connection is D1. From each connection point, a 
cable with length D3 runs from the line to the household’s 
supply terminals. In the simulated model, the other feeders 
and loads (153 households) connected to the transformer are 
lumped together into one single entity (Feeder 1), as their im-
pact is not studied in detail.

Cable parameters are taken from the design specifi cations 
of underground distribution cables, NBN C33-322. Cable 
type EIAJB 1 kV (3 mm × 70 mm + 1 mm × 50 mm) is used 
for the main feeder and line (D1, D2), while cable type EXVB 
1 kV (4 mm × 16 mm) is used to connect the household’s sup-
ply terminals to the main cable (D3).

Table 1 shows the variations on this topology that are eval-
uated in the next sections. Cases NS and NL have a relatively 
short cable between the transformer and the fi rst household 
terminal (100 m). Cases NL and FL represent scenarios with 
rather long total cable lengths (914 m and 805 m), due to lon-
ger distances between the household connection points.

The organization of the software agents representing the 
charging vehicles, shown in Figure 6(b), is independent of the 
grid topology. However, it is assumed that all agents for ve-
hicles that are physically connected to the same transformer 
are grouped under a single concentrator agent. At the same 
time, in order for the market operation at the aggregator to 
function properly, more fl exibility should be available in the 
cluster than what is provided by the 38 vehicles in the base 
topology. To that end, the cluster is extended so that, depend-
ing on the scenario, a total of 200 or 1000 vehicle agents take 
part in the coordinated charging. These additional agents are 
not part of the load fl ow calculations.

Figure 6. (a) A single instance of the physical grid topology; (b) agent topology in relation to the physical grid.

Table 1. Variations of the physical base topology, representing various weak grids.

Case name Abbreviation D1 (m) D2 (m) D3 (m) Total length (m)

Near transformer short cable NS 100 15 20 655

Near transformer long cable NL 100 22 20 914

Far transformer short cable FS 250 7 20 509

Far transformer long cable FL 250 15 20 805
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To test additional shares of EVs inside weak distribution 
grids, additional variations of the agent structure are created 
by having multiples of the base topology. These multiples 
are shown in Table 2. The suffi x after the case number deter-
mines the share of agents used in the topology.

Table 2. Variations of the agent topology, representing different quantities 
of vehicles situated in weak grids.

Case name EVs inside weak grid

x-38 38

x-114 38 × 3

x-380 38 × 10

x-760 38 × 20

5 Aggregator cases: Simulations and results
This section examines the effect of coordinated charging us-
ing market-level objectives on local grid congestion, in the 
distribution grid scenarios from the previous section. In ad-
dition to the MAS MBC event-based implementation that was 
outlined before, an uncoordinated (dumb) charging scenario 
is included, during which vehicles plug in and start charging 
upon arrival at their maximum rated power Pmax.

The first set of scenarios deals with an aggregator that 
tries to minimize the cost of charging a fleet of EVs when 
a particular ToU tariff is given (Section 5.1). The second set 
of scenarios considers an aggregator that has to balance its 
portfolio when deviations from the day-ahead market occur 
because the portfolio contains wind generation (Section 5.2).

In both sets, the technical constraints are discussed as real-
time level results, and the economic aspects are discussed as 
market-level results.

5.1 Aggregator with ToU cost objective
The objective of the aggregator during a ToU scenario is to 
respond to a 24-hour horizon ToU tariff in such a way as to 
minimize the charging cost of the vehicle fl eet. The 24-hour 
tariff in this scenario is based on the wholesale energy price 
of the hourly Belgian BELPEX day-ahead market.

Because of the seasonal effects of household consumption 
and tariffs, distribution grid problems are correlated to the 
time of year. To limit the influence of the choice of day on 
the results, and in order to get a global picture, randomized 
sets of scenario parameters were generated and tested. The 
randomized parameters include the day for which the tariff is 

selected, the vehicle driving profi les, and the household load 
profiles. Results for voltage problems according to the EN 
50160 standard are shown for 100 randomized parameter sets 
per case.

The different scenarios sample the problem space accord-
ing to several dimensions:

• Physical grid topology, representing different weakness-
es of the grids (NS, NL, FS, FL);

• EV penetration, representing different shares of EVs (x-38, 
x-114, etc.); and

• Coordination techniques (household-only (HHOnly) = 
reference case without EV, Dumb = uncoordinated 
charging, Event = MBC only considering cost objectives, 
Event + droop = considering both economic and techni-
cal constraints).

5.1.1 Real-time level results
Looking at the HHOnly results in Figure 7, it is clear that 
the chosen topologies work well as long as no EVs are intro-
duced. When EVs are charged in an uncoordinated way, the 
voltage problems are outside the EN 50160 specifi cations by 
a wide margin, confirming that the grid topologies qualify 
as “weak grid.” Voltages regularly drop below 0.9 pu for 
more than 5% of the time, as shown in Figure 7(a), and events 
during which the voltage drops below 0.85 pu, as shown in 
Figure 7(b), are quite common. In addition, too many unbal-
ances occur between the phases, as shown in Figure 7(c). 
These problems would become even worse in situations with 
unbalanced phase connections, higher charge currents, and 
increasing household loads.

Still, the severity of distribution grid problems strongly de-
pends on the grid topology, shown as cases NS, NL, FS, and 
FL. Case FL has the longest cable sections to the loads, lead-
ing to the highest voltage magnitude and the most VUF prob-
lems, while cases NS and FS experience the fewest problems.

However, the observed trend is the same: Uncoordinated 
charging is responsible for a peak in the evening that overlaps 
with the peak of household loads. Basing the charging coordi-
nation only on ToU cost minimization leads to fewer voltage 
problems; however, too many voltage problems still remain. 
The reason for these continuing problems is that, although the 
coincidence of household loads and charging has disappeared, 
all available vehicles are now asked to commence charging at 
one or two points during the day. This synchronicity creates 
a new peak that is suffi cient to create voltage problems. When 
voltage droop controllers are used, the severity of the voltage 

Figure 7. EN 50160 voltage magnitude and unbalance problems over the course of seven days, for 100 randomized days. (a) Voltage below 0.9 pu; 
(b) voltage below 0.85 pu; (c) VUF greater than 2%.
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deviations is reduced. However, because the voltage droop 
control only activates below 0.9 pu, the measured values for 
0.9 pu deviations are still frequently outside the 5% specifi ca-
tions of the EN 50160 standard. Issues related to voltage below 
0.85 pu are solved entirely. By tuning the set point of the con-
troller so that it intervenes sooner (e.g., at 0.95 pu), the weak 
grids can be brought into full EN 50160 compliance.

5.1.2 Market-level results
Table 3 shows the cost of charging for a cluster of 200 EVs. 
Due to technical constraints, the eight cases were simulated 
in separate batches. Because different random parameter sets 
were generated for each batch, the total cost values between 
the cases cannot simply be compared.

problems, because of the tendency to synchronously switch 
large amounts of controlled loads when market prices are 
low, thereby creating large power peaks.

The effect of ToU-based optimizationon on the state of the 
distribution grid can be even worse than when no coordinat-
ed charging is used (dumb charging). In fact, the situations 
contained two particular mitigating factors: The household 
connection points’ phases were alternatingly distributed 
along the line, and the price profi les used by the aggregator 
kept the power peak of the vehicles out of the household’s 
evening peak. If these two factors were not present, the EN 
50160 results would be worse.

On the positive side, the use of a simple voltage droop con-
troller practically solves all the encountered power quality 
issues and is able to bring relatively weak distribution grids 
back into EN 50160 compliance, with some tuning. However, 
the use of a droop controller has a negative impact on the 
business case of the aggregator, as the cost of charging goes 
up and a small number of vehicles do not get their required 
charge at departure time. However, quantitatively speaking, 
the differences only start to become signifi cant (> 2%) when 
a large share (> 50%) of an aggregator’s fl eet is situated inside 
weak grids.

5.2 Aggregator with balancing objective
In the previous section, the objective for coordinated charg-
ing at the market level was the cost of charging for the whole 
fl eet, taking into account a ToU tariff for the upcoming 24 h 
and the constraints of the vehicles.

Alternatively, an aggregator could use the flexibility of a 
fl eet to reduce the uncertainty in its portfolio after day-ahead 
commitments are made, in order to limit its exposure to the 
balancing market. In Europe, balancing services are traded 
on separate markets than wholesale energy [31]. While the 
prices for these services are correlated to those of the energy 
markets, they tend to be higher. The responsibility and the 
costs of balancing are usually attributed to an access-respon-
sible party (ARP), which will prefer to reschedule its own 
generation portfolio rather than being exposed to the balanc-
ing market.

For wind farms, for example, wind power predictions are 
used to build estimated production profi les and the required 
day-ahead nominations. Since the predictions are not perfect, 
real output will deviate from the day-ahead prediction dur-
ing the day itself, and without intervention this difference 
leads to a positive or negative imbalance, with associated 
costs. By using the energy fl exibility of the charging vehicles, 
an aggregator can reduce this wind imbalance.

It is assumed that the wind farm is not directly connected 
to the distribution grid to which the EVs are connected; that 
is, only the active power aspects of the wind generation re-
quire balancing by the EVs, and the voltage profi le is not af-
fected by the wind power plant.

The main diffi culty in compensating for wind power pre-
diction errors with EVs, however, is that large imbalances 
require the shifting of a considerable share of the fl eet’s avail-
able flexibility. Because the driving behavior of a fleet has 
a 24-hour periodicity and remains relatively constant over 

Table 3. Cost results for the ToU scenarios, and the difference due to the 
use of voltage droop control in the EV chargers; the cost difference due to 
the undelivered energy is also shown.

Case 
name Dumb Event MBC

Event MBC + droop Cost difference due 
to voltage droopw/o Edefi cit w Edefi cit 

NS-38 €805.46 €595.00 €596.71 €598.03 +0.28%

NL-38 €795.83 €589.72 €594.25 €600.02 +0.77%

FS-38 €814.26 €604.59 €606.71 €608.20 +0.35%

FL-38 €806.75 €603.77 €609.84 €616.50 +1.00%

NS-114 €792.28 €580.16 €585.32 €589.99 +0.89%

NL-114 €823.00 €611.03 €626.54 €645.26 +2.50%

FS-114 €816.26 €614.34 €620.61 €625.55 +1.02%

FL-114 €819.28 €610.95 €630.91 €653.93 +3.27%

During droop control intervention, some vehicles can end 
up with an incompletely charged battery at the time of de-
parture tdep. Since this result influences the cost numbers, a 
cost must be attached to the resulting energy deficit. Edeficit 
equals the difference between the requested battery level and 
the level at which the vehicle departed (Eq. (9)):

                   deficit req, batt, dep
i i i

t t
t i

E E E t t 
= − = 

 
∑ ∑   (9)

A cost of €50 (MW· h)–1 is assigned to this energy defi cit. Of 
course, the amount of defi cit is directly related to the number 
of vehicles that can suffer from distribution grid problems. 
Vehicles outside of weak distribution grids will obviously 
never end up with lost energy.

While the droop controller has a positive effect on the oc-
currence of voltage problems, it also increases the cost of 
charging the fl eet, as more energy is consumed during unfa-
vorable periods. Without taking into account the energy defi -
cit at departure time, there is already a small cost increase of 
0.6% for the x-38 cases, and of almost 2% for the x-114 cases, 
in which close to 60% of the EVs are situated in weak distri-
bution grids. Taking into account Edefi cit, this cost increase is 
doubled, and the cumulative battery defi cit volume takes up 
to 1.15% of the total delivered energy.

5.1.3 Conclusions on the ToU scenario
From the results, it is apparent that ToU-based controlled EV 
charging has the potential to create signifi cant power quality 
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time, the amount of charging energy per day shares the same 
characteristics. Additionally, wind power prediction errors 
do not cancel out over a day, but persist for longer time pe-
riods. Therefore, using all the EV fl exibility early in the day 
means that later imbalances can no longer be compensated 
for. A possible solution consists of incorporating stochastic 
optimization and intra-day prediction updates to refi ne the 
scheduling process.

A similar reasoning can be considered in order to balance 
the variability of photovoltaic or other renewable distributed 
energy resources.

Another possible source of imbalance lies in the time reso-
lution of the nominations; nominations for the day-ahead 
market in Belgium require energy values on an hourly basis. 
However, imbalance volumes are settled on a 15-minute ba-
sis. Even if an ARP has predictions on its portfolio with high 
resolution and accuracy, an imbalance will still occur, as 
nominated values are averaged per hour. The description of 
this optimization problem was provided earlier in Section 4.1 
(Eq. (8)). The nominated energy Enomin consists of a nomina-
tion for the EV fl eet and the day-ahead wind power predic-
tion with a resolution of 1 h, for 24 h (Eq. (10)).

                         nomin, EV,nomin, wind,nomin,t t tE E E= +    (10)

Such nominations have to be determined by the ARP or 
aggregator; for example, by using historical records or esti-
mates. Because the driving behavior of an entire fl eet (if large 
enough) is stable and predictable, it can be justifi able to use 
the power profi le of a previous day or week as the nomina-
tion for the fl eet.

When historic energy constraints graphs are used, the 
amount of fl exibility at any given time can be maximized by 
following an energy path through the graph according to a 
fi xed ratio of, for example, 1/2 or 1/3 between aggreg

maxE  and aggreg
minE . 

Figure 8 illustrates such a planned path. The power values 
that correspond to the path can then be translated to hourly 
energy values in order to compose EEV,nomin,t.

An extra decay term, γ, can be added to reduce the influ-
ence of long-term information in the objective function 
(Eq. (11)).

      
horizon

horizon

2

opt EV, wind, nomin, 4
0

1arg min
4

t
t t

t t t
t

Eγ E E
=

 = + + 
 

∑
E

E  (11)

A γ < 1 will assign a higher optimization cost to the quar-
ter-hour imbalance values that are closest in time. In the lim-
it, a γ → 0 will mean that the system will behave myopically, 
as no information about the future is taken into account. The 

system behaves according to the MAS MBC algorithm with-
out planning, and minimizes the instantaneous imbalance.

In order to evaluate the benefit of using this objective, a 
new “dumb” scenario is added during which the aggregator 
only attempts to keep the energy consumption as close as 
possible to the nomination (referred to as tracking the nomi-
nation with the fl eet). All scenarios use the event-based MAS 
MBC system to coordinate the fl eet, but in the tracking sce-
nario, no optimization to minimize the difference with the 
nomination using short-term wind power data takes place.

5.2.1 Simulation scenarios and performance metrics
Due to the relatively long simulation times, the need to pre-
pare nomination data for the wind and EVs, and an exponen-
tially increasing set of parameters, a fixed simulation case 
was chosen for the simulations. A case was chosen in which 
the wind power and vehicle profi les for one week start at a 
particular day in the dataset, in order to include a week dur-
ing which the fi rst three days had relatively little wind power 
imbalance and the last three days had a relatively large im-
balance. To end up with a signifi cant amount of energy fl ex-
ibility, the EV cluster consists of 1000 vehicles, rather than 200 
as in the previous case. Similar to the ToU scenarios above, 
situations were selected in which different shares of the ve-
hicles were inside weak distribution grids (Table 2).

The main performance indicator consists of the total en-
ergy volume of the remaining quarter-hour imbalance and 
the resulting cost, based on market data on the positive and 
negative imbalance price from the Belgian market in 2012.

Unless the ratio of energy flexibility to wind power is 
very high, it is diffi cult to end up without imbalance under 
high wind power conditions, when predictions are diffi cult. 
However, the quadratic nature of the objective will favor the 
spreading out of the imbalance as much as possible, so that 
a relatively fl at imbalance profi le should be obtained in the 
case of γ = 1. Therefore, looking solely at the remaining im-
balance volume as a measure of performance does not cap-
ture the intent of the algorithm’s objective. In fact, a myopic 
algorithm, instantly matching imbalance figures with EV 
fl exibility, will perform better in reducing the remaining im-
balance volume.

Because the ability to smooth or infl uence the occurrence 
of imbalance can be very beneficial for an ARP, it makes 
sense to look at the variability of the imbalance profi les. The 
spectral content of the imbalance profi le is obtained by tak-
ing the sum of Fourier transformations over a sliding win-
dow of 32 profi le samples. Next, the mean value is subtracted 
in order to get rid of the DC component, and the area under 
the spectral plot is retained, expressed in kW Hz. The higher 
this value, the more variability exists on the power profi le of 
the remaining imbalance.

To evaluate the effects at the real-time level, the EN 50160 
specifi cations and performance indicators from the ToU case 
were used here as well.

5.2.2 Market-level results
In the fi rst simulation, only the behavior at the market level 
was investigated, disregarding the distribution grid com-
pletely. In Figure 9(a), the 15-minute imbalance volumes are 

Figure 8. An example of EV nominated energy based on historic aggrega-
ted energy constraints data.



462

Smart Grid—ArticleResearch

Engineering  Volume 1 · Issue 4 · December 2015  www.engineering.org.cn

plotted for different values of γ, for a simulation covering sev-
en days. It is apparent that the event-based balancing success-
fully reduces the amount of imbalance with the nomination. 
Smaller γ values lead to the aforementioned myopic behavior 
and force the imbalance profi le close to zero, until the aggre-
gator runs out of short-term fl exibility.

In Figure 9(b), the Fourier-transformed imbalance volume 
is plotted. Thus, this fi gure includes frequency components of 
the imbalance volume. In the case of the balancing optimiza-
tion scenarios, it is apparent that imbalance profi les contain 
fewer high-frequency components than when no balancing 
optimization is done. This observation confirms the result 
that can be seen in Figure 9(a), namely that the case with the 
balancing optimization for γ = 1 is better able to spread out 
the remaining imbalance than for smaller values of γ.

In the above scenario, the wind power nominations and 
measurements were scaled with a factor W = 0.5, in order to 
obtain a peak wind power output of 1.25 MW. Varying ratios 
of wind power and vehicles were also examined, and the re-
sults are shown in Table 4.

The improvement in the remaining imbalance volume over 
the tracking case is between 20%–30%. Smaller γ values lead 
to a slightly smaller imbalance remaining over seven days. 
However, since the objective of the optimization is related to 
the quadratic imbalance over the optimization horizon, the 
conclusion that a myopic algorithm performs better based 
on the total remaining imbalance would be misleading. This 
conclusion has to be considered along with the “spreading” 
of the remaining imbalance, which is expressed by the spec-
tral content in the “Volume difference” column of Table 4.

For larger wind power scaling factors, and thus larger 
wind power prediction errors, the improvement in the re-

maining imbalance decreases to 16%–21%. A similar effect is 
observed for the spectral content values. It can be deduced 
that, based on this balancing method, 1–1.25 MW of wind 

Table 4. Balancing case simulation results for seven consecutive days and a cluster of 1000 EVs, for different values of the wind power scaling parameter 
W and discount factor γ.

Parameter Imbalance volume 
(MW·h)

Imbalance 
cost

Volume difference 
(%)

Spectrum
(kW Hz)

Spectral difference 
(%)

W = 0.05 (0.125 MWp) Tracking nomination 2.543 €171.2 0 2.7 0

Balancing γ = 1 2.087 €128.7 –17.9 2.5 –7.4

Balancing γ = 0.1 1.988 €120.9 –21.8 3.1 +14.8

Balancing γ = 0.01 1.967 €117.1 22.7 3.5 +29.6

W = 0.2 (0.5 MWp) Tracking nomination 8.633 €580.3 0 9.3 0

Balancing γ = 1 6.832 €434.3 –20.7 3.3 –64.5

Balancing γ = 0.1 6.322 €397.8 –26.8 6.2 –33.3

Balancing γ = 0.01 6.131 €379.7 –28.9 8.0 –14.0

W = 0.5 (1.25 MWp) Tracking nomination 21.056 €1413 0 23.2 0

Balancing γ = 1 16.680 €1091 –20.8 7.6 –67.2

Balancing γ = 0.1 15.775 €1014 –25.1 13.2 –43.1

Balancing γ = 0.01 15.313 €989.4 –27.3 16.9 –27.2

W = 0.7 (1.75 MWp) Tracking nomination 29.364 €1970 0 32.5 0

Balancing γ = 1 23.888 €1570 –18.6 12.2 –62.5

Balancing γ = 0.1 22.860 €1471 –22.1 18.9 –41.2

Balancing γ = 0.01 22.216 €1443 –24.3 23.8 –23.8

W = 1.0 (2.5 MWp) Tracking nomination 41.830 €2806 0 46.4 0

Balancing γ = 1 35.112 €2324 –16.1 20.8 –55.2

Balancing γ = 0.1 33.762 €2186 –19.3 29.2 –37.1

Balancing γ = 0.01 33.141 €2150 –20.8 34.9 –24.8

Figure 9. (a) An imbalance scenario, with the remaining imbalance profi le for 
different values of γ over the course of seven days and for a peak wind power 
output of 1.25 MW (W = 0.5), together with the tracking scenario; (b) a spectral 
plot of the power profi les, expressing the variability of the remaining imbalance.
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power can be properly compensated per 1000 EVs. Higher or 
lower shares of wind power decrease the efficiency of this 
system.

5.2.3 Real-time level results
For the effects at the distribution level, the different scenarios 
come into play again. From the tested parameters in the pre-
vious section, the wind power scaling is kept at W = 0.5, since 
this parameter led to the best performance at the market 
level, and γ = 1, as this is the most generic application.

The EN 50160 results of the passive distribution grid sce-
narios are grouped together with the active distribution grid 
scenarios in Figure 10, in order to improve clarity and avoid 
duplication. These plots show the results for the FL case, but 
the HHOnly results have been omitted, since their results are 
the same as in the previous section.

Compared to the ToU results, fewer problems exist, but 
voltages still drop below 0.85 pu. The use of voltage droop 
control reduces the few remaining voltage problems to below 
the EN 50160 specifi cations.

Since the tracking scenario already attempts to follow the 
nomination, which is a smooth path through the aggregated 
energy constraints graph for the EVs, the reduction in voltage 
deviations is relatively small when voltage droop controllers 
are introduced.

5.2.4 Impact of droop control on market-level objectives
The vehicles for which charging is affected by voltage droop 
activation will infl uence the business case at the market level. 
It follows that moving from case FL-38 to FL-760 will increase 
the remaining imbalance, as less peak fl exibility is available 

to the aggregator. Figure 11 shows that the imbalance volume 
is constant for cases FL-38 and FL-114, which have 4% and 
21%, respectively, of all EVs inside a weak grid.

For case FL-380, with 38% of the fl eet inside the weak dis-
tribution grids, a small increase of 2.4% in the imbalance 
volume is noticeable. Finally, for case FL-760 in which 76% of 
the EVs are located inside the constrained grids, the observed 
increase in the imbalance volume is 10.3%. During the lat-
ter case, the “dumb” tracking scenario also suffered slightly, 
with a minor increase of 0.95%.

The use of a voltage droop controller in the balancing op-
timization case leads to fewer and smaller power peaks, as 
shown in Figure 12. There is practically no gain for the track-
ing scenario, which attempts to accurately follow the day-
ahead nominated EV energy.

5.2.5 Conclusions on the balancing case
The balancing concept was successfully tested on a portfolio 
consisting of wind power generation and charging EVs. The 
optimization reduces both the imbalance that originates from 
the hourly discretization of the day-ahead nomination and 
the imbalance that exists because of imperfect wind speed 
predictions. Using short-term information on wind power 
production, the imbalance can also be intentionally spread 
over a period of time. This can be benefi cial for the aggrega-
tor, as the remaining imbalance can then be countered by the 
other generation units in its portfolio.

In addition, the effect of varying the discount factor γ was 
shown. By including γ as a variable in the optimization, it 
was possible to move the remaining imbalance toward points 
in time in which it had economic benefi ts, such as by using 

Figure 10. EN 50160 voltage magnitude statistics for the aggregator balancing scenarios. (a) Voltage less than 0.9 pu; (b) voltage less than 0.85 pu; (c) VUF 
greater than 2%.

Figure 11. Total remaining imbalance after seven days, for different 
shares of EVs in weak distribution grids. With larger shares, an effect on the 
remaining imbalance is noticeable, as the aggregator fails to compensate for the 
droop controller activation.

Figure 12. The load duration curve for the FL-760 balancing scenario, for 
Feeder 0.
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stochastic information on the imbalance market prices.
Regarding grid constraints, the use of the (quadratic) bal-

ancing objective puts less load on the grid compared to the 
(linear) ToU objective, because the flexibility of the EVs is 
intentionally spread out when creating the nomination of the 
charging energy and is therefore not enabled all at once.

As in the ToU case, voltage droop controllers inside EV 
chargers are successful in mitigating weak grid problems. 
Some tuning of their parameters may be needed in order to 
fi nd a setting at which the grid state at all nodes is within the 
EN 50160 specifi cations for the entire simulated time.

Unless a very large share of the EVs of an aggregator is 
located inside weak grids, the business case is practically 
unaffected by the addition of local voltage droop control, us-
ing the coordination system that was implemented in this 
study. The suggested best choice is to be event-based for fast 
response, and to have a compensation loop at the aggregator. 
The combination of both ensures that, when droop control-
lers activate, the equilibrium priority is changed quickly 
enough such that the flexibility of the other vehicles is dis-
patched in order to compensate for the expected energy that 
is not supplied to the EVs over time.

6 Conclusions
In light of the challenges that were discussed in the introduc-
tion, the results and contributions can be summarized as fol-
lows:

• The separation between two DR operation levels has 
been identifi ed. The market operation level is responsible 
for the business case of a fl eet of EVs and operates syn-
chronously with the energy markets. The technical or 
real-time operation level uses the set points determined 
by the business case and uses an event-driven architec-
ture to effi ciently dispatch constraints from and control 
signals to the charging EVs. At the market level, an algo-
rithm based on MBC has been adapted for the coordina-
tion of EVs—taking future fl exibility into account—and 
at the technical level, a voltage droop controller has been 
integrated in order to respect the local grid constraints 
(mainly under-voltage).

• The effect of using market-level objectives on congestion 
in weak distribution grids has been examined. In par-
ticular, the use of ToU cost minimization objectives has a 
negative effect on the occurrence of under-voltages, with 
respect to the EN 50160 standard. The synchronization 
of large amounts of controllable loads is to be avoided in 
DR applications.

• In addition to a ToU cost minimization objective, it has 
been shown that a cluster of fast-responding EVs can be 
used to limit an aggregator’s exposure to the balancing 
market. An optimization at the market level determines 
set points for the fleet such that the remaining imbal-
ance between predicted and nominated wind output and 
more recent short-term predictions is spread out over a 
period of time. This can be benefi cial for the aggregator, 
as the remaining imbalance can be then be countered 
by other generation units in its portfolio. In addition, a 

variable γ can be included in the optimization in order to 
express a preference for having the remaining imbalance 
occur at a time for which it has cost benefi ts.

• A straightforward and common way of mitigating grid 
congestion is the use of a voltage droop controller. Al-
though it is fast, inexpensive, and able to act indepen-
dently from any central coordinator, its activation inter-
venes in the business case. In literature, the overruling of 
the market operation level by technical objectives is often 
presented as a major challenge to be addressed. The re-
sults from Section 5 show that, unless very large shares 
of the EV fl eet are located inside weak grids, the effects 
of the activation of voltage droop controllers on the busi-
ness case remain relatively modest. These modest effects 
are due to the limited amount of scheduled energy that is 
not supplied to the EVs and to the possibility to compen-
sate for this energy using other parts in the DR cluster, 
based on the event-driven approach.
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